1
|
Chang M, Li Q, Shi Z, Zhuang S. The Role and Mechanisms of Aurora Kinases in Kidney Diseases. Clin Pharmacol Ther 2025; 117:1217-1225. [PMID: 39907556 DOI: 10.1002/cpt.3584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Aurora kinases are a family of serine/threonine kinases that includes Aurora kinase A, Aurora kinase B, and Aurora kinase C. These kinases play crucial roles in mitotic spindle formation and cell proliferation. Over the past several decades, extensive research has elucidated the multifaceted roles of Aurora kinases in cancer development and progression. Recent studies have also highlighted the significant involvement of Aurora kinases in various kidney diseases, such as renal cell carcinoma, diabetic nephropathy, chronic kidney disease, and polycystic kidney disease. The mechanisms by which Aurora kinases contribute to renal diseases are complex and influenced by both specific pathological conditions and environmental factors. In this review, we comprehensively summarize the role and mechanisms through which Aurora kinases operate in kidney diseases and discuss the efficacy and application of existing inhibitors targeting these kinases in managing renal disorders in animal models.
Collapse
Affiliation(s)
- Meiying Chang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Nephrology, The First Hospital of Tsinghua University, Beijing, China
| | - Qiuyi Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenwei Shi
- Department of Nephrology, The First Hospital of Tsinghua University, Beijing, China
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Zoroddu S, Lorenzo BD, Paliogiannis P, Mangoni AA, Carru C, Zinellu A. Osteopontin in rheumatic diseases: A systematic review and meta-analysis. Clin Chim Acta 2025; 570:120209. [PMID: 39988302 DOI: 10.1016/j.cca.2025.120209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Osteopontin (OPN), a glycoprotein involved in immune regulation and inflammation, is a potential candidate biomarker for rheumatic diseases (RDs). However, variability across studies limits its clinical utility. This meta-analysis evaluated OPN concentrations in RD patients compared to healthy controls and explored sources of heterogeneity. A systematic search identified 37 studies (43 comparator groups) including 3,201 RD patients and 2,543 controls. Standardized mean differences (SMDs) were calculated, and subgroup and meta-regression analyses examined the modulating role of demographic and clinical variables. Publication bias was assessed using Begg's and Egger's tests. OPN concentrations were significantly higher in RD patients than controls (SMD = 1.54, 95 % CI: 1.17-1.90, p < 0.001). Subgroup analysis revealed consistent elevations in systemic lupus erythematosus (SLE, SMD = 0.97, I2 = 0 %) and rheumatoid arthritis (RA, SMD = 0.70, I2 = 92.5 %), with osteoarthritis showing the largest effect size (SMD = 4.02). Age significantly moderated OPN concentrations (p = 0.030). Although publication bias was detected (p < 0.05), removing seven studies eliminated bias and maintained significant between-group differences (SMD = 0.78, 95 % CI: 0.62-0.93; p < 0.001). The high concentrations of OPN support its possible use as a candidate biomarker for RDs, particularly in SLE and RA. Resolution of heterogeneity and standardization may improve its clinical utility.
Collapse
Affiliation(s)
- Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari 07100 Sassari, Italy.
| | - Biagio Di Lorenzo
- Department of Biomedical Sciences, University of Sassari 07100 Sassari, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Panagiotis Paliogiannis
- Department of Medicine, Surgery and Pharmacy, University of Sassari 07100 Sassari, Italy; Anatomic Pathology and Histology Unit, University Hospital (AOU) of Sassari 07100 Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari 07100 Sassari, Italy; Medical Oncology Unit, University Hospital (AOU) of Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari 07100 Sassari, Italy
| |
Collapse
|
3
|
Tomita H, Hayakawa K, Ikeda K, Tsushima H, Shinoura M, Fujishiro M, Kataoka Y, Yamaji K, Takamori K, Tamura N, Sekigawa I, Morimoto S. miR-6516-3p-mediated downregulation of the endogenous MMP-9 inhibitor RECK in mesangial cells might exacerbate lupus nephritis. Mol Med 2025; 31:84. [PMID: 40045202 PMCID: PMC11881388 DOI: 10.1186/s10020-025-01124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) regulate biological processes by inhibiting translation and causing mRNA degradation. In this study, we identified the miRNAs involved in the development and progression of lupus nephritis (LNs) and verified their roles. METHODS Total RNA, extracted from PBMCs collected from patients with LNs before and after treatment, was used for miRNA array analysis to identify miRNAs whose expression was significantly altered. The results of this analysis were confirmed using qRT-PCR. The identified miRNAs were transfected into normal human mesangial cells (NHMCs), human renal proximal tubule epithelial cells (RPTECs), human umbilical vein endothelial cells (HUVECs), and THP-1-derived macrophages (THP1-Mφ) to investigate their biological functions. RESULTS Three miRNAs were altered in PBMCs before and after treatment of LNs. Among these miRNAs, hsa-miR-6516-3p promoted TNF-α-induced expression of MMP-9 in NHMCs. Moreover, hsa-miR-6516-3p downregulated the expression of RECK, an endogenous inhibitor of MMP-9. However, in NHMCs, endogenous hsa-miR-6516-3p was not present in functional amounts under inflammatory environment; therefore, we performed analysis using an experimental system considering extracellular influences of mesangial cells under LNs. The expression of hsa-miR-6516-3p was increased in HUVECs under inflammatory conditions and in activated macrophages. CONCLUSIONS hsa-miR-6516-3p increases MMP9 expression by suppressing RECK, and might, thereby, exacerbate LNs.
Collapse
Affiliation(s)
- Hiroyuki Tomita
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka Urayasu-Shi, Chiba, 279-0021, Japan
- Department of Internal Medicine and Rheumatology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Kunihiro Hayakawa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka Urayasu-Shi, Chiba, 279-0021, Japan
| | - Keigo Ikeda
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka Urayasu-Shi, Chiba, 279-0021, Japan.
- Department of Internal Medicine and Rheumatology, Juntendo University Urayasu Hospital, Chiba, Japan.
| | - Hiroshi Tsushima
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Marina Shinoura
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka Urayasu-Shi, Chiba, 279-0021, Japan
- Department of Internal Medicine and Rheumatology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Maki Fujishiro
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka Urayasu-Shi, Chiba, 279-0021, Japan
| | - Yuko Kataoka
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka Urayasu-Shi, Chiba, 279-0021, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka Urayasu-Shi, Chiba, 279-0021, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Iwao Sekigawa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka Urayasu-Shi, Chiba, 279-0021, Japan
- Department of Internal Medicine and Rheumatology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Shinji Morimoto
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka Urayasu-Shi, Chiba, 279-0021, Japan
- Department of Internal Medicine and Rheumatology, Juntendo University Urayasu Hospital, Chiba, Japan
| |
Collapse
|
4
|
Xiong Y, Li W, Jin S, Wan S, Wu S. Inflammation in glomerular diseases. Front Immunol 2025; 16:1526285. [PMID: 40103820 PMCID: PMC11913671 DOI: 10.3389/fimmu.2025.1526285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
The structural and functional integrity of glomerular cells is critical for maintaining normal kidney function. Glomerular diseases, which involve chronic histological damage to the kidney, are related to injury to glomerular cells such as endothelial cells, mesangial cells (MCs), and podocytes. When faced with pathogenic conditions, these cells release pro-inflammatory cytokines such as chemokines, inflammatory factors, and adhesion factors. These substances interact with glomerular cells through specific inflammatory pathways, resulting in damage to the structure and function of the glomeruli, ultimately causing glomerular disease. Although the role of inflammation in chronic kidney diseases is well known, the specific molecular pathways that result in glomerular diseases remain largely unclear. For a long time, it has been believed that only immune cells can secrete inflammatory factors. Therefore, targeted therapies against immune cells were considered the first choice for treating inflammation in glomerular disease. However, emerging research indicates that non-immune cells such as glomerular endothelial cells, MCs, and podocytes can also play a role in renal inflammation by releasing inflammatory factors. Similarly, targeted therapies against glomerular cells should be considered. This review aims to uncover glomerular diseases related to inflammation and pathways in glomerular inflammation, and for the first time summarized that non-immune cells in the glomerulus can participate in glomerular inflammatory damage by secreting inflammatory factors, providing valuable references for future strategies to prevent and treat glomerular diseases. More importantly, we emphasized targeted glomerular cell therapy, which may be a key direction for the future treatment of glomerular diseases.
Collapse
Affiliation(s)
- Yongqing Xiong
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Wei Li
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Songzhi Jin
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Shujing Wan
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Suzhen Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Yuan H, Peng Z, Zhang M, Li H, Lu K, Yang C, Li M, Liu S. Antagonising Yin Yang 1 ameliorates the symptoms of lupus nephritis via modulating T lymphocyte signaling. Pharmacol Res 2024; 210:107525. [PMID: 39613121 DOI: 10.1016/j.phrs.2024.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Lupus nephritis (LN) is a chronic complication of systemic lupus erythematosus (SLE). At present, no drugs are capable of delaying the progression of LN without a risk of serious side effects. There is thus a pressing need for further studies of LN pathogenesis to identify novel therapeutic targets and aid in the development of new approaches to treating this debilitating disease. In this study, a multi-omics approach was used to characterize the pathogenesis of LN and to identify disease-related targets, ultimately leading to the identification and validation of Yin Yang 1 (YY1) as a promising therapeutic target in LN. A rapid approach to efficiently screening for candidate YY1 ligands was implemented using drug databases that established rebamipide as a YY1 antagonist suitable for use in the management of LN. Specifically, the YY1 antagonist activity of rebamipide was found to regulate lymphocyte activity, reduce autoantibody production, limit immune complex deposition, and suppress macrophage activation while improving symptoms in a murine model of LN. Results supportive of a similar pathologic mechanism of action were also obtained when analyzing renal tissue sections from LN patients, underscoring the potential clinical significance of YY1 and its antagonist rebamipide, suggesting that rebamipide may have positive effects on lymphocytes and may improve symptoms in treated patients. This study provides a robust foundation for further research focused on the pathogenesis and treatment of LN.
Collapse
Affiliation(s)
- Haoxing Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zheng Peng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meilian Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Honglian Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kunyu Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Minmin Li
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China; Innovation Center for Medical Basic Research on Inflammation and Immune Related Diseases of Ministry of Education, Southern Medical University, Guangzhou 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, China.
| |
Collapse
|
6
|
Yuan H, Peng Z, Li H, Rao Y, Lu K, Yang C, Cheng C, Liu S. Oxymatrine Ameliorates Lupus Nephritis by Targeting the YY1-Mediated IL-6/STAT3 Axis. Int J Mol Sci 2024; 25:12260. [PMID: 39596325 PMCID: PMC11594375 DOI: 10.3390/ijms252212260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Lupus nephritis (LN) is a severe form of systemic lupus erythematosus (SLE), characterized by inflammation in the renal glomeruli and tubules. Previous research has demonstrated that dihydroartemisinin (DHA) can reduce inflammatory damage in LN mouse models. Oxymatrine, which has similar biological properties to DHA, may also provide therapeutic benefits. This study aims to investigate the effects of oxymatrine on LN using a murine model and examines its molecular mechanisms through an analysis of microarray datasets from LN patients. The analysis identified differentially expressed genes (DEGs) in renal tissues, regulated by the transcription factor Yin Yang 1 (YY1), which was found to be significantly upregulated in LN patient kidneys. The results indicate that oxymatrine targets the YY1/IL-6/STAT3 signaling pathway. In cell models simulating renal inflammation, oxymatrine reduced YY1 expression and inhibited the secretion of inflammatory factors (IFs), thereby diminishing inflammation. YY1 is crucial in modulating IFs' secretion and contributing to LN pathogenesis. Additionally, oxymatrine's interaction with YY1, leading to its downregulation, appears to be a key mechanism in alleviating LN symptoms. These findings support oxymatrine as a promising therapeutic agent for LN, offering new avenues for treating this autoimmune kidney disorder.
Collapse
Affiliation(s)
- Haoxing Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Zheng Peng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Honglian Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Yuzhen Rao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Kunyu Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Chen Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China
- Innovation Center for Medical Basic Research on Inflammation and Immune Related Diseases, Ministry of Education, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Liu J, Wang N, Wu Z, Gan Y, Ji J, Huang Z, Du Y, Wen C, Tian F, Fan Y, Xu L. Apigenin ameliorates lupus nephritis by inhibiting SAT3 signaling in CD8 + T cells. Food Funct 2024; 15:10020-10036. [PMID: 39283308 DOI: 10.1039/d4fo02773f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by widespread organ and tissue involvement, with lupus nephritis (LN) being one of its most severe complications. Dietary flavonoids, as for their anti-inflammatory and antioxidant properties, have shown therapeutic potential under various inflammatory conditions. Apigenin (AP) is one of the most studied phenolics and is found in many fruits, vegetables and herbs. This study aimed to investigate the therapeutic effects and underlying mechanisms of apigenin on LN. We evaluated the effects of apigenin on MRL/lpr mice, a well-established model for spontaneous LN. Apigenin treatment improved peripheral blood profiles, reduced serum inflammatory cytokines (IL-6, IFN-γ, IL-17, TGF-β), lowered levels of autoantibodies (ANA, anti-dsDNA) and alleviated renal damage caused by autoantibodies and inflammatory cell infiltration. The results of immunohistochemistry and transcriptome analysis showed that AP could inhibit the infiltration of CD8+ cells in renal tissues. Single-cell sequencing public data from LN patients identified cytotoxic T lymphocytes (CTLs) as the primary CD8+ T cell subtype in the kidneys, with their differentiation regulated by STAT3. In this study, cell experiments demonstrated that AP can induce apoptosis in CD8+ T cells and reduce their recruitment of macrophages by inhibiting the STAT3/IL-17 signaling pathway. These findings highlight that a diet rich in dietary flavonoids, particularly apigenin, can offer therapeutic benefits for patients with SLE.
Collapse
Affiliation(s)
- Jingqun Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nianzhi Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Zhenyu Wu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yihong Gan
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinjun Ji
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Zixuan Huang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Chengping Wen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Fengyuan Tian
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
8
|
Chernova I. Lupus Nephritis: Immune Cells and the Kidney Microenvironment. KIDNEY360 2024; 5:1394-1401. [PMID: 39120952 PMCID: PMC11441818 DOI: 10.34067/kid.0000000000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024]
Abstract
Lupus nephritis (LN) is the most common major organ manifestation of the autoimmune disease SLE (lupus), with 10% of those afflicted progressing to ESKD. The kidney in LN is characterized by a significant immune infiltrate and proinflammatory cytokine milieu that affects intrinsic renal cells and is, in part, responsible for the tissue damage observed in LN. It is now increasingly appreciated that LN is not due to unidirectional immune cell activation with subsequent kidney damage. Rather, the kidney microenvironment influences the recruitment, survival, differentiation, and activation of immune cells, which, in turn, modify kidney cell function. This review covers how the biochemical environment of the kidney ( i.e ., low oxygen tension and hypertonicity) and unique kidney cell types affect the intrarenal immune cells in LN. The pathways used by intrinsic renal cells to interact with immune cells, such as antigen presentation and cytokine production, are discussed in detail. An understanding of these mechanisms can lead to the design of more kidney-targeted treatments and the avoidance of systemic immunosuppressive effects and may represent the next frontier of LN therapies.
Collapse
Affiliation(s)
- Irene Chernova
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
9
|
Roveta A, Parodi EL, Brezzi B, Tunesi F, Zanetti V, Merlotti G, Francese A, Maconi AG, Quaglia M. Lupus Nephritis from Pathogenesis to New Therapies: An Update. Int J Mol Sci 2024; 25:8981. [PMID: 39201667 PMCID: PMC11354900 DOI: 10.3390/ijms25168981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Lupus Nephritis (LN) still represents one of the most severe complications of Systemic Lupus Erythematosus (SLE) and a major risk factor for morbidity and mortality. However, over the last few years, several studies have paved the way for a deeper understanding of its pathogenetic mechanisms and more targeted treatments. This review aims to provide a comprehensive update on progress on several key aspects in this setting: pathogenetic mechanisms of LN, including new insight into the role of autoantibodies, complement, vitamin D deficiency, and interaction between infiltrating immune cells and kidney resident ones; the evolving role of renal biopsy and biomarkers, which may integrate information from renal histology; newly approved drugs such as voclosporin (VOC) and belimumab (BEL), allowing a more articulate strategy for induction therapy, and other promising phase III-immunosuppressive (IS) agents in the pipeline. Several adjunctive treatments aimed at reducing cardiovascular risk and progression of chronic renal damage, such as antiproteinuric agents, represent an important complement to IS therapy. Furthermore, non-pharmacological measures concerning general lifestyle and diet should also be adopted when managing LN. Integrating these therapeutic areas requires an effort towards a holistic and multidisciplinary approach. At the same time, the availability of an increasingly wider armamentarium may translate into improvements in patient's renal outcomes over the next decades.
Collapse
Affiliation(s)
- Annalisa Roveta
- Research and Innovation Department (DAIRI), “SS Antonio e Biagio e Cesare Arrigo” University Hospital, 15121 Alessandria, Italy; (A.R.); (A.F.); (A.G.M.)
| | - Emanuele Luigi Parodi
- Nephrology and Dialysis Unit, “SS Antonio e Biagio e Cesare Arrigo” University Hospital, 15121 Alessandria, Italy; (E.L.P.); (B.B.)
| | - Brigida Brezzi
- Nephrology and Dialysis Unit, “SS Antonio e Biagio e Cesare Arrigo” University Hospital, 15121 Alessandria, Italy; (E.L.P.); (B.B.)
| | - Francesca Tunesi
- Nephrology and Dialysis Unit, IRCCS “San Raffaele” Scientific Institute, 20132 Milan, Italy;
| | - Valentina Zanetti
- Department of Internal Medicine, University of Genova, 16126 Genoa, Italy;
| | - Guido Merlotti
- Department of Primary Care, Azienda Socio Sanitaria Territoriale (ASST) of Pavia, 27100 Pavia, Italy;
| | - Alessia Francese
- Research and Innovation Department (DAIRI), “SS Antonio e Biagio e Cesare Arrigo” University Hospital, 15121 Alessandria, Italy; (A.R.); (A.F.); (A.G.M.)
| | - Antonio G. Maconi
- Research and Innovation Department (DAIRI), “SS Antonio e Biagio e Cesare Arrigo” University Hospital, 15121 Alessandria, Italy; (A.R.); (A.F.); (A.G.M.)
| | - Marco Quaglia
- Nephrology and Dialysis Unit, “SS Antonio e Biagio e Cesare Arrigo” University Hospital, 15121 Alessandria, Italy; (E.L.P.); (B.B.)
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
10
|
Chen L, Li F, Ni JH, Hao YX, Feng G, Shen XY, You Y. Ursolic acid alleviates lupus nephritis by suppressing SUMO1-mediated stabilization of NLRP3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155556. [PMID: 38810552 DOI: 10.1016/j.phymed.2024.155556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease that affects multiple organs and cause a wide range of severe clinical manifestations, including lupus nephritis (LN), which is a major risk factor for morbidity and mortality in individual with SLE. Ursolic acid (UA) is a natural compound with favorable anti-inflammatory properties and has been employed to treat multiple disease, including inflammatory diseases, diabetes, and Parkinson's disease. However, its therapeutic potential on LN and the underlying mechanisms remains unclear. PURPOSE This aim of this study was to investigate the impact of UA on LN and its underlying mechanism. METHODS MRL/lpr lupus-prone mouse model was used and UA was administered orally for 8 weeks. Dexamethasone was used as a positive control. After 8 weeks of administration, the spleen-to-body-weight ratio, renal function, urine albumin excretion, cytokines levels, and the deposition of immune complex were measured. The primary mouse glomerular mesangial cells (GMCs) and SV40-MES-13 were stimulated by lipopolysaccharide (LPS), either alone or in combination with nigericin, to establish an in vitro model. The activation of NLRP3 inflammasome were investigated both in vivo and in vitro using qRT-PCR, immunoblotting, and immunofluorescence. RESULTS Our results revealed that UA prominently alleviated LN in MRL/lpr lupus-prone mice, leading to a significant reduction in proteinuria production, infiltration of immune cells infiltration, and histopathological damage in the renal tissue. In addition, UA exerted inhibitory effects on the secretion of IL-1β, IL-18, and caspase-1, pyroptosis, and ASC speck formation in primary mouse GMCs and SV40-MES-13 cells. Furthermore, UA facilitated the degradation of NLRP3 by suppressing SUMO1-mediated SUMOylation of NLRP3. CONCLUSION UA possess a therapeutical effect on LN in MRL/lpr mice by enhancing the degradation of NLRP3 through inhibition of SUMO1-mediated SUMOylation of NLRP3. Our findings provide a basis for proposing UA as a potential candidate for the treatment of LN.
Collapse
Affiliation(s)
- Luo Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Fei Li
- Dermatology Department Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Hui Ni
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yu-Xuan Hao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Guize Feng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiao-Yan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Minhang Hospital, Fudan University, Shanghai, China.
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Li Q, Wang Y, Yan J, Yuan R, Zhang J, Guo X, Zhao M, Li F, Li X. Osthole ameliorates early diabetic kidney damage by suppressing oxidative stress, inflammation and inhibiting TGF-β1/Smads signaling pathway. Int Immunopharmacol 2024; 133:112131. [PMID: 38669945 DOI: 10.1016/j.intimp.2024.112131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Osthole is a natural active ingredient extracted from the traditional Chinese medicine Cnidium monnieri. It has been demonstrated to have anti-inflammatory, anti-fibrotic, and anti-hyperglycemic properties. However, its effect on diabetic kidney disease (DKD) remains uncertain. This study aims to assess the preventive and therapeutic effects of osthole on DKD and investigate its underlying mechanisms. METHODS A streptozotocin/high-fat and high-sucrose diet induced Type 2 diabetic rat model was established. Metformin served as the positive drug control. Diabetic rats were treated with metformin or three different doses of osthole for 8 weeks. Throughout the treatment period, the progression of DKD was assessed by monitoring increases in urinary protein, serum creatinine, urea nitrogen, and uric acid, along with scrutinizing kidney pathology. Enzyme-linked immunosorbent assay (ELISA) was employed to detect inflammatory factors and oxidative stress levels. At the same time, immunohistochemical staining was utilized to evaluate changes in alpha-smooth muscle actin, fibronectin, E-cadherin, and apoptosis. The alterations in TGF-β1/Smads signaling pathway were ascertained through western blot and immunofluorescence. Furthermore, we constructed a high glucose-stimulated HBZY-1 cells model to uncover its molecular protective mechanism. RESULTS Osthole significantly reduced fasting blood glucose, insulin resistance, serum creatinine, uric acid, blood urea nitrogen, urinary protein excretion, and glomerular mesangial matrix deposition in diabetic rats. Additionally, significant improvements were observed in inflammation, oxidative stress, apoptosis, and fibrosis levels. The increase of ROS, apoptosis and hypertrophy in HBZY-1 cells induced by high glucose was reduced by osthole. Immunofluorescence and western blot results demonstrated that osthole down-regulated the TGF-β1/Smads signaling pathway and related protein expression. CONCLUSION Our findings indicate that osthole exhibits potential preventive and therapeutic effects on DKD. It deserves further investigation as a promising drug for preventing and treating DKD.
Collapse
Affiliation(s)
- Qiangsheng Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yifei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jia Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruyan Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiamin Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinhao Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingming Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaotian Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Engineering Research Center for Water Environment and Health of Henan, College of Pharmacy and Chemical Engineering, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China.
| |
Collapse
|
12
|
Li W, Yao C, Guo H, Ni X, Zhu R, Wang Y, Yu B, Feng X, Gu Z, Da Z. Macrophages communicate with mesangial cells through the CXCL12/DPP4 axis in lupus nephritis pathogenesis. Cell Death Dis 2024; 15:344. [PMID: 38762508 PMCID: PMC11102518 DOI: 10.1038/s41419-024-06708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Lupus nephritis (LN) occurs in 50% of cases of systemic lupus erythematosus (SLE) and is one of the most serious complications that can occur during lupus progression. Mesangial cells (MCs) are intrinsic cells in the kidney that can regulate capillary blood flow, phagocytose apoptotic cells, and secrete vasoactive substances and growth factors. Previous studies have shown that various types of inflammatory cells can activate MCs for hyperproliferation, leading to disruption of the filtration barrier and impairment of renal function in LN. Here, we characterized the heterogeneity of kidney cells of LN mice by single-nucleus RNA sequencing (snRNA-seq) and revealed the interaction between macrophages and MCs through the CXC motif chemokine ligand 12 (CXCL12)/dipeptidyl peptidase 4 (DPP4) axis. In culture, macrophages modulated the proliferation and migration of MCs through this ligand-receptor interaction. In LN mice, treatment with linagliptin, a DPP4 inhibitor, effectively inhibited MC proliferation and reduced urinary protein levels. Together, our findings indicated that targeting the CXCL12/DPP4 axis with linagliptin treatment may serve as a novel strategy for the treatment of LN via the CXCL12/DPP4 axis.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Haixia Guo
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xi'an Ni
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Ran Zhu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zhanyun Da
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
13
|
Hoseinzadeh A, Mahmoudi M, Rafatpanah H, Rezaieyazdi Z, Tavakol Afshari J, Hosseini S, Esmaeili SA. A new generation of mesenchymal stromal/stem cells differentially trained by immunoregulatory probiotics in a lupus microenvironment. Stem Cell Res Ther 2023; 14:358. [PMID: 38072921 PMCID: PMC10712058 DOI: 10.1186/s13287-023-03578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that multipotent mesenchymal stem/stromal cells (MSCs) are a promising intervention strategy in treating autoimmune inflammatory diseases. It should be stated that systemic immunoregulation is increasingly recognized among the beneficial effects of MSCs and probiotics in treating morbid autoimmune disorders such as lupus. This study aimed to determine if immunoregulatory probiotics L. rhamnosus or L. delbrueckii can change the immunomodulatory effects of MSCs in lupus-like disease. METHODS Pristane-induced lupus (PIL) mice model was created via intraperitoneal injection of Pristane and then confirmed. Naïve MSCs (N-MSCs) were coincubated with two Lactobacillus strains, rhamnosus (R-MSCs) or delbrueckii (D-MSCs), and/or a combination of both (DR-MSCs) for 48 h, then administrated intravenously in separate groups. Negative (PBS-treated normal mice) and positive control groups (PBS-treated lupus mice) were also investigated. At the end of the study, flow cytometry and enzyme-linked immunosorbent assay (ELISA) analysis were used to determine the percentage of Th cell subpopulations in splenocytes and the level of their master cytokines in sera, respectively. Moreover, lupus nephritis was investigated and compared. Analysis of variance (ANOVA) was used for multiple comparisons. RESULTS Abnormalities in serum levels of anti-dsDNA antibodies, creatinine, and urine proteinuria were significantly suppressed by MSCs transplantation, whereas engrafted MSCs coincubation with both L. strains did a lesser effect on anti-dsDNA antibodies. L. rhamnosus significantly escalated the ability of MSCs to scale down the inflammatory cytokines (IFN-ɣ, IL-17), while L. delbrueckii significantly elevated the capacity of MSCs to scale down the percentage of Th cell subpopulations. However, incubation with both strains induced MSCs with augmented capacity in introducing inflammatory cytokines (IFN-ɣ, IL-17). Strikingly, R-MSCs directly restored the serum level of TGF-β more effectively and showed more significant improvement in disease parameters than N-MSCs. These results suggest that R-MSCs significantly attenuate lupus disease by further skew the immune phenotype of MSCs toward increased immunoregulation. CONCLUSIONS Results demonstrated that Lactobacillus strains showed different capabilities in training/inducing new abilities in MSCs, in such a way that pretreated MSCs with L. rhamnosus might benefit the treatment of lupus-like symptoms, given their desirable properties.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseini
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Wang Q, Fan X, Sheng Q, Yang M, Zhou P, Lu S, Gao Y, Kong Z, Shen N, Lv Z, Wang R. N6-methyladenosine methylation in kidney injury. Clin Epigenetics 2023; 15:170. [PMID: 37865763 PMCID: PMC10590532 DOI: 10.1186/s13148-023-01586-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Multiple mechanisms are involved in kidney damage, among which the role of epigenetic modifications in the occurrence and development of kidney diseases is constantly being revealed. However, N6-methyladenosine (M6A), a well-known post-transcriptional modification, has been regarded as the most prevalent epigenetic modifications in higher eukaryotic, which is involved in various biological processes of cells such as maintaining the stability of mRNA. The role of M6A modification in the mechanism of kidney damage has attracted widespread attention. In this review, we mainly summarize the role of M6A modification in the progression of kidney diseases from the following aspects: the regulatory pattern of N6-methyladenosine, the critical roles of N6-methyladenosine in chronic kidney disease, acute kidney injury and renal cell carcinoma, and then reveal its potential significance in the diagnosis and treatment of various kidney diseases. A better understanding of this field will be helpful for future research and clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ping Zhou
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
15
|
Liu S, Zhou W. Research progress in functional magnetic resonance imaging assessment of lupus nephritis kidney injury. Lupus 2023; 32:1143-1154. [PMID: 37556364 DOI: 10.1177/09612033231193790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Lupus nephritis is one of the most common and severe complications of systemic lupus erythematosus and is also a major predictor of poor prognosis and mortality. Lupus nephritis has the characteristics of insidious onset, complex pathological types, rapid progression of organ damage, and easy recurrence. Currently, kidney damage in lupus nephritis is usually assessed based on urine analysis, renal biopsy, and glomerular filtration rates. However, they all have certain limitations, making it difficult to diagnose lupus nephritis early and assess its severity and progression. With the rapid development of functional magnetic resonance, multiple functional imaging techniques are expected to provide more useful information for the pathophysiological development, early diagnosis, progression, prognosis, and renal function evaluation of lupus nephritis. This article reviews the principle of multiple functional magnetic resonance imaging and the research status of evaluating renal function in lupus nephritis.
Collapse
Affiliation(s)
- Shuangjiao Liu
- Department of Radiology, YueYang Central Hospital, Yueyang, China
| | - Wenming Zhou
- Department of Radiology, YueYang Central Hospital, Yueyang, China
| |
Collapse
|
16
|
Tsai CY, Li KJ, Shen CY, Lu CH, Lee HT, Wu TH, Ng YY, Tsao YP, Hsieh SC, Yu CL. Decipher the Immunopathological Mechanisms and Set Up Potential Therapeutic Strategies for Patients with Lupus Nephritis. Int J Mol Sci 2023; 24:10066. [PMID: 37373215 PMCID: PMC10298725 DOI: 10.3390/ijms241210066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Lupus nephritis (LN) is one of the most severe complications in patients with systemic lupus erythematosus (SLE). Traditionally, LN is regarded as an immune complex (IC) deposition disease led by dsDNA-anti-dsDNA-complement interactions in the subendothelial and/or subepithelial basement membrane of glomeruli to cause inflammation. The activated complements in the IC act as chemoattractants to chemically attract both innate and adaptive immune cells to the kidney tissues, causing inflammatory reactions. However, recent investigations have unveiled that not only the infiltrating immune-related cells, but resident kidney cells, including glomerular mesangial cells, podocytes, macrophage-like cells, tubular epithelial cells and endothelial cells, may also actively participate in the inflammatory and immunological reactions in the kidney. Furthermore, the adaptive immune cells that are infiltrated are genetically restricted to autoimmune predilection. The autoantibodies commonly found in SLE, including anti-dsDNA, are cross-reacting with not only a broad spectrum of chromatin substances, but also extracellular matrix components, including α-actinin, annexin II, laminin, collagen III and IV, and heparan sulfate proteoglycan. Besides, the glycosylation on the Fab portion of IgG anti-dsDNA antibodies can also affect the pathogenic properties of the autoantibodies in that α-2,6-sialylation alleviates, whereas fucosylation aggravates their nephritogenic activity. Some of the coexisting autoantibodies, including anti-cardiolipin, anti-C1q, anti-ribosomal P autoantibodies, may also enhance the pathogenic role of anti-dsDNA antibodies. In clinical practice, the identification of useful biomarkers for diagnosing, monitoring, and following up on LN is quite important for its treatments. The development of a more specific therapeutic strategy to target the pathogenic factors of LN is also critical. We will discuss these issues in detail in the present article.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Immunology & Rheumatology, Department of Medicine, Fu Jen Catholic University Hospital & College of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan
| | - Ko-Jen Li
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Cheng-Hsun Lu
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Hui-Ting Lee
- MacKay Memorial Hospital & MacKay Medical College, New Taipei City 25245, Taiwan;
| | - Tsai-Hung Wu
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and Faculty of Medicine, National Yang-Ming Chiao-Tung University, Taipei 112304, Taiwan;
| | - Yee-Yung Ng
- Department of Medicine, Fu Jen Catholic University Hospital & College of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan;
| | - Yen-Po Tsao
- Division of Holistic and Multidisciplinary Medicine, Department of Medicine, Taipei Veterans General Hospital and Faculty of Medicine, National Yang-Ming Chiao-Tung University, Taipei 112304, Taiwan;
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Chia-Li Yu
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| |
Collapse
|