1
|
Imtiaz S, Ferdous UT, Nizela A, Hasan A, Shakoor A, Zia AW, Uddin S. Mechanistic study of cancer drug delivery: Current techniques, limitations, and future prospects. Eur J Med Chem 2025; 290:117535. [PMID: 40132495 DOI: 10.1016/j.ejmech.2025.117535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Cancer drug delivery remains a critical challenge with systemic toxicity, poor drug bioavailability, and a lack of effective targeting. Overcoming these barriers is essential for improving treatment efficacy and patient outcomes. This review discusses current drug delivery techniques that reshape cancer therapy by offering precise, controlled-release tailored to tumor-specific features. Innovations in nanotechnology, immunotherapy, and gene therapy enable interventions at molecular and cellular levels. Radiomics and pathomics integrate high-dimensional data to optimize diagnostics and treatment planning. Combination therapy addresses the complexities of tumor heterogeneity by synergizing multiple agents within a single therapeutic framework, while peptide-drug conjugates enhance specificity and potency. Hydrogel-based systems and microneedle arrays offer localized, sustained release, significantly improving therapeutic outcomes. However, clinical translation of these advancements faces significant barriers such as drug resistance, off-target effects, scalability, cost, and ethical concerns. Moreover, regulatory complexities and the economic feasibility of these therapies highlight the need for innovative frameworks to make them accessible globally. Therefore, there is a need for innovation in gene and cell therapy, next-generation drug delivery platforms, and personalized medicine. This review focuses on recent advancements in drug delivery techniques over the past decade, evaluating their limitations and exploring potential future directions for transforming cancer treatment.
Collapse
Affiliation(s)
- Saiqa Imtiaz
- Department of Bioengineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Umme Tamanna Ferdous
- Center for Biosystems and Machines, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Alexis Nizela
- Department of Bioengineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia; Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, 2713, Qatar; Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Adnan Shakoor
- Center for Biosystems and Machines, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia; Department of Control & Instrumentation Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Abdul Wasy Zia
- Institute of Mechanical, Process, and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | - Shihab Uddin
- Department of Bioengineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia; Center for Biosystems and Machines, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
2
|
Miri H, Rahimzadeh P, Hashemi M, Nabavi N, Aref AR, Daneshi S, Razzaghi A, Abedi M, Tahmasebi S, Farahani N, Taheriazam A. Harnessing immunotherapy for hepatocellular carcinoma: Principles and emerging promises. Pathol Res Pract 2025; 269:155928. [PMID: 40184729 DOI: 10.1016/j.prp.2025.155928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
HCC is considered as one of the leadin causes of death worldwide, with the ability of resistance towards therapeutics. Immunotherapy, particularly ICIs, have provided siginficant insights towards harnessing the immune system. The present review introduces the concepts and possibilities of immunotherapy for HCC treatment, emphasizing its underlying mechanisms and capacity to enhance patient results, focusing on both pre-clinical and clinical insights. The functions of TME and immune evasion mechanisms typical of HCC would be evaluated along with how contemporary immunotherapeutic approaches are designed to address these challenges. Furthermore, the clinical application of immunotherapy in HCC is discussed, emphasizing recent trial findings demonstrating the effectiveness and safety of drugs. In addition, the problems caused by immune evasion and resistance would be discussed to increase potential of immunotherapy along with combination therapy.
Collapse
Affiliation(s)
- Hossein Miri
- Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Alireza Razzaghi
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Maryam Abedi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Liang LW, Luo RH, Huang ZL, Tang LN. Clinical observation of nivolumab combined with cabozantinib in the treatment of advanced hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17:103631. [PMID: 40235875 PMCID: PMC11995320 DOI: 10.4251/wjgo.v17.i4.103631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/25/2024] [Accepted: 02/07/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a particularly serious kind of liver cancer. Liver cancer ranks third in terms of mortality rate worldwide, putting it among the leading causes of deaths from cancer. HCC is the primary kind of liver cancer and makes up the vast majority of cases, accounting for approximately 90% of occurrences. Numerous research have verified this information. the progress of fatty liver, alcohol induced cirrhosis, smoking habits, obesity caused by overweight, and metabolic diseases such as diabetes. The treatment strategies for HCC can be divided into two categories: One is curative treatment, including liver transplantation, surgical resection, and ablation therapy or selective arterial radiation embolization, aimed at completely eliminating the lesion; Another type is non curative treatment options, including transarterial chemoembolization and systemic therapy, which focus on controlling disease progression and prolonging patient survival. The majority of HCC patients are found to be in an advanced stage and need systemic therapy. Sorafenib and lenvatinib are frequently used as first-line medications in traditional HCC treatment to slow the disease's progression. For second-line treatment, regorafenib, cabozantinib, or remdesizumab are used to inhibit tumors through different mechanisms and prolong survival. In recent years, with the in-depth exploration of the pathogenesis and progression mechanism of HCC, as well as the rapid progress within the domain of tumor immunotherapy, the treatment prospects for advanced HCC patients have shown a positive transformation. This transformation is reflected in the fact that more and more patients are gradually gaining significant and considerable therapeutic advantages from advanced immunotherapy regimens, bringing unprecedented improvements to their treatment outcomes. In order to enable activated T cells to attack tumor cells, immune checkpoint inhibitors interfere with the inhibitory. AIM To evaluate the effects of nivolumab in combination with cabozantinib on patient tumor markers and immune function, as well as the therapeutic efficacy of this combination in treating advanced HCC, a study was conducted. METHODS In all, 100 patients with advanced HCC who were brought to our hospital between July 2022 and July 2023 and who did not match the requirements for surgical resection had their clinical data thoroughly analyzed retrospectively in this study. Among them, half of the patients (50 cases) only received oral cabozantinib as a single treatment regimen (set as the control group), while the other half of the patients (50 cases) received intravenous infusion of nivolumab in addition to oral cabozantinib (set as the observation group). The objective of the probe is to examine the variations in disease control rate (DCR) and objective response rate (ORR) between two groups; At the same time, changes in the levels of T lymphocyte subsets (CD3+, CD4+, CD8+) and tumor markers, including AFP, GP-73, and AFP-L3, were evaluated; In addition, changes in liver and kidney function indicators and adverse reactions during treatment were also monitored. For patients with advanced HCC, this research also calculated and analyzed the progression free survival of two patient groups throughout the course of a 12-month follow-up to assess the effectiveness and safety of this therapeutic approach. RESULTS Upon comparing baseline information for both groups of subjects before treatment, it was found that no statistically significant alterations had occurred (P > 0.05). After the therapeutic intervention, the observation group and control group's ORR and DCR differed statistically significantly (P < 0.05). The observation group's scores significantly improved. Subsequent examination revealed that the observation group's T lymphocyte subset levels had significantly changed, mostly exhibiting an increase in CD3+, CD4+, and CD4+/CD8+ levels while CD8+ levels had comparatively dropped. There was a significant difference (P < 0.05) between these changes and those in the control group. The observation group also showed positive improvements in tumor markers; AFP, GP-73, and AFP-L3 levels were considerably lower in the group under observation than in the control group, with statistically significant differences (P < 0.05). When liver function was assessed, total bilirubin and alanine aminotransferase were found to be considerably lower in the observation group than in the control group (P < 0.05). The incidence of adverse responses was not statistically significant (P > 0.05), indicating that the incidence of adverse responses did not differ significantly between the two groups. CONCLUSION When treating advanced HCC, nivolumab and cabozantinib together have the ability to increase T lymphocyte numbers, reduce tumor marker levels, effectively prolong survival time, and have better efficacy than simple control treatment, with good safety.
Collapse
Affiliation(s)
- Lu-Wen Liang
- Infection and Liver Disease Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Rong-Hong Luo
- Department of Infectious Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Zhi-Li Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Li-Na Tang
- Department of Infectious Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
4
|
Dong J, Liu M, Li S, Zhang S, Fu P, Liu M, Jin S, Fan C, Fang M, Wu L, Li Z. Adverse reactions associated with SSRIs and PD-1/PD-L1 inhibitors: a disproportionality analysis of the FDA Adverse Event Reporting System. Expert Opin Drug Saf 2025; 24:453-460. [PMID: 39714905 DOI: 10.1080/14740338.2024.2446426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are the primary choice for antidepressant therapy in cancer patients with depression. Programmed death-1 and programmed cell death-ligand 1 (PD-1/PD-L1) play a critical role in immune checkpoint inhibitors. To date, there have been no studies reporting adverse events (AEs) associated with the real-world use of PD-1/PD-L1 inhibitors-SSRIs combination. RESEARCH DESIGN AND METHODS This study included a comprehensive evaluation of AE cases covered PD-1/PD-L1 inhibitors-SSRIs combination (first quarter of 2004 to second quarter of 2024) using the FDA Adverse Event Reporting System (FAERS) database, and compared with the use of PD-1/PD-L1 inhibitors or SSRIs alone. RESULTS By extracting a total of 807 reports of related AEs, the combination therapy was associated with a distinct AE profile characterized by an increased incidence of immune-related and systemic disorders, as well as a higher signal for adverse pregnancy and perinatal outcomes. CONCLUSIONS This study represents the largest report to date on PD-1/PD-L1 inhibitors-SSRIs -related AEs, providing valuable insights into the potential side effects of SSRIs for cancer patients with depression. Clinicians should exercise caution when prescribing SSRIs alongside PD-1/PD-L1 inhibitors, particularly in vulnerable populations such as pregnant women and those with significant comorbidities.
Collapse
Affiliation(s)
- Jiaqi Dong
- School of Medicine, Department of Xiangan Hospital of Xiamen University, Xiamen, China
| | - Mingyue Liu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Suning Li
- Department of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Siqi Zhang
- School of Medicine, Department of Xiangan Hospital of Xiamen University, Xiamen, China
| | - Pengbin Fu
- School of Medicine, Department of Xiangan Hospital of Xiamen University, Xiamen, China
| | - Mengya Liu
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shasha Jin
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Chunliang Fan
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Mingzhu Fang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Wu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Zhe Li
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Rehabilitation Clinical Medicine Research Center, Zhengzhou, China
| |
Collapse
|
5
|
Pu X, Zhang C, Jin J, Jin Y, Ren J, Zhou S, Patel H, Chen J, Wu B, Chen L, Qian H, Lin T. Phase separation of EEF1E1 promotes tumor stemness via PTEN/AKT-mediated DNA repair in hepatocellular carcinoma. Cancer Lett 2025; 613:217508. [PMID: 39884379 DOI: 10.1016/j.canlet.2025.217508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
This study aimed to investigate the associations of liquid-liquid phase separation (LLPS) and tumor stemness in hepatocellular carcinomas (HCC). LLPS-related genes were extracted from DrLLPS, LLPSDB and PhaSepDB databases. Stemness index (mRNAsi) was calculated based on the data from TCGA and Progenitor Cell Biology Consortium. Through some series of bioinformatics methods, we first found that stemness index mRNAsi was associated with worse survival outcomes, immune infiltration and therapy sensitivity in HCC. G2M checkpoint and DNA repair pathways were significantly activated with high mRNAsi. Totally, 71 differentially expressed LLPS genes in HCC were correlated with mRNAsi, and a mRNAsi-associated LLPS gene signature (KPNA2, EEF1E1 and ATIC) was identified to predict prognosis for HCC patients. mRNAsi-associated LLPS genes contributed to cluster HCC patients into four molecular clusters that markedly differed on survival, immune infiltration and therapy sensitivity. Further in vivo and in vitro experiments showed that EEF1E1 was highly expressed in HepG2 and HCCLM3 cells, and EEF1E1 silencing observably inhibited tumor cell growth, liver cancer stem cells (CSCs) markers (CD133, EpCAM and SOX2) expression, enhanced DNA damage marker γH2AX expression by activating PTEN/AKT pathway. EEF1E1 could undergo LLPS condensates, and roles of EEF1E1 on tumor cells were partly reversed after inhibiting LLPS using 1, 6-hexanediol. In conclusion, EEF1E1 was identified as a phase separation protein and involves in tumor stemness and DNA damage repair in HCC. EEF1E1 and its LLPS condensate may be novel targets to elaborate the underlying mechanisms of CSCs propagation in HCC.
Collapse
Affiliation(s)
- Xiaofan Pu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Chaolei Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Junbin Jin
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Yifeng Jin
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Jianghao Ren
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Senhao Zhou
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY 11439, USA
| | - Jingyun Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Bicheng Wu
- The First School of Medicine, School of Information and Engieering, Wenzhou Medical University, Wenzhou, 325000, China
| | - Leyi Chen
- School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Haoran Qian
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Tianyu Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
6
|
Muhammed TM, Jasim SA, Zwamel AH, Rab SO, Ballal S, Singh A, Nanda A, Ray S, Hjazi A, Yasin HA. T lymphocyte-based immune response and therapy in hepatocellular carcinoma: focus on TILs and CAR-T cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04035-9. [PMID: 40100377 DOI: 10.1007/s00210-025-04035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Hepatocellular carcinoma (HCC) is among the leading causes of cancer-related death worldwide. The primary therapies for HCC are liver transplantation, hepatic tumor excision, radiofrequency ablation, and molecular-targeted medicines. An unfavorable prognosis marks HCC and has limited pharmacological response in therapeutic studies. The tumor immune microenvironment (TME) imposes significant selection pressure on HCC, resulting in its evolution and recurrence after various treatments. As the principal cellular constituents of tumor-infiltrating lymphocytes (TILs), T cells have shown both anti-tumor and protumor actions in HCC. T cell-mediated immune responses are pivotal in cancer monitoring and elimination. TILs are recognized for their critical involvement in the progression, prognosis, and immunotherapeutic management of HCC. Foxp3 + , CD8 + , CD3 + , and CD4 + T cells are the extensively researched subtypes of TILs. This article examines the functions and processes of several subtypes of TILs in HCC. Emerging T cell-based therapies, including TILs and chimeric antigen receptor (CAR)-T cell therapy, have shown tumor regression in several clinical and preclinical studies. Herein, it also delves into the existing T cell-based immunotherapies in HCC, with emphasis on TILs and CAR-T cells.
Collapse
Affiliation(s)
- Thikra Majid Muhammed
- Biology Department, College of Education for Pure Sciences, University of Anbar, Anbar, Iraq
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anima Nanda
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
7
|
Lin Y, Song Y, Zhang Y, Li X, Kan L, Han S. New insights on anti-tumor immunity of CD8 + T cells: cancer stem cells, tumor immune microenvironment and immunotherapy. J Transl Med 2025; 23:341. [PMID: 40097979 PMCID: PMC11912710 DOI: 10.1186/s12967-025-06291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025] Open
Abstract
Recent breakthroughs in tumor immunotherapy have confirmed the capacity of the immune system to fight several cancers. The effective means of treating cancer involves accelerating the death of tumor cells and improving patient immunity. Dynamic changes in the tumor immune microenvironment alter the actual effects of anti-tumor drug production and may trigger favorable or unfavorable immune responses by modulating tumor-infiltrating lymphocytes. Notably, CD8+ T cells are one of the primary tumor-infiltrating immune cells that provide anti-tumor response. Tumor cells and tumor stem cells will resist or evade destruction through various mechanisms as CD8+ T cells exert their anti-tumor function. This paper reviews the research on the regulation of tumor development and prognosis by cancer stem cells that directly or indirectly alter the role of tumor-infiltrating CD8+ T cells. We also discuss related immunotherapy strategies.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yaochuan Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaodong Li
- Department of Neurosurgery, Siping Central People's Hospital, Siping, Jilin, 136000, China
| | - Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
8
|
Qu G, Liu K, Xu W, Li D. Integrated analysis and experimental validation reveal the prognostic and immunological features associated with coagulation in hepatocellular carcinoma. Sci Rep 2025; 15:8626. [PMID: 40074769 PMCID: PMC11904193 DOI: 10.1038/s41598-025-85491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/03/2025] [Indexed: 03/14/2025] Open
Abstract
Coagulation is intensively related to various tumors, which affects their progression and prognosis. However, research on the impact of coagulation-associated genes (CAGs) on hepatocellular carcinoma (HCC) occurrence, prognosis, and immune microenvironment is limited. Consequently, our research aims to uncover how CAGs affect the prognosis and immune microenvironments of HCC. We integrated gene expression data and clinical information from three datasets (GSE14520, GSE76427, and TCGA-LIHC). 281 CAGs were obtained from the coagulation-related pathway (hsa04610). We obtained three CAG patterns through a consensus clustering algorithm. Afterward, differential analyses of prognosis, biological processes, immune infiltration, and functional and pathway enrichment were conducted on the three CAG patterns. We intersected CAGs with differentially expressed genes in GSE76427 and then conducted Cox regression analysis to obtain the prognostic genes in HCC. Glycerol-3-phosphate dehydrogenase 2 (GPD2) was selected for further analyses. TCGA-LIHC samples with different GPD2 expression levels were analyzed for prognosis, DNA methylation, immune infiltration, and drug sensitivity. The expression level of GPD2 was verified through quantitative real-time PCR (qPCR) and immunohistochemistry. The wound-healing and Transwell assays were used to analyze the tumor cell migration and the Matrigel invasion and apoptosis assays were performed to determine cell invasion and apoptosis. Three CAG patterns were obtained through an unsupervised consensus clustering algorithm. CAGclusterA held the best prognosis compared to the other two clusters. The CAGclusterC was characterized by poor prognosis and abundant immune cell infiltration. The TCGA-LIHC dataset, as an internal validation, also yielded similar subtype classifications. Afterward, we identified the GPD2 gene, which significantly affected the prognosis of HCC and was positively correlated with the tumor progression. The upregulation of GPD2 expression was closely related to tumorigenic signatures and immune escape. The qPCR confirmed the upregulation of GPD2 expression in HCC tumor cell lines, compared to normal liver cell lines. Immunohistochemical staining confirmed the high expression of GPD2 in HCC tumor tissues compared to normal tissues. Regulating the expression level of GPD2 can inhibit the proliferation, migration, invasion, and induce apoptosis of HCC cells. Our study comprehensively elucidated the coagulation characteristics in HCC and identified a promising oncogenic gene GPD2. Exploring targeted strategies based on coagulation-related characteristics and biomarkers may shed light on HCC treatment.
Collapse
Affiliation(s)
- Guangzhen Qu
- Department of Interventional Radiology, Beijing Chao-Yang Hospital Affiliated with Capital Medical University, Beijing, 100020, China
| | - Kun Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Weiyu Xu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
9
|
Saberiyan M, Gholami S, Ejlalidiz M, Rezaeian Manshadi M, Noorabadi P, Hamblin MR. The dual role of chaperone-mediated autophagy in the response and resistance to cancer immunotherapy. Crit Rev Oncol Hematol 2025; 210:104700. [PMID: 40086769 DOI: 10.1016/j.critrevonc.2025.104700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025] Open
Abstract
Cancer immunotherapy has become a revolutionary strategy in oncology, utilizing the host immune system to fight malignancies. Notwithstanding major progress, obstacles such as immune evasion by tumors and the development of resistance still remain. This manuscript examines the function of chaperone-mediated autophagy (CMA) in cancer biology, focusing on its effects on tumor immunotherapy response and resistance. CMA is a selective degradation mechanism for cytosolic proteins, which is crucial for sustaining cellular homeostasis and regulating immune responses. By degrading specific proteins, CMA can either facilitate tumor progression in stressful conditions, or promote tumor suppression by removing oncogenic factors. This double-edged sword highlights the complexity of CMA in cancer progression and its possible effect on treatment results. Here we clarify the molecular mechanisms by which CMA can regulate the immune response and its possible role as a therapeutic target for improving the effectiveness of cancer immunotherapy.
Collapse
Affiliation(s)
- Mohammadreza Saberiyan
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sarah Gholami
- Young Researchers and Ellie Club, Babol Branch. Islamic Azad University, Babol, Iran
| | - Mahsa Ejlalidiz
- Medical Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadsadegh Rezaeian Manshadi
- Clinical Research Development Center, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Noorabadi
- Department of Internal Medicine, School of Medicine, Urmia University of Medical sciences, Urmia, Iran.
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa.
| |
Collapse
|
10
|
Mishra A, San Valentin EMD, Barcena AJR, Bolinas DKM, Bernardino MR, Canlas G, Ricks KA, Damasco JA, Melancon MP. Antibody-Targeted Bismuth Gadolinium Nanoconjugate for Image-Guided Radiotherapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15097-15108. [PMID: 40026156 DOI: 10.1021/acsami.4c21949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Hepatocellular carcinoma (HCC), one of the most lethal cancers of the liver, has limited treatment options at advanced stages. Here, bismuth gadolinium (BiGd) nanoparticles (NPs) conjugated with anti-vascular endothelial growth factor antibody (aVEGF) are designed and tested for targeted image-guided radiation therapy against HCC. The BiGd NPs are synthesized using the sol-gel technique, functionalized with silica NPs, and labeled with fluorescent protamine-rhodamine B. For tumor targeting, the NPs are conjugated with aVEGF, and an in vitro study confirms the binding of the aVEGF-BiGd nanoconjugate to McA-RH7777 hepatoma cells. Biocompatibility of the aVEGF-BiGd nanoconjugate is evaluated using McA-RH7777 cells, with no cytotoxicity observed even at 250 μg/mL. Also, aVEGF-BiGd demonstrates in vivo microcomputed tomography contrast enhancement. NPs and/or radiation therapy (RT) is conducted in female BALB/c nude mice with subcutaneously implanted McA-RH7777 cells, and a significant reduction in tumor size is observed in the mice treated with the aVEGF-BiGd nanoconjugate and RT compared to other groups (p < 0.01). The combined effect of nanoconjugate and RT exhibits decreased vascularity, cell proliferation, and increased apoptosis. This study demonstrates the potential of the developed hybrid BiGd nanoconjugate for targeted and image-guided radiotherapy of HCC.
Collapse
Affiliation(s)
- Archana Mishra
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Erin Marie D San Valentin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Allan John R Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Dominic Karl M Bolinas
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Marvin R Bernardino
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Gino Canlas
- Department of Chemistry, Lamar University, Beaumont, Texas 77710, United States
| | - Kaitlin A Ricks
- Department of Chemistry, Lamar University, Beaumont, Texas 77710, United States
| | - Jossana A Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Marites P Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas 77030, United States
| |
Collapse
|
11
|
Guo R, Rao PG, Liao BZ, Luo X, Yang WW, Lei XH, Ye JM. Melatonin suppresses PD-L1 expression and exerts antitumor activity in hepatocellular carcinoma. Sci Rep 2025; 15:8451. [PMID: 40069331 PMCID: PMC11897332 DOI: 10.1038/s41598-025-93486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
Melatonin, also known as the pineal hormone, is secreted by the pineal gland and primarily regulates circadian rhythms. Additionally, it possesses immunomodulatory properties and anticancer effects. However, its specific mechanism in hepatocellular carcinoma (HCC) remains unclear, particularly regarding its effect on HCC-mediated immune escape through PD-L1 expression.In this study, in vitro experiments were conducted using Huh7 and HepG2 HCC cells. Melatonin treatment was applied to both cell types to observe changes in malignant phenotypes. Additionally, melatonin-pretreated Huh7 or HepG2 cells were co-cultured with T cells to simulate the tumor microenvironment. The results showed that melatonin inhibited cancer cell proliferation, migration, and invasion, as well as reduced PD-L1 expression in cancer cells, exhibiting similar anti-cancer effects in the co-culture system. In vivo experiments involved establishing ascitic HCC mouse models using H22 cells, followed by subcutaneous tumor models in Balb/c nude and Balb/c wild-type mice. Melatonin inhibited tumor growth and suppressed PD-L1 expression in cancer tissues in both subcutaneous tumor models, and it increased T lymphocyte activity in the spleen of Balb/c wild-type mice. Overall, the in vitro and in vivo experiments demonstrated that melatonin has dual anti-cancer effects in HCC: direct intrinsic anti-cancer activity and enhancement of anti-tumor immunity by reducing PD-L1 expression thereby inhibiting cancer immune escape. Furthermore, a decrease in the expression of the upstream molecule HIF-1α of PD-L1 and an increase in the expression levels of JNK, P38, and their phosphorylated forms were detected. Thus, the mechanism by which melatonin reduces PD-L1 may involve the downregulation of HIF-1α expression or the activation of the MAPK-JNK and MAPK-P38 pathways. This provides new insights and strategies for HCC treatment.
Collapse
Affiliation(s)
- Rui Guo
- Suzhou Medical College of Soochow University, Suzhou, China.
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, No.23 Qingnian Road, Ganzhou City, Jiangxi Province, China.
| | - Pan-Guo Rao
- Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Xin Luo
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wen-Wen Yang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Jun-Ming Ye
- Suzhou Medical College of Soochow University, Suzhou, China.
- Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
12
|
Cheng SL, Wu CH, Tsai YJ, Song JS, Chen HM, Yeh TK, Shen CT, Chiang JC, Lee HM, Huang KW, Chen Y, Qiu JT, Yen YT, Shia KS, Chen Y. CXCR4 antagonist-loaded nanoparticles reprogram the tumor microenvironment and enhance immunotherapy in hepatocellular carcinoma. J Control Release 2025; 379:967-981. [PMID: 39863023 DOI: 10.1016/j.jconrel.2025.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death that has limited treatment options for advanced stages. Although PD-1 inhibitors such as nivolumab and pembrolizumab have been approved for advanced HCC treatment, their effectiveness is often hampered by the immunosuppressive tumor microenvironment (TME), which is due to hypoxia-driven CXCL12/CXCR4 axis activation. In this study, we developed 807-NPs, lipid-coated tannic acid (TA) nanoparticles that encapsulate BPRCX807, a potent CXCR4 antagonist to target HCC. 807-NPs enhance the pharmacokinetics and improve the tumor availability of BPRCX807 without causing systemic toxicity. Our findings show that 807-NPs block the CXCR4/CXCL12 pathway, inhibiting Akt and mTOR activation in HCC cells and M2 macrophages and promoting their repolarization toward the antitumor M1 phenotype. In orthotopic murine HCC models, systemic administration of 807-NPs significantly remodeled the immunosuppressive TME by reprogramming tumor-associated macrophages (TAMs) toward an immunostimulatory phenotype and promoting cytotoxic T-cell infiltration into tumors. This led to suppressed primary tumor growth and metastasis, while enhancing the efficacy of cancer immunotherapies, including PD-1 blockade and whole-cancer cell vaccines, by promoting T-cell activation. Our work demonstrates the potential of using nanotechnology to deliver CXCR4 antagonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Sheng-Liang Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Yun-Jen Tsai
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Hsin-Min Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Chia-Tung Shen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jou-Chien Chiang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Mei Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Wei Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yuling Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - J Timothy Qiu
- International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yu-Ting Yen
- Institute of Translational Medicine and New Drug Development, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan.
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
13
|
Guo E, Li L, Yang J, Zhou Y, Bai L, Zhu W, Hu Q, Wang H, Liu H. HOXB4/METTL7B cascade mediates malignant phenotypes of hepatocellular carcinoma through TKT m6A modification. Biol Direct 2025; 20:26. [PMID: 40045399 PMCID: PMC11884015 DOI: 10.1186/s13062-025-00620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma is a fatal malignancy that lacking specific therapies. Homeobox B4 (HOXB4) was negatively correlated with poor prognosis in cancers, but its role in hepatocellular carcinoma has not been elucidated. RESULTS We confirmed that HOXB4 was downregulated in hepatocellular carcinoma tissues and lower HOXB4 expression associated with poor prognosis. Gain- and loss-of function experiments were performed to understand the functional consequences. We revealed that HOXB4 overexpression inhibited proliferation and metastasis of hepatocellular carcinoma cells, accompanied with the decrease in epithelial-mesenchymal transition and increase in cell apoptosis. Database analysis showed that HOXB4 was positively correlated with the immune infiltration. PD-L1 expression was decreased in HOXB4 overexpressed hepatocellular carcinoma cells. HOXB4 overexpression was confirmed to inhibit the progression of hepatocellular carcinoma and promote T cell infiltration in vivo. N6-methyladenosine (m6A) modification was implicated in the tumorigenesis. RNA-seq analysis showed that HOXB4 overexpression modulated METTL7B expression. With the performance of dual-luciferase reporter, ChIP, and DNA pulldown assays, we revealed that HOXB4 binding to METTL7B promoter and inhibited its mRNA expression. The increased aggressiveness of hepatocellular carcinoma cells and the enhanced immune escape, triggered by HOXB4 knockdown, were inhibited via METTL7B downregulation. Methylated RNA immunoprecipitation assay displayed that METTL7B controlled the mRNA decay of TKT in m6A methylation. METTL7B overexpression increase the expression of TKT, ultimately promoting hepatocellular carcinoma progression and immune evasion. CONCLUSIONS HOXB4 mediated the malignant phenotypes and modulated the immune evasion via METTL7B/TKT axis. The HOXB4/METTL7B cascade and its downstream changes might be novel targets for blocking hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Enshuang Guo
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Lei Li
- Department of Osteology, Yellow River Central Hospital of the Yellow River Conservancy Commission, Zhengzhou, 450003, China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongjian Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lu Bai
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weiwei Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qiuyue Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Huifen Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongqiang Liu
- Department of Emergency, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, 450002, China
| |
Collapse
|
14
|
Cao X, Wan S, Wu B, Liu Z, Xu L, Ding Y, Huang H. Antitumor Research Based on Drug Delivery Carriers: Reversing the Polarization of Tumor-Associated Macrophages. Mol Pharm 2025; 22:1174-1197. [PMID: 39868820 DOI: 10.1021/acs.molpharmaceut.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The development of malignant tumors is a complex process that involves the tumor microenvironment (TME). An immunosuppressive TME presents significant challenges to current cancer therapies, serving as a key mechanism through which tumor cells evade immune detection and play a crucial role in tumor progression and metastasis. This impedes the optimal effectiveness of immunotherapeutic approaches, including cytokines, immune checkpoint inhibitors, and cancer vaccines. Tumor-associated macrophages (TAMs), a major component of tumor-infiltrating immune cells, exhibit dual functionalities: M1-like TAMs suppress tumorigenesis, while M2-like TAMs promote tumor growth and metastasis. Consequently, the development of various nanocarriers aimed at polarizing M2-like TAMs to M1-like phenotypes through distinct mechanisms has emerged as a promising therapeutic strategy to inhibit tumor immune escape and enhance antitumor responses. This Review covers the origin and types of TAMs, common pathways regulating macrophage polarization, the role of TAMs in tumor progression, and therapeutic strategies targeting TAMs, aiming to provide a comprehensive understanding and guidance for future research and clinical applications.
Collapse
Affiliation(s)
- Xinyu Cao
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shen Wan
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Bingyu Wu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Zhikuan Liu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Lixing Xu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yu Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Haiqin Huang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
15
|
Chen P, Li K, Chen J, Hei H, Geng J, Huang N, Lei M, Jia H, Ren J, Jin C. Enhanced effect of radiofrequency ablation on HCC by siRNA-PD-L1-endostatin Co-expression plasmid delivered. Transl Oncol 2025; 53:102319. [PMID: 39938403 PMCID: PMC11869540 DOI: 10.1016/j.tranon.2025.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/07/2025] [Accepted: 02/02/2025] [Indexed: 02/14/2025] Open
Abstract
Hepatocellular carcinoma (HCC) poses a significant clinical challenge due to high mortality and limited treatment options. Radiofrequency ablation (RFA) is commonly used but can be limited by tumor recurrence. This study explores the potential of combining RFA with an attenuated Salmonella strain carrying siRNA-PD-L1 and endostatin to enhance HCC treatment. In this study, an H22 subcutaneous tumor mouse model was used, with animals divided into five groups for treatment with a blank control, a blank Salmonella plasmid, RFA alone, siRNA-PD-L1-endostatin, or a combination of RFA and siRNA-PD-L1-endostatin. The combination therapy significantly reduced tumor growth, angiogenesis, and PD-L1/VEGF expression in tumor tissues post-RFA. Additionally, it induced tumor cell apoptosis, inhibited proliferation and migration, and increased the infiltration of T lymphocytes, granzyme B+T cells, and CD86+macrophages within tumors. There was also a notable rise in T and NK cell populations in the spleen. In conclusion, combining RFA with siRNA-PD-L1-endostatin delivered by attenuated Salmonella synergistically enhances anti-tumor effects, boosts the anti-tumor immune response, and improves RFA efficacy for HCC.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China; Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Kun Li
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jinwei Chen
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - He Hei
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Jiaxin Geng
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Nannan Huang
- Department of Orthopedics, Zhengyang county traditional Chinese medicine hospital, Zhumadian, Henan, PR China
| | - Mengyu Lei
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Huijie Jia
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jianzhuang Ren
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chenwang Jin
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
16
|
Zhao SQ, Chen MJ, Chen F, Gao ZF, Li XP, Hu LY, Cheng HY, Xuan JY, Fei JG, Song ZW. ENTPD8 overexpression enhances anti-PD-L1 therapy in hepatocellular carcinoma via miR-214-5p inhibition. iScience 2025; 28:111819. [PMID: 39995876 PMCID: PMC11849663 DOI: 10.1016/j.isci.2025.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/20/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, with poor prognosis due to late diagnosis and limited treatment options. In this study, we evaluated the expression of ectonucleoside triphosphate diphosphohydrolase 8 (ENTPD8) in HCC tissues and its clinical significance. Immunohistochemistry, The Cancer Genome Atlas (TCGA) data, and single-cell expression analysis revealed reduced ENTPD8 levels in liver cancer compared to adjacent tissues, with ENTPD8 primarily expressed in tumor cells within the tumor tissue. In vitro assays demonstrated that ENTPD8 inhibits HCC cell proliferation, invasion, and migration. Mechanistically, ENTPD8 regulates programmed death-ligand 1 (PD-L1) expression through miR-214-5p modulation. In vivo, ENTPD8 overexpression combined with anti-PD-L1 treatment enhanced therapeutic efficacy in HCC mouse models. These findings suggest that ENTPD8 may serve as a prognostic marker and therapeutic target for HCC, offering potential strategies for improving treatment outcomes.
Collapse
Affiliation(s)
- Si-qi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Min-jie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhao-feng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiao-ping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Ling-yu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Hai-ying Cheng
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jin-yan Xuan
- Department of General Practice, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jian-guo Fei
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zheng-wei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
17
|
Liu W, Li C, Fang Y, Cai X, Zhu Y, Ren Q, Zhang R, Zhang M, Gao Y, Han X, Li J, Yin S, Huo Y, Ji L. Clinical characteristics and unique presentations of immune checkpoint inhibitor induced type 1 diabetes in Chinese patients from a single institution. Sci Rep 2025; 15:5339. [PMID: 39948427 PMCID: PMC11825683 DOI: 10.1038/s41598-025-89668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 02/06/2025] [Indexed: 02/16/2025] Open
Abstract
Immune checkpoint inhibitor-induced type 1 diabetes (ICI-T1D) is a rare immune-related adverse event (irAE) of immune checkpoint inhibitors (ICIs). This retrospective study aimed to characterize the clinical features and glucose patterns of ICI-T1D in Chinese individuals and compare them with those of traditional T1D. Between January 2019 and April 2024, 15 patients diagnosed with ICI-T1D were consecutively enrolled. Continuous glucose monitoring (CGM) data from 7 of these patients were compared with data from 14 traditional T1D patients, matched for age, sex, fasting C-peptide levels, and diabetes duration. Median time from ICI initiation to T1D onset was 16 weeks (IQR, 6-96). Notably, T1D developed in four participants at 144, 112, 108, and 96 weeks after PD-1 treatment, respectively. Three ICI-T1D had pre-existing type 2 diabetes (T2D). Moreover, two had concurrent hypothyroidism and adrenal insufficiency alongside ICI-T1D. CGM analysis suggested that ICI-T1D exhibited a higher overall coefficient of variation (CV) (36.3 ± 4.8% vs. 28.2 ± 6.5%; p = 0.009), a greater CV during the night (37.4 ± 8.4% vs. 23.4 ± 7.3%; p = 0.001), and an increased standard deviation (SD) during the night (3.3 ± 0.8 mmol/L vs. 2.1 ± 1.1 mmol/L; p = 0.017) compared to those with traditional T1D. The study highlighted diverse clinical presentations of ICI-T1D, including delayed onset and multiple endocrine organs dysfunctions after ICI treatment. Consequently, long-term glucose monitoring and early identification are crucial. Furthermore, the observed greater glucose variability in ICI-T1D emphasizes the critical importance of diabetes education and personalized insulin regimen.
Collapse
Affiliation(s)
- Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen Nan Da Jie, Xicheng District, Beijing, 100044, People's Republic of China
| | - Chunmei Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen Nan Da Jie, Xicheng District, Beijing, 100044, People's Republic of China
| | - Yayu Fang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen Nan Da Jie, Xicheng District, Beijing, 100044, People's Republic of China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen Nan Da Jie, Xicheng District, Beijing, 100044, People's Republic of China.
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen Nan Da Jie, Xicheng District, Beijing, 100044, People's Republic of China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen Nan Da Jie, Xicheng District, Beijing, 100044, People's Republic of China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen Nan Da Jie, Xicheng District, Beijing, 100044, People's Republic of China
| | - Mingxia Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen Nan Da Jie, Xicheng District, Beijing, 100044, People's Republic of China
| | - Ying Gao
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen Nan Da Jie, Xicheng District, Beijing, 100044, People's Republic of China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen Nan Da Jie, Xicheng District, Beijing, 100044, People's Republic of China
| | - Juan Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen Nan Da Jie, Xicheng District, Beijing, 100044, People's Republic of China
| | - Sai Yin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen Nan Da Jie, Xicheng District, Beijing, 100044, People's Republic of China
| | - Yongran Huo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen Nan Da Jie, Xicheng District, Beijing, 100044, People's Republic of China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No. 11, Xizhimen Nan Da Jie, Xicheng District, Beijing, 100044, People's Republic of China.
| |
Collapse
|
18
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
19
|
Wu Y, Liu Y, Wu H, Tong M, Du L, Ren S, Che Y. Advances in Ultrasound-Targeted Microbubble Destruction (UTMD) for Breast Cancer Therapy. Int J Nanomedicine 2025; 20:1425-1442. [PMID: 39925678 PMCID: PMC11804227 DOI: 10.2147/ijn.s504363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
Breast cancer is one of the most common types of cancer in women worldwide and is a leading cause of cancer deaths among women. As a result, various treatments have been developed to combat this disease. Breast cancer treatment varies based on its stage and type of pathology. Among the therapeutic options, ultrasound has been employed to assist in the treatment of breast cancer, including radiation therapy, chemotherapy, targeted immunotherapy, hormonal therapy, and, more recently, radiofrequency ablation for early-stage and inoperable patients. One notable advancement is ultrasound-targeted microbubble destruction (UTMD), which is gradually becoming a highly effective and non-invasive anti-tumor modality. This technique can enhance chemical, genetic, immune, and anti-vascular therapies through its physical and biological effects. Specifically, UTMD improves drug transfer efficiency and destroys tumor neovascularization while reducing toxic side effects on the body during tumor treatment. Given these developments, the application of ultrasound-assisted therapy to breast cancer has gained significant attention from research scholars. In this review, we will discuss the development of various therapeutic modalities for breast cancer and, importantly, highlight the application of ultrasound microbubble-targeted disruption techniques in breast cancer treatment.
Collapse
Affiliation(s)
- Yunfeng Wu
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| | - Yuxi Liu
- Department of Ultrasound, Shandong Second Medical University Affiliated Hospital, Shan Dong, Weifang, People’s Republic of China
| | - Han Wu
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| | - Mengying Tong
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| | - Linyao Du
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| | - Shuangsong Ren
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| | - Ying Che
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| |
Collapse
|
20
|
Guo P, Zhong L, Wang T, Luo W, Zhou A, Cao D. NK cell-based immunotherapy for hepatocellular carcinoma: Challenges and opportunities. Scand J Immunol 2025; 101:e13433. [PMID: 39934640 DOI: 10.1111/sji.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 02/13/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most challenging malignancies globally, characterized by significant heterogeneity, late-stage diagnosis, and resistance to treatment. In recent years, the advent of immune-checkpoint blockades (ICBs) and targeted immune cell therapies has marked a substantial advancement in HCC treatment. However, the clinical efficacy of these existing therapies is still limited, highlighting the urgent need for new breakthroughs. Natural killer (NK) cells, a subset of the innate lymphoid cell family, have shown unique advantages in the anti-tumour response. With increasing evidence suggesting the crucial role of dysfunctional NK cells in the pathogenesis and progression of HCC, considerable efforts have been directed toward exploring NK cells as a potential therapeutic target for HCC. In this review, we will provide an overview of the role of NK cells in normal liver immunity and in HCC, followed by a detailed discussion of various NK cell-based immunotherapies and their potential applications in HCC treatment.
Collapse
Affiliation(s)
- Pei Guo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liyuan Zhong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Aiqiang Zhou
- Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, Guangdong, P.R China
| | - Deliang Cao
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
21
|
Chen Y, Wang K, Zhang X, Tao D, Shang Y, Wang P, Li Q, Liu Y. Prognostic model development using novel genetic signature associated with adenosine metabolism and immune status for patients with hepatocellular carcinoma. J Physiol Biochem 2025; 81:157-172. [PMID: 39546272 PMCID: PMC11958414 DOI: 10.1007/s13105-024-01061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The high mortality rate of hepatocellular carcinoma (HCC) is partly due to advanced diagnosis, emphasizing the need for effective predictive tools in HCC treatment. The aim of this study is to propose a novel prognostic model for HCC based on adenosine metabolizing genes and explore the potential relationship between them. Regression analysis was performed to identify differentially expressed genes associated with adenosine metabolism in HCC patients using RNA sequencing data obtained from a public database. Adenosine metabolism-related risk score (AMrisk) was derived using the least absolute shrinkage and selection operator (LASSO) Cox regression and verified using another database. Changes in adenosine metabolism in HCC were analyzed using functional enrichment analysis and multiple immune scores. The gene expression levels in patient samples were validated using quantitative reverse transcription polymerase chain reaction. Thirty adenosine metabolism-related differentially expressed genes were identified in HCC, and six genes (ADA, P2RY4, P2RY6, RPIA, SLC6A3, and VEGFA) were used to calculate the AMrisk score; the higher the risk scores, the lower the overall survival. Moreover, immune infiltration activation and immune checkpoints were considerably higher in the high-risk group. Additional in vitro experiments validated the enhanced expression of these six genes in HCC. The established predictive model demonstrated that adenosine metabolism-related genes was significantly associated with prognosis in HCC patients.
Collapse
Affiliation(s)
- Yidan Chen
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
- School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Kemei Wang
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xingyun Zhang
- Department of General Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Dongying Tao
- Department of Pediatric, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yulong Shang
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ping Wang
- Department of Gastroenterology, Dongying People's Hospital, Dongying, China.
| | - Qiang Li
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China.
- Department of General Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Yansheng Liu
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
22
|
Miao G, Zhang Z, Wang M, Gu X, Xiang D, Cao H. Berberine in combination with anti-PD-L1 suppresses hepatocellular carcinoma progression and metastasis via Erk signaling pathway. Ann Med Surg (Lond) 2025; 87:103-112. [PMID: 40109642 PMCID: PMC11918555 DOI: 10.1097/ms9.0000000000002746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/05/2024] [Indexed: 03/22/2025] Open
Abstract
Background Berberine (BBR) is an isoquinoline alkaloid extracted from Huang Lian and other herbal medicines. It has been reported to play a crucial role in multiple metabolic diseases and cancers. Programmed cell death-1 (PD-L1) is known as the immune checkpoint; immunotherapy targeting PD1/PD-L1 axis can effectively block its pro-tumor activity. However, the effect of the combined use of BBR and anti-PD-L1 on hepatocellular carcinoma (HCC) has not been reported. Methods Hep-3B and HCCLM3 cells were chosen as the experimental objects. To determine the potential anti-cancer activity of the combination of BBR and anti-PD-L1, we first treated v cells with BBR. The cell viability of Hep-3B and HCCLM3 with BBR treatment was measured by Cell Count Kit 8 assay. Cytometry by time-of-flight was performed to analyze tumor tissues after treatment with BBR and/or anti-PD-L1. Proliferation-, migration-, and invasion-related markers were measured by western blotting and immunohistochemistry. Results The results showed that BBR significantly inhibited the proliferation of Hep-3B and HCCLM3.The combination treatment of BBR and anti-PD-L1 had a prominent inhibitory effect on HCC tumorigenesis. Cytometry by time-of-flight analysis indicated that BBR affects the immune subsets in the tumors. Besides, BBR and anti-PD-L1 inhibited the migration and invasion of HCC by inactivating the phosphorylation of Erk. Conclusion Our study proposed that the combination treatment of BBR and anti-PD-L1 markedly inhibited the tumorigenesis of HCC by Erk signaling pathway. We hope our research can provide a new strategy for the potential of BBR as a therapeutic agent in the treatment of HCC.
Collapse
Affiliation(s)
- Ganggang Miao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Zhenjiang, China
| | - Zhiyu Zhang
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Zhenjiang, China
| | - Meiyan Wang
- Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, China
| | - Xingwei Gu
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Zhenjiang, China
| | - Dongxiao Xiang
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Lin A, Wang M, Wang Z, Lin J, Lin Z, Lin S, Lu S, Lin H, Tang H, Huang X. Expression and relationship of PD-L1, CD24, and CD47 in hepatitis B virus associated hepatocellular carcinoma. Sci Rep 2024; 14:31530. [PMID: 39732950 PMCID: PMC11682133 DOI: 10.1038/s41598-024-83145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy is the new standard treatment for advanced or metastatic hepatocellular carcinoma (HCC); however, many patients still fail to respond. This study explored the expression and prognosis of programmed death ligand 1 (PD-L1), cluster of differentiation 24 (CD24), and cluster of differentiation 47 (CD47) in patients with hepatitis B virus-associated HCC (HBV-associated HCC). We analyzed sequencing data from the Cancer Genome Atlas (TCGA) and investigated the expression of PD-L1, CD24, and CD47 in HBV-associated HCC patients by immunohistochemistry and their relationship with prognosis and clinicopathological factors. HCC data from the TCGA database show that PD-L1 was substantially correlated with various immune cells. In 67 patients with HBV-associated HCC, high PD-L1 and CD24 expression levels were related to poor overall survival (OS) and progression-free survival (PFS). PD-L1 expression was significantly associated with the staging of HBV-associated HCC (p = 0.011) and Ki67 expression (p = 0.024). Correlation analysis between variables reveals that PD-L1 was significantly positively correlated with CD24 and CD47. High expression of PD-L1 and CD24 are risk factors for poor prognosis in HBV-associated HCC patients following curative resection. PD-L1 is significantly correlated with CD24 and CD47.
Collapse
Affiliation(s)
- Aiping Lin
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Mingxia Wang
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, Fujian, China
| | - Zhihui Wang
- Department of Thoracic Oncology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Juan Lin
- Department of Pathology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Zhihui Lin
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Shaowei Lin
- School of Public Health, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Shiyun Lu
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Hong Lin
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Haijun Tang
- Center for Experimental Research in Clinical Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China.
| | - Xueping Huang
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
24
|
Fu YY, Li WM, Cai HQ, Jiao Y. Landscape of transarterial chemoembolization represented interventional therapy for hepatocellular carcinoma. World J Gastrointest Surg 2024; 16:3903-3906. [PMID: 39734435 PMCID: PMC11650251 DOI: 10.4240/wjgs.v16.i12.3903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
This article discusses the article written by Tan et al. Transarterial chemoembolization (TACE) is one of the main treatment methods for advanced hepatocellular carcinoma (HCC). There are other vascular interventional therapies, including drug-eluting bead TACE, transarterial radioembolization, and hepatic arterial infusion chemotherapy. TACE combined with anti-angiogenesis therapy may improve tumor control and prolong progression free survival. The combination therapy of TACE and immunotherapy may improve the clinical efficacy of HCC. In future research, more basic and clinical studies are needed to explore the immunogenic intervention therapy.
Collapse
Affiliation(s)
- Yang-Yang Fu
- Department of The First Operation Room, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Wen-Mao Li
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Hong-Qiao Cai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
25
|
Peng J, Ding X, Chen CX, Zhao P, Ding X, Zhang M, Aliper A, Ren F, Lu H, Zhavoronkov A. Discovery of Pyridine-2-Carboxamides Derivatives as Potent and Selective HPK1 Inhibitors for the Treatment of Cancer. J Med Chem 2024; 67:21520-21544. [PMID: 39585942 DOI: 10.1021/acs.jmedchem.4c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) has emerged as an attractive target for immunotherapy due to its critical role in T cell activation and proliferation. The major challenge in developing HPK1 inhibitors lies in balancing kinase selectivity, pharmacokinetic (PK) properties, and therapeutic efficacy. In this study, we report a series of pyridine-2-carboxamide analogues demonstrating strong HPK1 inhibitory activity in enzymatic and cellular assays, along with good kinase selectivity. Among these analogues, compound 19 showed good in vitro HPK1 inhibitory activity, excellent kinase selectivity (>637-fold vs GCK-like kinase and >1022-fold vs LCK), and robust in vivo efficacy in the CT26 (tumor growth inhibition (TGI) = 94.3%, 2/6 CRs) and MC38 murine colorectal cancer models (TGI = 83.3%, 1/6 complete response) when administered in combination with anti-PD-1. Compound 19 also demonstrated adequate in vitro ADME and in vivo PK properties, displaying good oral bioavailability across multiple species (F % = 35-63). These findings summarize our compound's favorable safety and efficacy profiles, justifying its testing in future translational studies.
Collapse
Affiliation(s)
- Jingjing Peng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiaoyu Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Celia Xiaojing Chen
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Pei Zhao
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Hongfu Lu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| |
Collapse
|
26
|
Peng K, Zhang X, Li Z, Wang Y, Sun HW, Zhao W, Pan J, Zhang XY, Wu X, Yu X, Wu C, Weng Y, Lin X, Liu D, Zhan M, Xu J, Zheng L, Zhang Y, Lu L. Myeloid response evaluated by noninvasive CT imaging predicts post-surgical survival and immune checkpoint therapy benefits in patients with hepatocellular carcinoma. Front Immunol 2024; 15:1493735. [PMID: 39687612 PMCID: PMC11646988 DOI: 10.3389/fimmu.2024.1493735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Background The potential of preoperative CT in the assessment of myeloid immune response and its application in predicting prognosis and immune-checkpoint therapy outcomes in hepatocellular carcinoma (HCC) has not been explored. Methods A total of 165 patients with pathological slides and multi-phase CT images were included to develop a radiomics signature for predicting the imaging-based myeloid response score (iMRS). Overall survival (OS) and recurrence-free survival (RFS) were assessed according to the iMRS risk group and validated in a surgical resection cohort (n = 98). The complementary advantage of iMRS incorporating significant clinicopathologic factors was investigated by the Cox proportional hazards analysis. Additionally, the iMRS in inferring the benefits of immune checkpoint therapy was explored in an immunotherapy cohort (n = 36). Results We showed that AUCs of the optimal radiomics signature for iMRS were 0.941 [95% confidence interval (CI), 0.909-0.973] and 0.833 (0.798-0.868) in the training and test cohorts, respectively. High iMRS was associated with poor RFS and OS. The prognostic performance of the Clinical-iMRS nomogram was better than that of a single parameter (p < 0.05), with a 1-, 3-, and 5-year C-index for RFS of 0.729, 0.709, and 0.713 in the training, test, and surgical resection cohorts, respectively. A high iMRS score predicted a higher proportion of objective response (vs. progressive disease or stable disease; odds ratio, 2.311; 95% CI, 1.144-4.672; p = 0.020; AUC, 0.718) in patients treated with anti-PD-1 and PD-L1. Conclusions iMRS may provide a promising method for predicting local myeloid immune responses in HCC patients, inferring postsurgical prognosis, and evaluating benefits of immune checkpoint therapy.
Collapse
Affiliation(s)
- Kangqiang Peng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
- Medical AI Lab, Hebei Provincial Engineering Research Center for AI-Based Cancer Treatment Decision-Making, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhongliang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
| | - Yongchun Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Wei Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
- Department of Management, School of Business, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Jielin Pan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
- Department of Radiology, Zhuhai People’s Hospital, Jinan University, Zhuhai, China
| | - Xiao-Yang Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Xiaoling Wu
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangrong Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
- Department of Radiology, Zhuhai People’s Hospital, Jinan University, Zhuhai, China
| | - Chong Wu
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yulan Weng
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen Lin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
| | - Dingjie Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital, Jinan University, Zhuhai, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
- Guangzhou First People’s Hospital, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jing Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Limin Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
- Guangzhou First People’s Hospital, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
27
|
Liang D, Tang J, Sun B, He S, Yang D, Ma H, Yun Y, Zhu Y, Wei W, Chen H, Zhao X. Novel CAR-T cells targeting TRKB for the treatment of solid cancer. Apoptosis 2024; 29:2183-2196. [PMID: 38498249 DOI: 10.1007/s10495-024-01936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/20/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is highly effective for treating blood cancers such as B-cell malignancies, however, its effectiveness as an approach to treat solid tumors remains to be further explored. Here, we focused on the development of CAR-T cell therapies targeting tropomyosin-related kinase receptor B (TRKB), a highly expressed protein that is significantly associated with tumor progression, malignancy, and drug resistance in multiple forms of aggressive solid tumors. To achieve this, we screened brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NTF4) ligand-based CAR-T cells for their efficiency in targeting the TRKB receptor in the context of solid tumors, particularly hepatocellular carcinoma and pancreatic cancer. We demonstrated that TRKB is overexpressed not only in hepatocellular carcinoma and pancreatic carcinoma cell lines but also in cancer stem-like cells (CSCs). Notably, BDNF-CAR T and NTF4-CAR T cells could not only effectively target and kill TRKB-expressing pan-cancer cell lines in a dose-dependent manner but also effectively kill CSCs. We also performed in vivo studies to show that NTF4-CAR T cells have a better potential to inhibit the tumor growth of hepatocellular carcinoma xenografts in mice, compared with BDNF-CAR T cells. Taken together, our findings suggest that CAR-T targeting TRKB may be a promising approach for developing novel therapies to treat solid cancers.
Collapse
MESH Headings
- Humans
- Animals
- Receptor, trkB/metabolism
- Receptor, trkB/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Mice
- Cell Line, Tumor
- Immunotherapy, Adoptive/methods
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Xenograft Model Antitumor Assays
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Pancreatic Neoplasms/therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Nerve Growth Factors/metabolism
- Nerve Growth Factors/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
Collapse
Affiliation(s)
- Dandan Liang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Tang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Sun
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuai He
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Yang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyan Ma
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuncang Yun
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongjie Zhu
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Wei
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
28
|
Wang R, Liu Q, You W, Wang H, Chen Y. A transformer-based deep learning survival prediction model and an explainable XGBoost anti-PD-1/PD-L1 outcome prediction model based on the cGAS-STING-centered pathways in hepatocellular carcinoma. Brief Bioinform 2024; 26:bbae686. [PMID: 39749665 PMCID: PMC11695900 DOI: 10.1093/bib/bbae686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
Recent studies suggest cGAS-STING pathway may play a crucial role in the genesis and development of hepatocellular carcinoma (HCC), closely associated with classical pathways and tumor immunity. We aimed to develop models predicting survival and anti-PD-1/PD-L1 outcomes centered on the cGAS-STING pathway in HCC. We identified classical pathways highly correlated with cGAS-STING pathway and constructed transformer survival model preserving raw structure of pathways. We also developed explainable XGBoost model for predicting anti-PD-1/PD-L1 outcomes using SHAP algorithm. We trained and validated transformer survival model on pan-cancer cohort and tested it on three independent HCC cohorts. Using 0.5 as threshold across cohorts, we divided each HCC cohort into two groups and calculated P values with log-rank test. TCGA-LIHC: C-index = 0.750, P = 1.52e-11; ICGC-LIRI-JP: C-index = 0.741, P = .00138; GSE144269: C-index = 0.647, P = .0233. We trained and validated [area under the receiver operating characteristic curve (AUC) = 0.777] XGBoost model on immunotherapy datasets and tested it on GSE78220 (AUC = 0.789); we also tested XGBoost model on HCC anti-PD-L1 cohort (AUC = 0.719). Our deep learning model and XGBoost model demonstrate potential in predicting survival risks and anti-PD-1/PD-L1 outcomes in HCC. We deployed these two prediction models to the GitHub repository and provided detailed instructions for their usage: deep learning survival model, https://github.com/mlwalker123/CSP_survival_model; XGBoost immunotherapy model, https://github.com/mlwalker123/CSP_immunotherapy_model.
Collapse
Affiliation(s)
- Ren Wang
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, Jiangsu Province, China
- The Affiliated Huai’an No. 1 People’s Hospital, Nanjing Medical University, West Road of the Yellow River, Huai’an 223300, Jiangsu Province, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, Jiangsu Province, China
| | - Qiumei Liu
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, Jiangsu Province, China
- The Affiliated Huai’an No. 1 People’s Hospital, Nanjing Medical University, West Road of the Yellow River, Huai’an 223300, Jiangsu Province, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, Jiangsu Province, China
| | - Wenhua You
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, Jiangsu Province, China
- The Affiliated Huai’an No. 1 People’s Hospital, Nanjing Medical University, West Road of the Yellow River, Huai’an 223300, Jiangsu Province, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, Jiangsu Province, China
| | - Huiyu Wang
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, Jiangsu Province, China
| | - Yun Chen
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, Jiangsu Province, China
- The Affiliated Huai’an No. 1 People’s Hospital, Nanjing Medical University, West Road of the Yellow River, Huai’an 223300, Jiangsu Province, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, Jiangsu Province, China
| |
Collapse
|
29
|
Zuo M, Wei R, Li D, Li W, An C. The AFCRPLITY score for predicting the prognosis of immunotherapy combined with local-regional therapy in unresectable hepatocellular carcinoma. Ther Adv Med Oncol 2024; 16:17588359241297080. [PMID: 39563715 PMCID: PMC11574904 DOI: 10.1177/17588359241297080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Background Immunotherapy combined with intra-arterial therapy (IAT) has shown great potential in the treatment of unresectable hepatocellular carcinoma (uHCC). However, there are currently no available biomarkers that can predict the prognosis of immune-based combined therapy. Objectives To establish a scoring method to predict prognosis in uHCC patients undergoing IAT plus immunotherapy. Methods Between March 2019 and August 2022, uHCC patients undergoing IAT in combination with programmed cell death (ligand) 1 (PD-1)/PD-L1-based immunotherapy were retrospectively analyzed. Results Among 1046 patients included, 780 patients were enrolled into hepatic arterial infusion chemotherapy immunotherapy cohorts (training set: n = 546, one center; external testing set: n = 234, three centers) and 266 patients were treated with trans-arterial chemoembolization (TACE) plus immunotherapy were enrolled into TACE immunotherapy cohort (validation set: n = 266). We developed the easy-to-apply alpha-fetoprotein (AFP), C-reactive protein (CRP), and platelet-to-lymphocyte ratio (PLR) in immunotherapy (AFCRPLITY) score and investigated the prognostic value of baseline variables on the disease control rate (DCR) and progression-free survival (PFS). HCC patients with low AFCRPLITY scores would have better PFS and DCRs than patients with high AFCRPLITY scores (AFCRPLITY 0: vs AFCRPLITY 1: vs AFCRPLITY 2: vs AFCRPLITY 3: p < 0.001 for PFS, p = 0.001 for DCRs) in the training set, which was confirmed in the external testing set and validation set. The highest level of CD8+ T cells was in the AFCRPLITY score = 0 group than the other two groups. Conclusion The AFCRPLITY score is associated with PFS and DCR in uHCC patients receiving IATs plus immunotherapy. This score may be helpful for counseling, but prospective validation is needed. Design A retrospective, multi-institutional study. Trial registration The study has been retrospectively registered at the Chinese Clinical Trial Registry (https://www.chictr.org.cn/, ChiCTR2300075828).
Collapse
Affiliation(s)
- Mengxuan Zuo
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, P.R. China
| | - Ran Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Da Li
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, P.R. China
| | - Wang Li
- State Key Laboratory of Oncology in South China, Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P.R. China
| | - Chao An
- State Key Laboratory of Oncology in South China, Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P.R. China
| |
Collapse
|
30
|
Cheng L, Zhang L, Wang X, Wang Y, Yu J, Li M, Ma Z, Chi-Lui Ho P, Chen X, Wang L, Sethi G, Goh BC. Extracellular vesicles in the HCC microenvironment: Implications for therapy and biomarkers. Pharmacol Res 2024; 209:107419. [PMID: 39284428 DOI: 10.1016/j.phrs.2024.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as the sixth most prevalent cancer and the third leading cause of cancer mortality globally. Despite surgical resection being the preferred approach for early-stage HCC, most patients are diagnosed at intermediate to advanced stages, limiting treatment options to chemotherapy and immunotherapy, which often yield poor outcomes. Extracellular vesicles (EVs), minute lipid-bilayered particles released by diverse cells under various physiological and pathological conditions, are crucial for mediating communication between cells. Mounting evidence indicates that EVs sourced from different cells can profoundly influence the HCC tumor microenvironment (TME), thereby affecting the progression of HCC. Given their immunogenicity and liver-targeting properties, these EVs not only hold promise for HCC treatment but also provide avenues for advancing early diagnostic methods and assessing prognosis. This review not only describes the function of EVs within the HCC tumor microenvironment but also analyzes their therapeutic advantages and explores their significance in various therapeutic approaches for HCC, including chemotherapy, immunotherapy, combination therapy, and their role as innovative drug delivery carriers. Furthermore, it highlights the potential of EVs as biomarkers for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou 434000, China; The Third Clinical Medical College of Yangtze University, Jingzhou 434000, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yufei Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China.
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Boon-Cher Goh
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore
| |
Collapse
|
31
|
Marzi L, Mega A, Turri C, Gitto S, Ferro F, Spizzo G. Immune Checkpoint Inhibitors in the Pre-Transplant Hepatocellular Carcinoma Setting: A Glimpse Beyond the Liver. Int J Mol Sci 2024; 25:11676. [PMID: 39519230 PMCID: PMC11547112 DOI: 10.3390/ijms252111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the third leading cause of cancer-related death worldwide. Liver transplantation (LT) is the best therapy for most patients with non-metastatic HCC. In recent years, the management of patients with HCC has considerably changed, thanks to the improvement of molecular biology knowledge and the introduction of immunotherapy. To date, systemic therapy is authorized in the Western world only in patients with advanced HCC. However, this therapy could not only stabilize the tumour disease or improve survival but could display excellent response and lead to downstaging of the tumour that finally permits LT. There are increasing reports of patients that have performed LT after pretreatment with immune checkpoint inhibitors (ICIs). However, due to the intrinsic mechanism of ICIs, graft rejection might be favoured. In addition, chronic adverse effects affecting other organs may also appear after the end of therapy. This review aims to evaluate the readiness and outcomes of LT in patients with advanced HCC who have previously undergone treatment with ICIs. It seeks to identify the challenges, risks, and benefits associated with this conversion therapy. The integration of ICIs into the treatment paradigm for advanced HCC necessitates a nuanced approach to LT. While early evidence supports the feasibility of LT following ICIs therapy, there is an urgent need for standardized guidelines and more extensive longitudinal studies to optimize patient selection, timing, and post-transplant management.
Collapse
Affiliation(s)
- Luca Marzi
- Department of Gastroenterology, Bolzano Regional Hospital (SABES-ASDAA), 39100 Bolzano-Bozen, Italy; (A.M.); (C.T.)
| | - Andrea Mega
- Department of Gastroenterology, Bolzano Regional Hospital (SABES-ASDAA), 39100 Bolzano-Bozen, Italy; (A.M.); (C.T.)
| | - Chiara Turri
- Department of Gastroenterology, Bolzano Regional Hospital (SABES-ASDAA), 39100 Bolzano-Bozen, Italy; (A.M.); (C.T.)
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy;
| | - Federica Ferro
- Department of Radiology, Bolzano Regional Hospital (SABES-ASDAA), 39100 Bolzano-Bozen, Italy;
| | - Gilbert Spizzo
- Department of Internal Medicine, Oncologic Day Hospital, Hospital of Bressanone (SABES-ASDAA), 39042 Bressanone-Brixen, Italy;
| |
Collapse
|
32
|
Zhu YB, Qin JY, Zhang TT, Zhang WJ, Ling Q. Reassessment of palliative surgery in conversion therapy of previously unresectable hepatocellular carcinoma: Two case reports and review of literature. World J Gastrointest Surg 2024; 16:3312-3320. [PMID: 39575295 PMCID: PMC11577388 DOI: 10.4240/wjgs.v16.i10.3312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Most patients with hepatocellular carcinoma (HCC) have lost the opportunity for direct surgery at the time of diagnosis. Transarterial chemoembolization (TACE) combined with immune checkpoint inhibitors or tyrosine kinase inhibitors (TKI) can partially transform some unresectable HCC and improve the prognosis effectively. However, based on the promising prospects of combined targeted and immunotherapy for the effective treatment of HCC, the positive role of palliative surgery in the conversion treatment of advanced HCC urgently needs further intensive re-assessment. CASE SUMMARY In this study, we describe two successful cases of "conversion therapy for unresectable HCC" achieved mainly by palliative surgery combined with TACE plus immunotherapy and TKIs. A 48-year-old patient with newly diagnosed HCC, presenting with a 6-cm mass in the segment VII/VIII of the right liver with multiple intrahepatic metastases, could not undergo one-stage radical surgical resection. He underwent palliative surgery with radiofrequency of metastatic lesions and the palliative resection of the primary mass, and received subsequent TACE treatments twice in the early postoperative period (2 weeks and 6 weeks), in addition to targeted and immune combination therapy with sintilimab injection and oral lenvatinib. No evidence of recurrence was observed during the 11-month follow-up period after surgery. The other patient was a 47-year-old patient with massive HCC (18 cm × 15 cm × 4.5 cm) in the left liver with severe cirrhosis. The left portal branch was occluded and a tumor thrombus formed, and the tumor partly involved the middle hepatic vein. The patient underwent palliative surgery of left hemihepatectomy (including resection of the middle hepatic vein) for HCC, followed by three TACE procedures and oral TKIs 2 weeks after surgery. Six months later, the re-examination via computed tomography revealed no tumour activity in the remaining right liver, while magnetic resonance imaging revealed slight local tumor enhancement in the caudate lobe of the liver considered, TACE was performed once again, and during the next follow-up of 10 months did not reveal new intrahepatic lesions or distant metastases. CONCLUSION These cases demonstrate that the addition of palliative surgery to conversion therapy in a selected population with a high tumor burden could benefit patients with initially unresectable HCC.
Collapse
Affiliation(s)
- Yang-Bo Zhu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jia-Yi Qin
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ting-Ting Zhang
- Department of Medical Imaging, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Wen-Jin Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qi Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
33
|
Zhang F, Zhong S, Wei Q, Zhang H, Hu H, Zeng B, Zheng X. Efficacy and Safety of Hepatic Arterial Infusion Chemotherapy(HAIC) Combined with PD-1 Inhibitors for Advanced Hepatocellular Carcinoma with Macrovascular Invasion: A Multicenter Propensity Score Matching Analysis. J Hepatocell Carcinoma 2024; 11:1961-1978. [PMID: 39429914 PMCID: PMC11491080 DOI: 10.2147/jhc.s483824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Aim To investigate the efficacy and safety of HAIC combined with programmed cell death protein-1 (PD1) inhibitors in MVI-positive advanced hepatocellular carcinoma(HCC). Methods From September 2017 to May 2019, we retrospectively collected the clinical data from three medical centers in China pertaining to patients diagnosed with BCLC C stage HCC with MVI and receiving treatment with a combination of HAIC and PD-1 inhibitors treatment or HAIC alone, and we compared the efficacy of HAIC combined with PD-1 inhibitors and HAIC monotherapy. Propensity score matching(PSM) was utilized to adjust for baseline differences between groups. Survival outcomes and tumor response rate were used to assess survival benefits, while the incidence of adverse events was used to evaluate safety. Results After screening for eligibility, 489 patients diagnosed with HCC and concomitant MVI were enrolled. Of these, 173 patients received treatment combining HAIC with PD-1 inhibitors, while 316 patients underwent HAIC monotherapy. After PSM adjustment, the combination therapy group demonstrate superior survival outcomes. Median overall survival(OS) and progression free survival(PFS) were 31.8 months and 10.8 months, respectively, significantly higher than those in the monotherapy group (OS: 10.0 months; PFS: 6.1 months; both P<0.0001). Moreover, ORR and DCR remained significantly elevated in the combination therapy group (ORR: 44.3% vs 20.4%, P<0.0001; DCR: 89.8% vs 82.0%, P=0.041). Safety profiles indicated no significant differences in adverse event rates between the two treatment groups, encompassing both overall and grade-specific assessments. Conclusion Compared to HAIC alone, the combination of HAIC with PD-1 inhibitors represents a more promising and effective approach for patients with HCC complicated by macrovascular invasion.
Collapse
Affiliation(s)
- Fengtao Zhang
- Vascular Interventional Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital(Shenzhen Nanshan People’s Hospital), Shenzhen, Guangdong, 518000, People’s Republic of China
| | - Sheng Zhong
- Department of Tumor and Vascellum Intervention, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People’s Republic of China
| | - Qiming Wei
- Department of Interventional Therapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510000, People’s Republic of China
| | - Haiming Zhang
- Department of Radiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Honglei Hu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, People’s Republic of China
| | - Bicheng Zeng
- Hepatobiliary Surgery, The Sixth Affiliated Hospital of Jinan University, Dongguan, Guangdong, 523000, People’s Republic of China
| | - Xiang Zheng
- Department of Interventional Therapy, Zhuhai People’s Hospital(Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong, 519000, People’s Republic of China
| |
Collapse
|
34
|
Rizzo A, Brunetti O, Brandi G. Hepatocellular Carcinoma Immunotherapy: Predictors of Response, Issues, and Challenges. Int J Mol Sci 2024; 25:11091. [PMID: 39456872 PMCID: PMC11507510 DOI: 10.3390/ijms252011091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as durvalumab, tremelimumab, and atezolizumab, have emerged as a significant therapeutic option for the treatment of hepatocellular carcinoma (HCC). In fact, the efficacy of ICIs as single agents or as part of combination therapies has been demonstrated in practice-changing phase III clinical trials. However, ICIs confront several difficulties, including the lack of predictive biomarkers, primary and secondary drug resistance, and treatment-related side effects. Herein, we provide an overview of current issues and future challenges in this setting.
Collapse
Affiliation(s)
- Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Oronzo Brunetti
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Giovanni Brandi
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy
| |
Collapse
|
35
|
Gong Q, Zhang L, Guo J, Zhao W, Zhou B, Yang C, Jiang N. FBXO family genes promotes hepatocellular carcinoma via ubiquitination of p53. J Cancer Res Clin Oncol 2024; 150:458. [PMID: 39397119 PMCID: PMC11471714 DOI: 10.1007/s00432-024-05948-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
FBXO protein family plays an essential role in the ubiquitination process acting as E3 ligases, which may contribute to the progression of cancers. However, the molecular functions of FBXOs in hepatocellular carcinoma (HCC) remain incompletely understood. Here, we investigated the overlapping genes between the FBXOs and differentially expressed genes (DEGs) of HCC identified by utilizing The Cancer Genome Atlas (TCGA) dataset, then, a prognostic model with effective predictive capacity was constructed based on the uni-cox and LASSO regression analyses. To elucidate the underlying mechanism of the FBXO model genes, KEGG analysis was carried out. Drug metabolism-cytochrome P450 and retinol metabolism were revealed as the potential pathway, which Increased the credibility of subsequent drug prediction research. Meanwhile, patients divided by the prognostic model showed a different immune infiltrating status and we also found FBXO model genes may ubiquitinate P53, inducing TP53 more prone to mutations, thereby promoting the occurrence and development of tumors. Consistent with these findings, the result of immunohistochemistry (IHC) validated an elevated expression of these model genes in HCC tissues than in the adjacent tissues. The primary aim of this investigation is to formulate a prognostic model while exploring the underlying mechanisms associated with FBXO genes in HCC. These findings offer initial research perspectives on the involvement of FBXO genes in HCC and contribute to the discovery of dependable biomarkers for the management, prognostication, and early detection of HCC in patients.
Collapse
Affiliation(s)
- Qingge Gong
- Chongqing Medical University, Chongqing, China
| | - La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao Guo
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Wei Zhao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Baoyong Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing, People's Republic of China.
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China.
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
36
|
Liao K, Cheng J, Hu Y, Zhang B, Huang P, Liu J, Zhang W, Hu H, Bai X, Qian Y, Guo D, Ai K, Zhu Y, Huang L. Evaluation of the safety of PD-1/PD-L1 inhibitors for immunotherapy in patients with malignant tumors after COVID-19 infection: A single-center cohort study. Cancer Med 2024; 13:e70202. [PMID: 39377592 PMCID: PMC11459677 DOI: 10.1002/cam4.70202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
INTRODUCTION An increasing body of evidence suggests a close association between COVID-19 infection and the safety of PD-1/PD-L1 inhibitor therapy in cancer patients. However, the available data concerning these impacts remain limited and occasionally contradictory. MATERIAL AND METHODS We conducted a retrospective analysis of cancer patients who received PD-1/PD-L1 inhibitor therapy at the same institution from November 2022 to May 2023. After excluding patients with missing information, a total of 224 cases were included. In our study, immune-related adverse events (irAEs) that occurred during the hospitalization of patients were included in the analysis. Further analysis of inter-subgroup differences was conducted following a 1:2 propensity score matching. Statistical analyses were performed using the Fisher's exact, chi-squared, and Mann-Whitney U-tests. RESULT The results showed that no statistically significant differences between the two subgroups in the incidence of irAEs, changes in immune function before and after using PD-1/PD-L1 inhibitors, and alterations in hepatic and renal function (p > 0.05). CONCLUSION Our findings suggest that infection with COVID-19 does not significantly impact the safety of PD-1/PD-L1 inhibitors in cancer patients. Most cancer patients used PD-1/PD-L1 inhibitors during COVID-19 infection (asymptomatic or mild infection) did not experience exacerbation of their underlying condition, nor did they exhibit a substantial increase in toxic side effects.
Collapse
Affiliation(s)
- Kaili Liao
- Department of Clinical Laboratory, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Jinting Cheng
- School of Public Health, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yujie Hu
- The 1st Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Beining Zhang
- Queen Mary College, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Peng Huang
- Department of Oncology, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Jie Liu
- School of Public Health, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Wenyige Zhang
- Queen Mary College, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Huan Hu
- School of Public Health, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xinyi Bai
- School of Public Health, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yihui Qian
- The 2nd Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Daixin Guo
- School of Public Health, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Kun Ai
- Queen Mary College, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Yuchen Zhu
- The 1st Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Long Huang
- Department of Oncology, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
37
|
Li RX, Hao Y, Ettel M. Expression of PSMA in Tumor-Associated Vasculature Predicts Poorer Survival in Patients With Hepatocellular Carcinoma and Is Likely Associated With PD-L1. Int J Surg Pathol 2024; 32:1248-1255. [PMID: 38321782 DOI: 10.1177/10668969241226705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND PSMA (prostate-specific membrane antigen) is a type II transmembrane glycoprotein recently found to be expressed in hepatocellular carcinoma (HCC). We aimed to characterize the expression pattern of PSMA in HCC and its association with clinicopathologic parameters and other biomarkers. METHODS Immunohistochemical studies for PSMA were performed on a previously established tissue microarray of 103 surgically resected HCC. RESULTS Conceivable PSMA expression in ≥5% tumor-associated vasculature (TAV) was considered positive, and was identified in 56 (54.4%) tumors. Eight (7.8%) tumors also showed membranous/cytoplasmic and/or canalicular staining in tumor cells. By chi-square tests, only PSMA-positive TAV was associated with moderate-to-poorly differentiated HCC and the modified higher tumor stage (P < .05). PSMA-positive TAV was not associated with age, sex, or expression of glypican-3, keratin 7, CD3, CD8, HHLA-2, but marginally correlated with programmed death-ligand 1 (PD-L1) expression (P = .052). Kaplan-Meier survival analysis revealed PSMA-positive TAV as an independent risk factor for poorer disease-specific survival (P = .008). Co-expression of PD-L1 did not ameliorate the adverse prognostication of PSMA-positive TAV. Membranous/cytoplasmic/canalicular expression of PSMA alone was not prognostically significant. CONCLUSIONS Our study confirmed that PSMA-positive TAV is a prospective diagnostic and prognostic biomarker for HCC. Co-expression of PSMA with PD-L1 may suggest potential crosstalk between the 2 proteins, likely regulating the tumor microenvironment.
Collapse
Affiliation(s)
- Rena X Li
- High School Intern, Pittsford Mendon High School, Pittsford, NY, USA
| | - Yansheng Hao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark Ettel
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
38
|
Rauth S, Malafa M, Ponnusamy MP, Batra SK. Emerging Trends in Gastrointestinal Cancer Targeted Therapies: Harnessing Tumor Microenvironment, Immune Factors, and Metabolomics Insights. Gastroenterology 2024; 167:867-884. [PMID: 38759843 PMCID: PMC11793124 DOI: 10.1053/j.gastro.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Gastrointestinal (GI) cancers are the leading cause of new cancer cases and cancer-related deaths worldwide. The treatment strategies for patients with GI tumors have focused on oncogenic molecular profiles associated with tumor cells. Recent evidence has demonstrated that the tumor cell functions are modulated by its microenvironment, compromising fibroblasts, extracellular matrices, microbiome, immune cells, and the enteric nervous system. Along with the tumor microenvironment components, alterations in key metabolic pathways have emerged as a hallmark of tumor cells. From these perspectives, this review will highlight the functions of different cellular components of the GI tumor microenvironment and their implications for treatment. Furthermore, we discuss the major metabolic reprogramming in GI tumor cells and how understanding metabolic rewiring could lead to new therapeutic strategies. Finally, we briefly summarize the targeted agents currently being studied in GI cancers. Understanding the complex interplay between tumor cell-intrinsic and -extrinsic factors during tumor progression is critical for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, Nebraska.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, Nebraska.
| |
Collapse
|
39
|
Huang Z, Xu L, Wu Z, Xiong X, Luo L, Wen Z. CDC25B Is a Prognostic Biomarker Associated With Immune Infiltration and Drug Sensitivity in Hepatocellular Carcinoma. Int J Genomics 2024; 2024:8922878. [PMID: 39371450 PMCID: PMC11455594 DOI: 10.1155/2024/8922878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Cell division cycle 25B (CDC25B), a member of the CDC25 phosphatase family, plays a key role in cell cycle regulation. Studies have suggested its carcinogenic potential in various cancers, but the role of CDC25B in the development of hepatocellular carcinoma (HCC) remains poorly understood. The aim of this study was to clarify the role of CDC25B in HCC using bioinformatics and experiments. CDC25B expression data of HCC cancer tissues and paracancerous normal samples were obtained from The Cancer Gene Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and the relationship between CDC25B expression and the prognosis and degree of tumor differentiation of HCC patients was analyzed. CDC25B expression was verified in clinical HCC tissue samples using fluorescence quantitative polymerase chain reaction (q-PCR) and protein immunoblotting (Western blot). Gene set enrichment analysis (GSEA) was used to identify signaling pathways enriched in CDC25B expression, and differential genes (DEGs) were used to screen out coexpressed hub genes and construct protein-protein interaction (PPI) networks. 5-Ethynyl-2'-deoxyuridine (EDU) staining was used to compare the proliferation and differentiation ability of the HCC cell line (HCC-LM3) after knockdown of CDC25B. Finally, we investigated the mutation of CDC25B in HCC and the relationship between CDC25B expression and tumor cell infiltration of lymphocytes and some immune checkpoints as well as drug sensitivity. CDC25B was overexpressed in HCC tissues and correlated with poor prognosis and the degree of tumor differentiation in patients with HCC. The GSEA and PPI networks together revealed significantly upregulated signaling pathways, as well as functions, associated with the development of HCC when CDC25B was overexpressed. The EDU assay demonstrated that the ability of cells to differentiate value addedly was markedly reduced following the downregulation of CDC25B expression in HCC-LM3s. CDC25B was also involved in the formation of the tumor microenvironment (TME) and immune processes in HCC, and the high expression of CDC25B made patients less sensitive to some drugs. CDC25B can be used as a biomarker and immunotherapeutic target for poor prognosis and partial drug sensitivity in HCC, providing new ideas for HCC treatment.
Collapse
Affiliation(s)
- Zixiang Huang
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Liangzhi Xu
- Department of Hepatobiliary SurgeryEzhou Central Hospital, Ezhou, Hubei, China
| | - Zhengqiang Wu
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Xiaofeng Xiong
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Linfei Luo
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Zhili Wen
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| |
Collapse
|
40
|
Shen C, Jiang W, Chen R, Li L, Wu Y, Tan L, Chen Y, Zhang W, Wang Z. Transarterial chemoembolization combined with sintilimab and lenvatinib for the treatment of unresectable hepatocellular carcinoma: a retrospective study. J Cancer Res Clin Oncol 2024; 150:427. [PMID: 39302490 PMCID: PMC11415473 DOI: 10.1007/s00432-024-05949-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The treatment of unresectable hepatocellular carcinoma (uHCC) challenging due to unfulfilled clinical requirements. OBJECTIVE To evaluate the safety and efficacy of combining transarterial chemoembolization (TACE) with sintilimab and lenvatinib in the treatment of uHCC. METHODS We retrospectively analyzed the data of patients with uHCC who were treated with a combination of TACE, sintilimab, and lenvatinib between May 2019 and December 2021 at the Chinese PLA General Hospital. Systemic treatment was started 1 week after TACE was performed. Sintilimab was administered intravenously at a dosage of 200 mg every three weeks, and lenvatinib was given orally at dosages of 8 mg or 12 mg daily, contingent upon the weight of the patients. The primary endpoint was the objective response rate (ORR) as per the mRECIST. Secondary endpoints were disease control rate (DCR), progression-free survival (PFS), overall survival (OS) and treatment-related adverse events (tr-AEs). RESULTS A total of 32 patients were enrolled in the study. Among them, 9 patients were classified as Barcelona Clinic Liver Cancer-B (BCLC-B), 23 patients were classified as BCLC-C, 14 patients diagnosed with portal vein tumors, and 12 patients were diagnosed with extra hepatic metastases. The ORR and DCR were 75% and 90.6% respectively, with 4 patients exhibiting (12.5%) complete response, 20 patients exhibiting (62.5%) partial response, 5 patients exhibiting (15.6%) stable disease, and 3 patients exhibiting (9.4%) progressive disease. With a median follow-up time of 19.6 months, the median PFS was 9.9 months, and the median OS was 33.3 months. A total of 31 patients experienced different degrees of tr-AEs, of which 2 were grade 3 tr-AEs. CONCLUSION The combination therapy of TACE, sintilimab, and lenvatinib demonstrates satisfactory efficacy in the treatment of uHCC with manageable tr-AEs.
Collapse
Affiliation(s)
- Chenyu Shen
- Department of Geriatric Medicine & National Clinical Research Centre of Geriatric Disease, The Second Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenxi Jiang
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, No. 15 Wenjin Street, Xicheng District, Beijing, 100017, China
| | - Ruiqing Chen
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lingbing Li
- Department of Geriatric Medicine & National Clinical Research Centre of Geriatric Disease, The Second Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yunbo Wu
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, No. 15 Wenjin Street, Xicheng District, Beijing, 100017, China
| | - Long Tan
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, No. 15 Wenjin Street, Xicheng District, Beijing, 100017, China
| | - Yadong Chen
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, No. 15 Wenjin Street, Xicheng District, Beijing, 100017, China.
| | - Weiqiang Zhang
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, No. 15 Wenjin Street, Xicheng District, Beijing, 100017, China.
| | - Zhijun Wang
- Department of Geriatric Medicine & National Clinical Research Centre of Geriatric Disease, The Second Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
41
|
Zhou Z, Xu J, Liu S, Lv Y, Zhang R, Zhou X, Zhang Y, Weng S, Xu H, Ba Y, Zuo A, Han X, Liu Z. Infiltrating treg reprogramming in the tumor immune microenvironment and its optimization for immunotherapy. Biomark Res 2024; 12:97. [PMID: 39227959 PMCID: PMC11373505 DOI: 10.1186/s40364-024-00630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Immunotherapy has shown promising anti-tumor effects across various tumors, yet it encounters challenges from the inhibitory tumor immune microenvironment (TIME). Infiltrating regulatory T cells (Tregs) are important contributors to immunosuppressive TIME, limiting tumor immunosurveillance and blocking effective anti-tumor immune responses. Although depletion or inhibition of systemic Tregs enhances the anti-tumor immunity, autoimmune sequelae have diminished expectations for the approach. Herein, we summarize emerging strategies, specifically targeting tumor-infiltrating (TI)-Tregs, that elevate the capacity of organisms to resist tumors by reprogramming their phenotype. The regulatory mechanisms of Treg reprogramming are also discussed as well as how this knowledge could be utilized to develop novel and effective cancer immunotherapies.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, China
| | - Jiaxin Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Human Anatomy, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingying Lv
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
42
|
Jiang L, Meng Q, Liu L, Li W. A Comprehensive Review on Molecular Mechanisms, Treatments, and Brief Role of Natural Products in Hepatocellular Cancer. Nat Prod Commun 2024; 19. [DOI: 10.1177/1934578x241284873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Most initial liver cancers are hepatocellular carcinomas (HCC), which make up the vast majority of cases. Hepatitis B or C virus infection as well as alcohol consumption is among the key risk factors. The significance of the most intriguing soluble factors as indicators for early diagnosis and as suggested targets for therapy in light of the increasing challenges in precision medicine. The development of HCC is influenced by a complex combination between pro-inflammatory and anti-inflammatory cytokines and their signalling cascades. Recently,researchers are aims to assess the potential of a number of distinct molecular cascade/cascade including cytokines to function as key players with particular underlying etiologies. Increasing our knowledge of the signaling network that links retro differentiation and inflammationmay help us find novel therapeutic targets and develop combined therapies or treatments that work against tumors with a significant degree of heterogeneity. With nursing processes at its center, comprehensive nursing care is a new nursing paradigm that combines the benefits of primary and group nursin g as well as a perfect synthesis of many nursing metrics like nursing philosophy, nursing plan, and nursing quality evaluation. In order to treat patients with serious liver diseases like cancer, it can conduct nursing interventions item by item in accordance with the unique disease conditions of each patient and combine efficient therapeutic approaches with high-quality nursing modes. Dietary natural products, including fruits, vegetables, and spices, may prevent and treat liver cancer by inhibiting tumor growth, protecting the liver, and enhancing chemotherapy.
Collapse
Affiliation(s)
- Linlin Jiang
- Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| | - Qin Meng
- Department of Nursing, Huaian Hospital of Huaian City, Huaian Jiangsu,China
| | - Lixiu Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| | - Weihang Li
- Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| |
Collapse
|
43
|
Zhang J, Chen C, Xia Z, Xiong X, Liu P, Xu Y, Liu X, Li Z. Prognostic analysis of systemic antitumor therapy in young patients with advanced liver cancer: A cohort study. Oncol Lett 2024; 28:410. [PMID: 38988447 PMCID: PMC11234805 DOI: 10.3892/ol.2024.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Advanced liver cancer is the most common malignant tumor in the elderly, but it also occurs in young people in areas where hepatitis B virus is prevalent. The aim of the present study was to assess the efficacy of systemic antitumor therapy in young patients with advanced liver cancer and investigate the influencing factors. The baseline demographic and clinical data of 38 young patients (≤35 years old) with liver cancer were collected as group A and that of 79 elderly patients (≥55 years old) with liver cancer were collected as group B. There were no significant between-group differences regarding the proportion of patients with increased serum aspartate aminotransferase, low serum albumin, increased α-fetoprotein (AFP) and high Child-Pugh score. The median (m)PFS time in groups A and B was 3.9 and 8.3 months, respectively [hazard ratio (HR), 1.702; P=0.009]. The mOS in group A (17.6 months) was 12.4 months shorter than that in group B (HR, 1.799; P=0.010). In the subgroup analysis, male sex [HR, 1.73; 95% confidence interval (CI), 1.07-2.79], pathological diagnosis (HR, 1.79; 95% CI, 1.10-2.91), previous surgical treatment (HR, 2.16; 95% CI, 1.18-3.95), no tumor thrombus (HR, 2.45; 95% CI, 1.22-4.93), increased alanine aminotransferase (HR, 2.23; 95% CI, 1.07-4.65), increased aspartate aminotransferase (HR, 3.22; 95% CI, 1.62-6.39), normal total bilirubin (HR, 1.77; 95% CI, 1.09-2.87) and increased AFP (HR, 2.02; 95% CI, 1.19-3.41) were associated with shorter survival time in group A compared with those in group B (P<0.05). Group A also had a higher incidence of hyper-progressive disease (HPD) (31.6 vs. 3.8%; P<0.001). HPD was a risk factor for advanced liver cancer (HR, 4.530; 95% CI, 2.251-9.115; P<0.001]. In conclusion, the efficacy of systemic antitumor therapy in young patients was poorer compared with that in elderly patients. Young patients with liver cancer had a high HBV infection rate and were prone to HPD.
Collapse
Affiliation(s)
- Jue Zhang
- Department of Oncology, Nanjing Jinling Hospital of Nanjing University, Nanjing, Jiangsu 210012, P.R. China
| | - Chao Chen
- Department of Oncology, Nanjing Jinling Hospital of Nanjing University, Nanjing, Jiangsu 210012, P.R. China
| | - Zhaojun Xia
- Department of Oncology, Nanjing Jinling Hospital of Nanjing University, Nanjing, Jiangsu 210012, P.R. China
| | - Xi Xiong
- Department of Hepatology, Nanjing Jinling Hospital of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Ping Liu
- Department of Oncology, Nanjing Jinling Hospital of Nanjing University, Nanjing, Jiangsu 210012, P.R. China
| | - Yanping Xu
- Department of Oncology, Nanjing Jinling Hospital of Nanjing University, Nanjing, Jiangsu 210012, P.R. China
| | - Xiufeng Liu
- Department of Oncology, Nanjing Jinling Hospital of Nanjing University, Nanjing, Jiangsu 210012, P.R. China
| | - Zixiong Li
- Department of Oncology, Nanjing Jinling Hospital of Nanjing University, Nanjing, Jiangsu 210012, P.R. China
| |
Collapse
|
44
|
Feng H, Liu J, Jia H, Bu X, Yang W, Su P. Cancer-associated fibroblasts-derived exosomal ZNF250 promotes the proliferation, migration, invasion, and immune escape of hepatocellular carcinoma cells by transcriptionally activating PD-L1. J Biochem Mol Toxicol 2024; 38:e23778. [PMID: 39252517 DOI: 10.1002/jbt.23778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 09/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is a lethal form of liver cancer, and the tumor microenvironment, particularly cancer-associated fibroblasts (CAFs), plays a critical role in its progression. This study aimed to elucidate the mechanism by which CAF-derived exosomes regulate the development of HCC. The study employed quantitative real-time polymerase chain reaction for mRNA expression analysis and western blot analysis for protein expression detection. Chromatin immunoprecipitation assay and dual-luciferase reporter assay were performed to investigate the relationship between zinc finger protein 250 (ZNF250) and programmed cell death 1 ligand 1 (PD-L1). Transmission electron microscopy and western blot analysis were used to characterize the isolated exosomes. The transferability of CAF-derived exosomes and normal fibroblasts (NFs)-derived exosomes into HCC cells was analyzed using a green fluorescent labeling dye PKH67. Cell proliferation was assessed via a 5-Ethynyl-2'-deoxyuridine assay, while Transwell assays were conducted to evaluate cell migration and invasion. Flow cytometry was performed to measure cell apoptosis, while enzyme-linked immunosorbent assays were used to assess the levels of tumor necrosis factor-α and perforin. Finally, a xenograft mouse model was constructed to examine the effects of exosomes derived from ZNF250-deficient CAFs on the tumor properties of HCC cells. The study revealed increased expression of ZNF250 in HCC tissues and cells, with ZNF250 transcriptionally activating PD-L1 in HCC cells. ZNF250 expression was associated with HbsAg, clinical stage and tumor size of HCC patients. CAF-derived exosomal ZNF250 can regulate PD-L1 expression in HCC cells. Furthermore, exosomes derived from ZNF250-deficient CAFs inhibited the proliferation, migration, invasion, and immune escape of HCC cells by downregulating PD-L1 expression. Moreover, CAF-derived exosomal ZNF250 promoted tumor formation in vivo. These findings provide insights into the role of CAF-derived exosomes in the suppression of HCC development, highlighting the significance of ZNF250 and PD-L1 regulation in tumor progression.
Collapse
Affiliation(s)
- Huizhi Feng
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jingmei Liu
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Haixia Jia
- Department of Scientific Research, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiaoqian Bu
- Department of Digestive System Cancer Center, Shanxi Bethune Hospital, Taiyuan, China
| | - Wenhui Yang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Peng Su
- Department of Medical Service, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
45
|
Sun D, Altalbawy FMA, Yumashev A, Hjazi A, Menon SV, Kaur M, Deorari M, Abdulwahid AS, Shakir MN, Gabal BC. Shedding Light on the Role of Exosomal PD-L1 (ExoPD-L1) in Cancer Progression: an Update. Cell Biochem Biophys 2024; 82:1709-1720. [PMID: 38907940 DOI: 10.1007/s12013-024-01340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/24/2024]
Abstract
Exosomes are the primary category of extracellular vesicles (EVs), which are lipid-bilayer vesicles with biological activity spontaneously secreted from either normal or tansformed cells. They serve a crucial role for intercellular communication and affect extracellular environment and the immune system. Tumor-derived exosomes (TEXs) enclose high levels of immunosuppressive proteins, including programmed death-ligand 1 (PD-L1). PD-L1 and its receptor PD-1 act as crucial immune checkpoint molecules, thus facilitating tumor advancement by inhibiting immune responses. PDL-1 is abundantly present on tumor cells and interacts with PD-1 on activated T cells, resulting in T cell suppression and allowing immune evasion of cancer cells. Various FDA-approved monoclonal antibodies inhibiting the PD-1/PD-L1 interaction are commonly used to treat a diverse range of tumors. Although the achieved results are significant, some individuals have a poor reaction to PD-1/PD-L1 blocking. PD-L1-enriched TEXs may mimic the impact of cell-surface PD-L1, consequently potentiating tumor resistance to PD1/PD-L1 based therapy. In light of this, a strong correlation between circulating exosomal PD-L1 levels and response rate to anti-PD-1/PD-L1 antibody treatment has been evinced. This article inspects the function of exosomal PDL-1 in developing resistance to anti-PD-1/PD-L1 therapy for opening new avenues for overcoming tumor resistance to such modalities and development of more favored combination therapy.
Collapse
Affiliation(s)
- Dongmei Sun
- Siping City Central People's Hospital, Siping, Jilin, 136000, P. R. China
| | - Farag M A Altalbawy
- Department of Biochemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Alzahraa S Abdulwahid
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Baneen Chasib Gabal
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
46
|
Tao K, Chen C, Xu G, Tao F, He M. Low-dose apatinib optimizes the vascular normalization and enhances the antitumor effect of PD-1 inhibitor in gastric cancer. Transl Cancer Res 2024; 13:4290-4300. [PMID: 39262493 PMCID: PMC11385532 DOI: 10.21037/tcr-23-2328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/25/2024] [Indexed: 09/13/2024]
Abstract
Background Apatinib is a tyrosine kinase inhibitor that has shown potential in combination with immune checkpoint inhibitors (ICIs) in gastric cancer (GC); however, its role in GC is unclear. This research aims to investigate the effect of low-dose apatinib in GC, and analyze the mechanisms of its underlying action. Methods A mouse model of GC was established, and the experimental mice were divided into different groups for different treatment: group NS (normal saline), group A (low-dose apatinib 50 mg/kg), group B (high-dose apatinib 200 mg/kg), group C [programmed cell death protein 1 (PD-1) inhibitor monotherapy], and group D (PD-1 inhibitor combined with low-dose apatinib). After 14 days of treatment, the tumor and blood samples were collected from all mice for histological and cytokine detection. Results Compared with the control group, mice in the low-dose apatinib group showed smaller tumor volumes and slower growth. CD31/α-smooth muscle actin (α-SMA) double staining revealed significantly higher coverage of perivascular cells in the low-dose apatinib group by contrast to the control and high-dose apatinib groups, suggesting that low-dose apatinib may alleviate hypoxia. Compared to the high-dose apatinib group, the expression of hypoxia inducible factor 1 alpha (HIF1α) significantly decreased in the low-dose apatinib group. Hematoxylin and eosin (HE) staining results showed a higher proportion of necrotic tumor tissues in the group of mice treated with low-dose apatinib combined with PD-1 inhibitor than in other groups. In addition, this combined treatment significantly reduced the expression of NG2 and HIF1α in mouse tumor tissues, indicating a more normalized vascular density, and also increased the proportion of CD8+ T cells. Conclusions Low-dose apatinib enhances the antitumor effect of PD-1 inhibitor by normalizing tumor-related blood vessels, alleviating intratumor hypoxia and altering immunosuppressive microenvironment (IM).
Collapse
Affiliation(s)
- Kelong Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (The First Affiliated Hospital of Shaoxing University), Shaoxing, China
| | - Chenyu Chen
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Guangen Xu
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (The First Affiliated Hospital of Shaoxing University), Shaoxing, China
| | - Feng Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (The First Affiliated Hospital of Shaoxing University), Shaoxing, China
| | - Meng He
- Department of Respiratory and Critical Care Medicine, Shaoxing People's Hospital (The First Affiliated Hospital of Shaoxing University), Shaoxing, China
| |
Collapse
|
47
|
Ong W, Lee A, Tan WC, Fong KTD, Lai DD, Tan YL, Low XZ, Ge S, Makmur A, Ong SJ, Ting YH, Tan JH, Kumar N, Hallinan JTPD. Oncologic Applications of Artificial Intelligence and Deep Learning Methods in CT Spine Imaging-A Systematic Review. Cancers (Basel) 2024; 16:2988. [PMID: 39272846 PMCID: PMC11394591 DOI: 10.3390/cancers16172988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
In spinal oncology, integrating deep learning with computed tomography (CT) imaging has shown promise in enhancing diagnostic accuracy, treatment planning, and patient outcomes. This systematic review synthesizes evidence on artificial intelligence (AI) applications in CT imaging for spinal tumors. A PRISMA-guided search identified 33 studies: 12 (36.4%) focused on detecting spinal malignancies, 11 (33.3%) on classification, 6 (18.2%) on prognostication, 3 (9.1%) on treatment planning, and 1 (3.0%) on both detection and classification. Of the classification studies, 7 (21.2%) used machine learning to distinguish between benign and malignant lesions, 3 (9.1%) evaluated tumor stage or grade, and 2 (6.1%) employed radiomics for biomarker classification. Prognostic studies included three (9.1%) that predicted complications such as pathological fractures and three (9.1%) that predicted treatment outcomes. AI's potential for improving workflow efficiency, aiding decision-making, and reducing complications is discussed, along with its limitations in generalizability, interpretability, and clinical integration. Future directions for AI in spinal oncology are also explored. In conclusion, while AI technologies in CT imaging are promising, further research is necessary to validate their clinical effectiveness and optimize their integration into routine practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Aric Lee
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Wei Chuan Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Kuan Ting Dominic Fong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Daoyong David Lai
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Yi Liang Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Xi Zhen Low
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Shuliang Ge
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Shao Jin Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Yong Han Ting
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Jiong Hao Tan
- National University Spine Institute, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- National University Spine Institute, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
48
|
Zuo MX, An C, Cao YZ, Pan JY, Xie LP, Yang XJ, Li W, Wu PH. Camrelizumab, apatinib and hepatic artery infusion chemotherapy combined with microwave ablation for advanced hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:3481-3495. [PMID: 39171171 PMCID: PMC11334027 DOI: 10.4251/wjgo.v16.i8.3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/01/2024] [Accepted: 06/12/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Hepatic arterial infusion chemotherapy and camrelizumab plus apatinib (TRIPLET protocol) is promising for advanced hepatocellular carcinoma (Ad-HCC). However, the usefulness of microwave ablation (MWA) after TRIPLET is still controversial. AIM To compare the efficacy and safety of TRIPLET alone (T-A) vs TRIPLET-MWA (T-M) for Ad-HCC. METHODS From January 2018 to March 2022, 217 Ad-HCC patients were retrospectively enrolled. Among them, 122 were included in the T-A group, and 95 were included in the T-M group. A propensity score matching (PSM) was applied to balance bias. Overall survival (OS) was compared using the Kaplan-Meier curve with the log-rank test. The overall objective response rate (ORR) and major complications were also assessed. RESULTS After PSM, 82 patients were included both the T-A group and the T-M group. The ORR (85.4%) in the T-M group was significantly higher than that (65.9%) in the T-A group (P < 0.001). The cumulative 1-, 2-, and 3-year OS rates were 98.7%, 93.4%, and 82.0% in the T-M group and 85.1%, 63.1%, and 55.0% in the T-A group (hazard ratio = 0.22; 95% confidence interval: 0.10-0.49; P < 0.001). The incidence of major complications was 4.9% (6/122) in the T-A group and 5.3% (5/95) in the T-M group, which were not significantly different (P = 1.000). CONCLUSION T-M can provide better survival outcomes and comparable safety for Ad-HCC than T-A.
Collapse
Affiliation(s)
- Meng-Xuan Zuo
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Chao An
- Department of Interventional Ultrasound, Chinese General PLA Hospital, Beijing 100853, China
| | - Yu-Zhe Cao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Jia-Yu Pan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Lu-Ping Xie
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Xin-Jing Yang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Wang Li
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Pei-Hong Wu
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
49
|
Papadakos SP, Chatzikalil E, Vakadaris G, Reppas L, Arvanitakis K, Koufakis T, Siakavellas SI, Manolakopoulos S, Germanidis G, Theocharis S. Exploring the Role of GITR/GITRL Signaling: From Liver Disease to Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2609. [PMID: 39061246 PMCID: PMC11275207 DOI: 10.3390/cancers16142609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and presents a continuously growing incidence and high mortality rates worldwide. Besides advances in diagnosis and promising results of pre-clinical studies, established curative therapeutic options for HCC are not currently available. Recent progress in understanding the tumor microenvironment (TME) interactions has turned the scientific interest to immunotherapy, revolutionizing the treatment of patients with advanced HCC. However, the limited number of HCC patients who benefit from current immunotherapeutic options creates the need to explore novel targets associated with improved patient response rates and potentially establish them as a part of novel combinatorial treatment options. Glucocorticoid-induced TNFR-related protein (GITR) belongs to the TNFR superfamily (TNFRSF) and promotes CD8+ and CD4+ effector T-cell function with simultaneous inhibition of Tregs function, when activated by its ligand, GITRL. GITR is currently considered a potential immunotherapy target in various kinds of neoplasms, especially with the concomitant use of programmed cell-death protein-1 (PD-1) blockade. Regarding liver disease, a high GITR expression in liver progenitor cells has been observed, associated with impaired hepatocyte differentiation, and decreased progenitor cell-mediated liver regeneration. Considering real-world data proving its anti-tumor effect and recently published evidence in pre-clinical models proving its involvement in pre-cancerous liver disease, the idea of its inclusion in HCC therapeutic options theoretically arises. In this review, we aim to summarize the current evidence supporting targeting GITR/GITRL signaling as a potential treatment strategy for advanced HCC.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Elena Chatzikalil
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Georgios Vakadaris
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Lampros Reppas
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Spyros I. Siakavellas
- 2nd Academic Department of Internal Medicine, Liver-GI Unit, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 114 Vas. Sofias str, 11527 Athens, Greece; (S.I.S.); (S.M.)
| | - Spilios Manolakopoulos
- 2nd Academic Department of Internal Medicine, Liver-GI Unit, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 114 Vas. Sofias str, 11527 Athens, Greece; (S.I.S.); (S.M.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| |
Collapse
|
50
|
Li Y, Chen Y, Wang D, Wu L, Li T, An N, Yang H. Elucidating the multifaceted role of MGAT1 in hepatocellular carcinoma: integrative single-cell and spatial transcriptomics reveal novel therapeutic insights. Front Immunol 2024; 15:1442722. [PMID: 39081317 PMCID: PMC11286416 DOI: 10.3389/fimmu.2024.1442722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Background Glycosyltransferase-associated genes play a crucial role in hepatocellular carcinoma (HCC) pathogenesis. This study investigates their impact on the tumor microenvironment and molecular mechanisms, offering insights into innovative immunotherapeutic strategies for HCC. Methods We utilized cutting-edge single-cell and spatial transcriptomics to examine HCC heterogeneity. Four single-cell scoring techniques were employed to evaluate glycosyltransferase genes. Spatial transcriptomic findings were validated, and bulk RNA-seq analysis was conducted to identify prognostic glycosyltransferase-related genes and potential immunotherapeutic targets. MGAT1's role was further explored through various functional assays. Results Our analysis revealed diverse cell subpopulations in HCC with distinct glycosyltransferase gene activities, particularly in macrophages. Key glycosyltransferase genes specific to macrophages were identified. Temporal analysis illustrated macrophage evolution during tumor progression, while spatial transcriptomics highlighted reduced expression of these genes in core tumor macrophages. Integrating scRNA-seq, bulk RNA-seq, and spatial transcriptomics, MGAT1 emerged as a promising therapeutic target, showing significant potential in HCC immunotherapy. Conclusion This comprehensive study delves into glycosyltransferase-associated genes in HCC, elucidating their critical roles in cellular dynamics and immune cell interactions. Our findings open new avenues for immunotherapeutic interventions and personalized HCC management, pushing the boundaries of HCC immunotherapy.
Collapse
Affiliation(s)
- Yang Li
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuan Chen
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqiong Wang
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Ling Wu
- Tumor Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Tao Li
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Na An
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Haikun Yang
- The Gastroenterology Department, Shanxi Provincial People Hospital, Taiyuan, China
| |
Collapse
|