1
|
Piyadasa H, Oberlton B, Ribi M, Ranek JS, Averbukh I, Leow K, Amouzgar M, Liu CC, Greenwald NF, McCaffrey EF, Kumar R, Ferrian S, Tsai AG, Filiz F, Fullaway CC, Bosse M, Varra SR, Kong A, Sowers C, Gephart MH, Nuñez-Perez P, Yang E, Travers M, Schachter MJ, Liang S, Santi MR, Bucktrout S, Gherardini PF, Connolly J, Cole K, Barish ME, Brown CE, Oldridge DA, Drake RR, Phillips JJ, Okada H, Prins R, Bendall SC, Angelo M. Multi-omic landscape of human gliomas from diagnosis to treatment and recurrence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642624. [PMID: 40161803 PMCID: PMC11952471 DOI: 10.1101/2025.03.12.642624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Gliomas are among the most lethal cancers, with limited treatment options. To uncover hallmarks of therapeutic escape and tumor microenvironment (TME) evolution, we applied spatial proteomics, transcriptomics, and glycomics to 670 lesions from 310 adult and pediatric patients. Single-cell analysis shows high B7H3+ tumor cell prevalence in glioblastoma (GBM) and pleomorphic xanthoastrocytoma (PXA), while most gliomas, including pediatric cases, express targetable tumor antigens in less than 50% of tumor cells, potentially explaining trial failures. Longitudinal samples of isocitrate dehydrogenase (IDH)-mutant gliomas reveal recurrence driven by tumor-immune spatial reorganization, shifting from T-cell and vasculature-associated myeloid cell-enriched niches to microglia and CD206+ macrophage-dominated tumors. Multi-omic integration identified N-glycosylation as the best classifier of grade, while the immune transcriptome best predicted GBM survival. Provided as a community resource, this study opens new avenues for glioma targeting, classification, outcome prediction, and a baseline of TME composition across all stages.
Collapse
Affiliation(s)
- Hadeesha Piyadasa
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin Oberlton
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Mikaela Ribi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Jolene S. Ranek
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Inna Averbukh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ke Leow
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Meelad Amouzgar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Candace C. Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Noah F. Greenwald
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Erin F. McCaffrey
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rashmi Kumar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Selena Ferrian
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Albert G. Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ferda Filiz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Marc Bosse
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Alex Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cameron Sowers
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Pablo Nuñez-Perez
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - EnJun Yang
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Mike Travers
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Samantha Liang
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Maria R. Santi
- Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | | | - Pier Federico Gherardini
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - John Connolly
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Kristina Cole
- Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Michael E. Barish
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Christine E. Brown
- Departments of Hematology & Hematopoietic Cell Transplantation and Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Derek A. Oldridge
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, PA, USA
| | - Richard R. Drake
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Joanna J. Phillips
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Robert Prins
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Neurosurgery, UCLA, Los Angeles, CA, USA
| | - Sean C. Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
2
|
Mao M, Lei Y, Ma X, Xie HY. Challenges and Emerging Strategies of Immunotherapy for Glioblastoma. Chembiochem 2025; 26:e202400848. [PMID: 39945240 DOI: 10.1002/cbic.202400848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
Glioblastoma (GBM) is recognized as the most lethal primary malignant tumor of the central nervous system. Although traditional treatments can somewhat prolong patient survival, the overall prognosis remains grim. Immunotherapy has become an effective method for GBM treatment. Oncolytic virus, checkpoint inhibitors, CAR T cells and tumor vaccines have all been applied in this field. Moreover, the combining of immunotherapy with traditional radiotherapy, chemotherapy, or gene therapy can further improve the treatment outcome. This review systematically summarizes the features of GBM, the recent progress of immunotherapy in overcoming GBM.
Collapse
Affiliation(s)
- Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yao Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Hai-Yan Xie
- Chemical Biology Center, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
3
|
Epistolio S, Spina P, Zaed I, Cardia A, Marchi F, Frattini M. The Clinical Role of miRNAs in the Development and Treatment of Glioblastoma. Int J Mol Sci 2025; 26:2723. [PMID: 40141375 PMCID: PMC11943032 DOI: 10.3390/ijms26062723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most common brain tumor and one of the most aggressive, with a median overall survival (OS) of only 15-18 months. These characteristics make it necessary to identify new targets for the improvement of prognosis and better prediction of response to therapies currently available for GBM patients. One possible candidate target could be the evaluation of miRNAs. miRNAs are small non-coding RNAs that play important roles in post-transcriptional gene regulation. Due to their functions, miRNAs also control biological processes underlying the development of GBM and may be considered possible targets with a clinical role. This narrative review introduces the concept of miRNAs in GBM from a clinical and a molecular perspective and then addresses the specific miRNAs that are most described in the literature as relevant for the development, the prognosis, and the response to therapies for patients affected by GBM.
Collapse
Affiliation(s)
- Samantha Epistolio
- Institute of Pathology, Ente Ospedaliero Cantonale (EOC), 6900 Locarno, Switzerland; (S.E.); (P.S.)
| | - Paolo Spina
- Institute of Pathology, Ente Ospedaliero Cantonale (EOC), 6900 Locarno, Switzerland; (S.E.); (P.S.)
| | - Ismail Zaed
- Service of Neurosurgery, Neurocenter of the Southern Switzerland, Regional Hospital of Lugano, EnteOspedaliero Cantonale (EOC), 6900 Lugano, Switzerland; (I.Z.); (A.C.); (F.M.)
| | - Andrea Cardia
- Service of Neurosurgery, Neurocenter of the Southern Switzerland, Regional Hospital of Lugano, EnteOspedaliero Cantonale (EOC), 6900 Lugano, Switzerland; (I.Z.); (A.C.); (F.M.)
| | - Francesco Marchi
- Service of Neurosurgery, Neurocenter of the Southern Switzerland, Regional Hospital of Lugano, EnteOspedaliero Cantonale (EOC), 6900 Lugano, Switzerland; (I.Z.); (A.C.); (F.M.)
| | - Milo Frattini
- Institute of Pathology, Ente Ospedaliero Cantonale (EOC), 6900 Locarno, Switzerland; (S.E.); (P.S.)
| |
Collapse
|
4
|
Shao Q, Deng J, Wu H, Huang Z. HER2-positive gastric cancer: from targeted therapy to CAR-T cell therapy. Front Immunol 2025; 16:1560280. [PMID: 40181988 PMCID: PMC11966040 DOI: 10.3389/fimmu.2025.1560280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Gastric cancer (GC) ranks as the fifth most prevalent cancer on a global scale, with HER2-positive GC representing a distinct subtype that exhibits more intricate biological characteristics. Conventional chemotherapy typically exhibits restricted efficacy in the management of HER2-positive GC. In light of the incessant advancement in molecular targeted therapies, targeting HER2 has emerged as a promising therapeutic approach for this subtype. The advent of antibody-drug conjugates (ADCs) and chimeric antigen receptor T-cell therapy (CAR-T) has furnished novel treatment alternatives for HER2-positive GC. Nevertheless, owing to the pronounced heterogeneity of GC and the complex tumor microenvironment, drug resistance frequently emerges, thereby substantially influencing the effectiveness of HER2-targeted therapy. This article comprehensively summarizes and deliberates upon the strategies of HER2-targeted therapy as well as the underlying resistance mechanisms.
Collapse
Affiliation(s)
- Qiangzu Shao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of the Environmental Oncology of Gansu Province, The Second Hospital & Clinical Medical school, Lanzhou, China
| | - Junge Deng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of the Environmental Oncology of Gansu Province, The Second Hospital & Clinical Medical school, Lanzhou, China
| | - Haoran Wu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of the Environmental Oncology of Gansu Province, The Second Hospital & Clinical Medical school, Lanzhou, China
| | - Zeping Huang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of the Environmental Oncology of Gansu Province, The Second Hospital & Clinical Medical school, Lanzhou, China
| |
Collapse
|
5
|
Kuroda H, Kijima N, Tachi T, Ikeda S, Murakami K, Nakagawa T, Yaga M, Nakagawa K, Utsugi R, Hirayama R, Okita Y, Kagawa N, Hosen N, Kishima H. Prostaglandin F2 receptor negative regulator as a potential target for chimeric antigen receptor-T cell therapy for glioblastoma. Cancer Immunol Immunother 2025; 74:136. [PMID: 40047938 PMCID: PMC11885767 DOI: 10.1007/s00262-025-03979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy targeting novel glioblastoma (GBM)-specific cell surface antigens is a promising approach. However, transcriptome analyses have revealed few GBM-specific target antigens. METHODS A library of monoclonal antibodies (mAbs) against tumor cell lines derived from patients with GBM was generated. mAbs reacting with tumor cells in resected tissues from patients with GBM but not with nonmalignant human brain cells were detected. The antigens that were recognized were identified through expression cloning. CAR-T cells derived from a candidate mAb were generated, and their functionality was tested in vitro and in vivo. RESULTS Approximately 3,200 clones were established. Among them, 5E17 reacted with tumor cells in six of seven patients with GBM, but not with nonmalignant human brain cells. Prostaglandin F2 receptor negative regulator (PTGFRN) was identified as an antigen recognized by 5E17. CAR-T cells derived from 5E17 produced cytokines and exerted cytotoxicity upon co-culture with tumor cells from patients with GBM. Furthermore, intracranial injection of 5E17-CAR-T cells demonstrated antitumor effects in an orthotopic xenograft murine model with patient-derived GBM cells. CONCLUSIONS Cell surface PTGFRN is a candidate target for intracranial CAR-T cell therapy for GBM. On-target off-tumor toxicity in alternative normal tissues needs to be carefully tested.
Collapse
Affiliation(s)
- Hideki Kuroda
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan.
| | - Tetsuro Tachi
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Shunya Ikeda
- World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Koki Murakami
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Tomoyoshi Nakagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Moto Yaga
- Department of Respiratory Medicine, Osaka General Hospital, Osaka, Osaka, Japan
| | - Kanji Nakagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Reina Utsugi
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Ryuichi Hirayama
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Yoshiko Okita
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Naoki Hosen
- World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan.
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| |
Collapse
|
6
|
Montgomery KE, Raybin JL, Powers K, Hellsten M, Murray P, Ward J. High Symptom Burden Predicts Poorer Quality of Life Among Children and Adolescents Receiving Hematopoietic Stem Cell Transplantation or Chimeric Antigen Receptor T-Cell Therapy. Cancer Nurs 2025; 48:E111-E120. [PMID: 38447041 DOI: 10.1097/ncc.0000000000001337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
BACKGROUND Children with cancer and other serious illnesses experience symptom burden during hematopoietic stem cell transplantation and chimeric antigen receptor T-cell therapy, yet limited research has characterized how these symptoms interact with overall quality of life over time. OBJECTIVE The aim of this study was to examine the longitudinal relationship between symptoms and quality of life in children receiving hematopoietic stem cell transplantation or chimeric antigen receptor T-cell therapy. METHODS A multisite study design was used to collect symptom and quality of life information at pre-cell infusion and days +30, +60, and +90 from children (N = 140) receiving hematopoietic stem cell transplantation and chimeric antigen receptor T-cell therapy. A longitudinal parallel process model was used to characterize the relationship between symptoms and quality of life. RESULTS Children (mean age, 8.4 years) received allogeneic transplant (57.9%), autologous transplant (25.7%), or chimeric antigen receptor T-cell therapy (16.4%). Symptom prevalence was highest at baseline (>50%) for pain, fatigue, nausea, vomiting, and low appetite. Quality of life scores were worse at baseline (mean [SD], 69.5 [15.8]) and improved by 10 points by day +90. The longitudinal model indicated high symptom prevalence at baseline predicted worse quality of life at both baseline and day +90. CONCLUSIONS Children felt worse early in the treatment trajectory and improved by day +90. The level of symptom burden predicted the overall quality of life at all time points. IMPLICATIONS FOR PRACTICE Children experiencing high symptom burden should receive frequent assessment and enhanced symptom management throughout the treatment trajectory to mitigate negative impacts on quality of life.
Collapse
Affiliation(s)
- Kathleen E Montgomery
- Author Affiliations: University of Wisconsin-Madison (Dr Montgomery); Doernbecher Children's Hospital, Oregon Health & Science University (Dr Raybin), Portland; Ann & Robert H. Lurie Children's Hospital of Chicago (Ms Powers), Illinois; Palliative Care, Texas Children's Cancer and Hematology Centers (Dr Hellsten), Houston; and Children's Hospital Los Angeles (Drs Murray and Ward), California
| | | | | | | | | | | |
Collapse
|
7
|
Emir SM, Karaoğlan BS, Kaşmer R, Şirin HB, Sarıyıldız B, Karakaş N. Hunting glioblastoma recurrence: glioma stem cells as retrospective targets. Am J Physiol Cell Physiol 2025; 328:C1045-C1061. [PMID: 39818986 DOI: 10.1152/ajpcell.00344.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain malignancies in adults. Standard approaches, including surgical resection followed by adjuvant radio- and chemotherapy with temozolomide (TMZ), provide only transient control, as GBM frequently recurs due to its infiltrative nature and the presence of therapy-resistant subpopulations such as glioma stem cells (GSCs). GSCs, with their quiescent state and robust resistance mechanisms, evade conventional therapies, contributing significantly to relapse. Consequently, current treatment methods for GBM face significant limitations in effectively targeting GSCs. In this review, we emphasize the relationship between GBM recurrence and GSCs, discuss the current limitations, and provide future perspectives to overwhelm the challenges associated with targeting GSCs. Eliminating GSCs may suppress recurrence, achieve durable responses, and improve therapeutic outcomes for patients with GBM.
Collapse
Affiliation(s)
- Sümeyra Mengüç Emir
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Birnur Sinem Karaoğlan
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Ramazan Kaşmer
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Hilal Buse Şirin
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Batuhan Sarıyıldız
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Nihal Karakaş
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
- Department of Medical Biology, International School of Medicine, İstanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
8
|
Sehgal P, Naqvi AS, Higgins M, Liu J, Harvey K, Jarroux J, Kim T, Mankaliye B, Mishra P, Watterson G, Fine J, Davis J, Hayer KE, Castro A, Mogbo A, Drummer C, Martinez D, Koptyra MP, Ang Z, Wang K, Farrel A, Quesnel-Vallieres M, Barash Y, Spangler JB, Rokita JL, Resnick AC, Tilgner HU, DeRaedt T, Powell DJ, Thomas-Tikhonenko A. Neuronal cell adhesion molecule (NRCAM) variant defined by microexon skipping is an essential, antigenically distinct, and targetable proteoform in high-grade glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631916. [PMID: 39868324 PMCID: PMC11761023 DOI: 10.1101/2025.01.09.631916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
To overcome the paucity of known tumor-specific surface antigens in pediatric high-grade glioma (pHGG), we contrasted splicing patterns in pHGGs and normal brain samples. Among alternative splicing events affecting extracellular protein domains, the most pervasive alteration was the skipping of ≤30 nucleotide-long microexons. Several of these skipped microexons mapped to L1-IgCAM family members, such as NRCAM . Bulk and single-nuclei short- and long-read RNA-seq revealed uniform skipping of NRCAM microexons 5 and 19 in virtually every pHGG sample. Importantly, the Δex5Δex19 (but not the full-length) NRCAM proteoform was essential for pHGG cell migration and invasion in vitro and tumor growth in vivo. We developed a monoclonal antibody selective for Δex5Δex19 NRCAM and demonstrated that "painting" of pHGG cells with this antibody enables killing by T cells armed with an FcRI-based universal immune receptor. Thus, pHGG-specific NRCAM and possibly other L1-IgCAM proteoforms are promising and highly selective targets for adoptive immunotherapies. Statement of significance Existing targets for chimeric antigen receptors (CAR)-armed T cells are often shared by CNS tumors and normal tissues, creating the potential for on-target/off-tumor toxicities. Here we demonstrate that in CNS tumors of glial origin, cell adhesion molecules have alternatively spliced proteoforms, which could be targeted by highly selective therapeutic antibodies.
Collapse
|
9
|
Kong Y, Li J, Zhao X, Wu Y, Chen L. CAR-T cell therapy: developments, challenges and expanded applications from cancer to autoimmunity. Front Immunol 2025; 15:1519671. [PMID: 39850899 PMCID: PMC11754230 DOI: 10.3389/fimmu.2024.1519671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors. Also, key innovations were discussed including specialized CAR-T, combination therapies and the novel use of CAR-Treg, CAR-NK and CAR-M cells. Besides, CAR-based cell therapy have extended its reach beyond oncology to autoimmune disorders. We reviewed preclinical experiments and clinical trials involving CAR-T, Car-Treg and CAAR-T cell therapies in various autoimmune diseases. By highlighting these cutting-edge developments, this review underscores the transformative potential of CAR technologies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yanwei Wu
- School of Medicine, Shanghai University, Shanghai, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
10
|
Ismail FS, Gallus M, Meuth SG, Okada H, Hartung HP, Melzer N. Current and Future Roles of Chimeric Antigen Receptor T-Cell Therapy in Neurology: A Review. JAMA Neurol 2025; 82:93-103. [PMID: 39585688 DOI: 10.1001/jamaneurol.2024.3818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Importance Advancements in molecular engineering have facilitated the creation of engineered T cells that express synthetic receptors, termed chimeric antigen receptors (CARs). This is promising not only in cancer treatment but also in addressing a spectrum of other conditions. This review provides a comprehensive overview of the current approaches and future potential of CAR T-cell therapy in the field of neurology, particularly for primary brain tumors and autoimmune neurological disorders. Observations CAR T-cell therapy for glioblastoma is promising; however, first-in-human trials did not yield significant success or showed only limited success in a subset of patients. To date, the efficacy of CAR T-cell therapies has been demonstrated in animal models of multiple sclerosis, but larger human studies to corroborate the efficacy remain pending. CAR T cells showed efficacy in treatment of patients with relapsed or refractory aquaporin 4-immunoglobulin G-seropositive neuromyelitis optica spectrum disorders. Further studies with larger patient populations are needed to confirm these results. Success was reported also for treatment of cases with generalized myasthenia gravis using CAR T cells. Chimeric autoantibody receptor T cells, representing a modified form of CAR T cells directed against autoreactive B cells secreting autoantibodies, were used to selectively target autoreactive anti-N-methyl-d-aspartate B cells under in vitro and in vivo conditions, providing the basis for human studies and application to other types of autoimmune encephalitis associated with neuronal or glial antibodies. Conclusions and Relevance CAR T cells herald a new era in the therapeutic landscape of neurological disorders. While their application in solid tumors, such as glioblastoma, has not universally yielded robust success, emerging innovative strategies show promise, and there is optimism for their effectiveness in certain autoimmune neurological disorders.
Collapse
Affiliation(s)
- Fatme Seval Ismail
- Department of Neurology, Klinikum Vest, Academic Teaching Hospital of the Ruhr University Bochum, Recklinghausen, Germany
| | - Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco
- Parker Institute for Cancer Immunotherapy, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Lizana-Vasquez GD, Ramasubramanian S, Davarzani A, Cappabianca D, Saha K, Karumbaiah L, Torres-Lugo M. In Vitro Assessment of Thermo-Responsive Scaffold as a 3D Synthetic Matrix for CAR-T Potency Testing Against Glioblastoma Spheroids. J Biomed Mater Res A 2025; 113:e37823. [PMID: 39460647 DOI: 10.1002/jbm.a.37823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy has demonstrated exceptional efficacy against hematological malignancies, but notably less against solid tumors. To overcome this limitation, it is critical to investigate antitumor CAR-T cell potency in synthetic 3D microenvironments that can simulate the physical barriers presented by solid tumors. The overall goal of this study was the preliminary assessment of a synthetic thermo-responsive material as a substrate for in vitro co-cultures of anti-disialoganglioside (GD2) CAR-T cells and patient-derived glioblastoma (GBM) spheroids. Independent co-culture experiments demonstrated that the encapsulation process did not adversely affect the cell cycle progression of glioma stem cells (GSCs) or CAR-T cells. GSC spheroids grew over time within the terpolymer scaffold, when seeded in the same ratio as the suspension control. Co-cultures of CAR-T cells in suspension with hydrogel-encapsulated GSC spheroids demonstrated that CAR-T cells could migrate through the hydrogel and target the encapsulated GSC spheroids. CAR-T cells killed approximately 80% of encapsulated GSCs, while maintaining effective CD4:CD8 T cell ratios and secreting inflammatory cytokines after interacting with GD2-expressing GSCs. Importantly, the scaffolds also facilitated cell harvesting for downstream cellular analysis. This study demonstrated that a synthetic 3D terpolymer hydrogel can serve as an artificial scaffold to investigate cellular immunotherapeutic potency against solid tumors.
Collapse
Affiliation(s)
- Gaby D Lizana-Vasquez
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico, USA
| | - Shanmathi Ramasubramanian
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
- Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Science, University of Georgia, Athens, Georgia, USA
| | - Amin Davarzani
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia, USA
| | - Dan Cappabianca
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
- Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Science, University of Georgia, Athens, Georgia, USA
- Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Madeline Torres-Lugo
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico, USA
| |
Collapse
|
12
|
Ng AT, Steve T, Jamouss KT, Arham A, Kawtharani S, Assi HI. The challenges and clinical landscape of glioblastoma immunotherapy. CNS Oncol 2024; 13:2415878. [PMID: 39469854 PMCID: PMC11524205 DOI: 10.1080/20450907.2024.2415878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Glioblastoma is associated with a dismal prognosis with the standard of care involving surgery, radiation therapy and temozolomide chemotherapy. This review investigates the features that make glioblastoma difficult to treat and the results of glioblastoma immunotherapy clinical trials so far. There have been over a hundred clinical trials involving immunotherapy in glioblastoma. We report the survival-related outcomes of every Phase III glioblastoma immunotherapy trial with online published results we could find at the time of writing. To date, the DCVax-L vaccine is the only immunotherapy shown to have statistically significant increased median survival compared with standard-of-care in a Phase III trial: 19.3 months versus 16.5 months. However, this trial used an external control group to compare with the intervention which limits its quality of evidence. In conclusion, glioblastoma immunotherapy requires further investigation to determine its significance in improving disease survival.
Collapse
Affiliation(s)
- Andrew Timothy Ng
- Department of Medicine, University of Massachusetts Chan Medical School – Baystate Campus, Springfield, MA01199, USA
| | - Tyler Steve
- Department of Medicine, University of Massachusetts Chan Medical School – Baystate Campus, Springfield, MA01199, USA
| | - Kevin T Jamouss
- Department of Medicine, University of Massachusetts Chan Medical School – Baystate Campus, Springfield, MA01199, USA
| | - Abdul Arham
- Department of Medicine, University of Massachusetts Chan Medical School – Baystate Campus, Springfield, MA01199, USA
| | - Sarah Kawtharani
- Department of Neurosurgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hazem I Assi
- Department of Hematology and Oncology, American University of Beirut Medical Center, Beirut, 1107 2020, Lebanon
| |
Collapse
|
13
|
Zhang Y, Wang Y, Mu P, Zhu X, Dong Y. Bidirectional regulation of the cGAS-STING pathway in the immunosuppressive tumor microenvironment and its association with immunotherapy. Front Immunol 2024; 15:1470468. [PMID: 39464890 PMCID: PMC11502381 DOI: 10.3389/fimmu.2024.1470468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Adaptive anti-tumor immunity is currently dependent on the natural immune system of the body. The emergence of tumor immunotherapy has improved prognosis and prolonged the survival cycle of patients. Current mainstream immunotherapies, including immune checkpoint blockade, chimeric antigen receptor T-cell immunotherapy, and monoclonal antibody therapy, are linked to natural immunity. The cGAS-STING pathway is an important natural immunity signaling pathway that plays an important role in fighting against the invasion of foreign pathogens and maintaining the homeostasis of the organism. Increasing evidence suggests that the cGAS-STING pathway plays a key role in tumor immunity, and the combination of STING-related agonists can significantly enhance the efficacy of immunotherapy and reduce the emergence of immunotherapeutic resistance. However, the cGAS-STING pathway is a double-edged sword, and its activation can enhance anti-tumor immunity and immunosuppression. Immunosuppressive cells, including M2 macrophages, MDSC, and regulatory T cells, in the tumor microenvironment play a crucial role in tumor escape, thereby affecting the immunotherapy effect. The cGAS-STING signaling pathway can bi-directionally regulate this group of immunosuppressive cells, and targeting this pathway can affect the function of immunosuppressive cells, providing new ideas for immunotherapy. In this study, we summarize the activation pathway of the cGAS-STING pathway and its immunological function and elaborate on the key role of this pathway in immune escape mediated by the tumor immunosuppressive microenvironment. Finally, we summarize the mainstream immunotherapeutic approaches related to this pathway and explore ways to improve them, thereby providing guidelines for further clinical services.
Collapse
Affiliation(s)
- Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yudi Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Peizheng Mu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
14
|
Rath S, Shafeea MS, Abdul Hussein AF, Shamil Hashim A, Hassanaien S, Pastrana-Brandes S, Chaurasia B. CAR-T-cell therapy in meningioma: current investigations, advancements and insight into future directions. Ann Med Surg (Lond) 2024; 86:5957-5965. [PMID: 39359850 PMCID: PMC11444591 DOI: 10.1097/ms9.0000000000002491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/11/2024] [Indexed: 10/04/2024] Open
Abstract
Meningiomas, the most common tumors of the central nervous system (CNS), present significant challenges in treatment, particularly for atypical and anaplastic subtypes where standard therapies often fall short of therapeutic expectations. Chimeric antigen receptor (CAR) T-cell therapy, a groundbreaking immunotherapy approach, has demonstrated great success in hematological malignancies but faces obstacles in solid tumors, including CNS tumors like glioblastomas. This article provides a comprehensive review of the efficacy of CAR-T therapy in meningiomas, highlighting the tumor's immunogenic potential and the challenges associated with applying this therapy in clinical practice. Through an extensive literature review, the study explores potential antigens for CAR-T targeting in meningiomas, shedding light on the tumor-immune microenvironment interactions. Challenges such as tumor heterogeneity, blood-brain barrier penetration, off-target effects, and tumor recurrence are discussed, alongside potential strategies to overcome these obstacles. The study also investigates recent advancements in CAR-T therapy, including the identification of novel target antigens and the development of engineering approaches to enhance therapeutic efficacy. Furthermore, the article highlights the importance of ongoing research efforts in exploring the tumor-immune dynamics in meningiomas and underscores the urgent need for clinical trials to validate the safety and efficacy of CAR-T therapy in this context. By addressing these challenges, CAR-T therapy holds the promise of revolutionizing meningioma treatment, offering new hope for patients suffering from this disease.
Collapse
Affiliation(s)
- Shree Rath
- All India Institute of Medical Sciences, Bhubaneswar, India
| | - Murtaja Satea Shafeea
- Department of Surgery, University of Warith Al-Anbiyaa, College of Medicine, Karbala
| | | | | | | | - Santiago Pastrana-Brandes
- Department of Executive and Continuing Professional Ed, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal
| |
Collapse
|
15
|
Ghemrawi R, Abuamer L, Kremesh S, Hussien G, Ahmed R, Mousa W, Khoder G, Khair M. Revolutionizing Cancer Treatment: Recent Advances in Immunotherapy. Biomedicines 2024; 12:2158. [PMID: 39335671 PMCID: PMC11429153 DOI: 10.3390/biomedicines12092158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer immunotherapy has emerged as a transformative approach in oncology, utilizing the body's immune system to specifically target and destroy malignant cells. This review explores the scope and impact of various immunotherapeutic strategies, including monoclonal antibodies, chimeric antigen receptor (CAR)-T cell therapy, checkpoint inhibitors, cytokine therapy, and therapeutic vaccines. Monoclonal antibodies, such as Rituximab and Trastuzumab, have revolutionized treatment paradigms for lymphoma and breast cancer by offering targeted interventions that reduce off-target effects. CAR-T cell therapy presents a potentially curative option for refractory hematologic malignancies, although challenges remain in effectively treating solid tumors. Checkpoint inhibitors have redefined the management of cancers like melanoma and lung cancer; however, managing immune-related adverse events and ensuring durable responses are critical areas of focus. Cytokine therapy continues to play a vital role in modulating the immune response, with advancements in cytokine engineering improving specificity and reducing systemic toxicity. Therapeutic vaccines, particularly mRNA-based vaccines, represent a frontier in personalized cancer treatment, aiming to generate robust, long-lasting immune responses against tumor-specific antigens. Despite these advancements, the field faces significant challenges, including immune resistance, tumor heterogeneity, and the immunosuppressive tumor microenvironment. Future research should address these obstacles through emerging technologies, such as next-generation antibodies, Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-based gene editing, and AI-driven drug discovery. By integrating these novel approaches, cancer immunotherapy holds the promise of offering more durable, less toxic, and highly personalized treatment options, ultimately improving patient outcomes and survival rates.
Collapse
Affiliation(s)
- Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Lama Abuamer
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Ghadeer Hussien
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Rahaf Ahmed
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Walaa Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
16
|
Feng F, Shen J, Qi Q, Zhang Y, Ni S. Empowering brain tumor management: chimeric antigen receptor macrophage therapy. Theranostics 2024; 14:5725-5742. [PMID: 39310093 PMCID: PMC11413779 DOI: 10.7150/thno.98290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Brain tumors pose formidable challenges in oncology due to the intricate biology and the scarcity of effective treatment modalities. The emergence of immunotherapy has opened new avenues for innovative therapeutic strategies. Chimeric antigen receptor, originally investigated in T cell-based therapy, has now expanded to encompass macrophages, presenting a compelling avenue for augmenting anti-tumor immune surveillance. This emerging frontier holds promise for advancing the repertoire of therapeutic options against brain tumors, offering potential breakthroughs in combating the formidable malignancies of the central nervous system. Tumor-associated macrophages constitute a substantial portion, ranging from 30% to 50%, of the tumor tissue and exhibit tumor-promoting phenotypes within the immune-compromised microenvironment. Constructing CAR-macrophages can effectively repolarize M2-type macrophages towards an M1-type phenotype, thereby eliciting potent anti-tumor effects. CAR-macrophages can recruit T cells to the brain tumor site, thereby orchestrating a remodeling of the immune niche to effectively inhibit tumor growth. In this review, we explore the potential limitations as well as strategies for optimizing CAR-M therapy, offering insights into the future direction of this innovative therapeutic approach.
Collapse
Affiliation(s)
| | | | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| |
Collapse
|
17
|
Goldman MJ, Baskin AM, Sharpe MA, Baskin DS. Advances in gene therapy for high-grade glioma: a review of the clinical evidence. Expert Rev Neurother 2024; 24:879-895. [PMID: 39090786 DOI: 10.1080/14737175.2024.2376847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION High-grade glioma (HGG) is one of the most deadly and difficult cancers to treat. Despite intense research efforts, there has not been a significant breakthrough in treatment outcomes since the early 2000's. Anti-glioma gene therapy has demonstrated promise in preclinical studies and is under investigation in numerous clinical trials. AREAS COVERED This manuscript reviews the current landscape of clinical trials exploring gene therapy treatment of HGG. Using information from clinicaltrials.gov, all trials initiated within the past 5 years (2018-2023) as well as other important trials were cataloged and reviewed. This review discusses trial details, innovative methodologies, and concurrent pharmacological interventions. The review also delves into the subtypes of gene therapy used, trends over time, and future directions. EXPERT OPINION Trials are in the early stages (phase I or II), and there are reports of clinical efficacy in published results. Synergistic effects utilizing immunotherapy within or alongside gene therapy are emerging as a promising avenue for future breakthroughs. Considerable heterogeneity exists across trials concerning administration route, vector selection, drug combinations, and intervention timing. Earlier intervention in newly diagnosed HGG and avoidance of corticosteroids may improve efficacy in future trials. The results from ongoing trials demonstrate promising potential for molding the future landscape of HGG care.
Collapse
Affiliation(s)
- Matthew J Goldman
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Alexandra M Baskin
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Academic Institute, Houston, TX, USA
| | - Martyn A Sharpe
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Academic Institute, Houston, TX, USA
| | - David S Baskin
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Academic Institute, Houston, TX, USA
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Texas A & M Medical School
| |
Collapse
|
18
|
Steineck A, Silbert SK, Palm K, Nepper J, Vaughn D, Shipman K, Shalabi H, Wiener L, Comiskey L, Knight JM, Levine D. Weathering the storm when the end of the road is near: A qualitative analysis of supportive care needs during CAR T-cell therapy in pediatrics. Pediatr Blood Cancer 2024; 71:e31092. [PMID: 38867358 PMCID: PMC11269012 DOI: 10.1002/pbc.31092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy provides promising outcomes in relapsed/refractory B acute lymphoblastic leukemia (ALL), yet still carries high toxicity rates and relatively poor long-term survival. Efficacy has yet to be demonstrated in other diagnoses while toxicity and risk profiles remain formidable. To date, treatment-related symptom burden is gleaned from clinical trial toxicity reports; the patient perspective remains understudied. METHODS English- or Spanish-speaking patients (ages 8-25 years) undergoing CAR T-cell therapy for any malignancy and their primary caregivers were recruited from Seattle Children's Hospital (SCH), St. Jude Children's Research Hospital (SJCRH), and the Pediatric Oncology Branch of the National Cancer Institute (NCI). Both patient and caregiver completed semi-structured dyadic interviews 3 months post treatment. We used directed content analysis for codebook development and thematic network analysis for inductive qualitative analysis. RESULTS Twenty families completed interviews (13 patients, 15 parents). Patients were a median age 16.5 years, predominantly female (65%), White (75%), and diagnosed with ALL (75%). Global themes included "A clear decision," "Coping with symptoms," and "Unforeseen psychosocial challenges." When families were asked to describe the "most challenging part of treatment," most described "the unknown." Most reported "the symptoms really weren't that bad," even among patients hospitalized for severe toxicity events. Fatigue, pain, and nausea were the most prevalent symptoms. Importantly, only one family would have chosen a different therapy, if given another opportunity. CONCLUSIONS Although physical symptoms were largely tolerable, recognizing supportive care opportunities remains imperative, particularly psychosocial concerns.
Collapse
Affiliation(s)
- Angela Steineck
- MACC Fund Center for Cancer and Blood Disorders, Department of Pediatrics, Medical College of Wisconsin; Milwaukee, WI, USA
| | - Sara K. Silbert
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Kallie Palm
- MACC Fund Center for Cancer and Blood Disorders, Department of Pediatrics, Medical College of Wisconsin; Milwaukee, WI, USA
| | - Jordyn Nepper
- Medical School, Medical College of Wisconsin; Milwaukee, WI, USA
| | - Dagny Vaughn
- College of Medicine, Health Sciences Center, University of Tennessee, Memphis, TN, USA
| | - Kelly Shipman
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Haneen Shalabi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Lori Wiener
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Liam Comiskey
- Departments of Psychiatry, Medicine, and Microbiology & Immunology; Medical College of Wisconsin; Milwaukee, WI, USA
| | - Jennifer M. Knight
- Department of Psychosocial Oncology & Palliative Care; Dana-Farber Cancer Institute; Boston, MA, USA
| | - Deena Levine
- St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
19
|
Rath S, Shafeea MS, Abdul Hussein AF, Shamil Hashim A, Hassanaien S, Pastrana-Brandes S, Chaurasia B. CAR-T-cell therapy in meningioma: current investigations, advancements and insight into future directions. Ann Med Surg (Lond) 2024; 86:5957-5965. [DOI: https:/doi.org/10.1097/ms9.0000000000002491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/11/2024] [Indexed: 04/10/2025] Open
Abstract
Meningiomas, the most common tumors of the central nervous system (CNS), present significant challenges in treatment, particularly for atypical and anaplastic subtypes where standard therapies often fall short of therapeutic expectations. Chimeric antigen receptor (CAR) T-cell therapy, a groundbreaking immunotherapy approach, has demonstrated great success in hematological malignancies but faces obstacles in solid tumors, including CNS tumors like glioblastomas. This article provides a comprehensive review of the efficacy of CAR-T therapy in meningiomas, highlighting the tumor’s immunogenic potential and the challenges associated with applying this therapy in clinical practice. Through an extensive literature review, the study explores potential antigens for CAR-T targeting in meningiomas, shedding light on the tumor-immune microenvironment interactions. Challenges such as tumor heterogeneity, blood-brain barrier penetration, off-target effects, and tumor recurrence are discussed, alongside potential strategies to overcome these obstacles. The study also investigates recent advancements in CAR-T therapy, including the identification of novel target antigens and the development of engineering approaches to enhance therapeutic efficacy. Furthermore, the article highlights the importance of ongoing research efforts in exploring the tumor-immune dynamics in meningiomas and underscores the urgent need for clinical trials to validate the safety and efficacy of CAR-T therapy in this context. By addressing these challenges, CAR-T therapy holds the promise of revolutionizing meningioma treatment, offering new hope for patients suffering from this disease.
Collapse
Affiliation(s)
- Shree Rath
- All India Institute of Medical Sciences, Bhubaneswar, India
| | - Murtaja Satea Shafeea
- Department of Surgery, University of Warith Al-Anbiyaa, College of Medicine, Karbala
| | | | | | | | - Santiago Pastrana-Brandes
- Department of Executive and Continuing Professional Ed, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal
| |
Collapse
|
20
|
von Roemeling CA, Patel JA, Carpenter SL, Yegorov O, Yang C, Bhatia A, Doonan BP, Russell R, Trivedi VS, Klippel K, Ryu DH, Grippin A, Futch HS, Ran Y, Hoang-Minh LB, Weidert FL, Golde TE, Mitchell DA. Adeno-associated virus delivered CXCL9 sensitizes glioblastoma to anti-PD-1 immune checkpoint blockade. Nat Commun 2024; 15:5871. [PMID: 38997283 PMCID: PMC11245621 DOI: 10.1038/s41467-024-49989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
There are numerous mechanisms by which glioblastoma cells evade immunological detection, underscoring the need for strategic combinatorial treatments to achieve appreciable therapeutic effects. However, developing combination therapies is difficult due to dose-limiting toxicities, blood-brain-barrier, and suppressive tumor microenvironment. Glioblastoma is notoriously devoid of lymphocytes driven in part by a paucity of lymphocyte trafficking factors necessary to prompt their recruitment and activation. Herein, we develop a recombinant adeno-associated virus (AAV) gene therapy that enables focal and stable reconstitution of the tumor microenvironment with C-X-C motif ligand 9 (CXCL9), a powerful call-and-receive chemokine for lymphocytes. By manipulating local chemokine directional guidance, AAV-CXCL9 increases tumor infiltration by cytotoxic lymphocytes, sensitizing glioblastoma to anti-PD-1 immune checkpoint blockade in female preclinical tumor models. These effects are accompanied by immunologic signatures evocative of an inflamed tumor microenvironment. These findings support AAV gene therapy as an adjuvant for reconditioning glioblastoma immunogenicity given its safety profile, tropism, modularity, and off-the-shelf capability.
Collapse
Affiliation(s)
- Christina A von Roemeling
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA.
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA.
| | - Jeet A Patel
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Savannah L Carpenter
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Oleg Yegorov
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Changlin Yang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Alisha Bhatia
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Bently P Doonan
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
- Department of Medicine, Hematology and Oncology, University of Florida, Gainesville, FL, USA
| | - Rylynn Russell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Vrunda S Trivedi
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Kelena Klippel
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Daniel H Ryu
- Goizueta Brain Health Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam Grippin
- Department of Radiation Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Hunter S Futch
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong Ran
- Goizueta Brain Health Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Lan B Hoang-Minh
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Frances L Weidert
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- Goizueta Brain Health Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA.
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Stergiopoulos GM, Concilio SC, Galanis E. An Update on the Clinical Status, Challenges, and Future Directions of Oncolytic Virotherapy for Malignant Gliomas. Curr Treat Options Oncol 2024; 25:952-991. [PMID: 38896326 PMCID: PMC11878440 DOI: 10.1007/s11864-024-01211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/21/2024]
Abstract
OPINION STATEMENT Malignant gliomas are common central nervous system tumors that pose a significant clinical challenge due to the lack of effective treatments. Glioblastoma (GBM), a grade 4 malignant glioma, is the most prevalent primary malignant brain tumor and is associated with poor prognosis. Current clinical trials are exploring various strategies to combat GBM, with oncolytic viruses (OVs) appearing particularly promising. In addition to ongoing and recently completed clinical trials, one OV (Teserpaturev, Delytact®) received provisional approval for GBM treatment in Japan. OVs are designed to selectively target and eliminate cancer cells while promoting changes in the tumor microenvironment that can trigger and support long-lasting anti-tumor immunity. OVs offer the potential to remodel the tumor microenvironment and reverse systemic immune exhaustion. Additionally, an increasing number of OVs are armed with immunomodulatory payloads or combined with immunotherapy approaches in an effort to promote anti-tumor responses in a tumor-targeted manner. Recently completed oncolytic virotherapy trials can guide the way for future treatment individualization through patient preselection, enhancing the likelihood of achieving the highest possible clinical success. These trials also offer valuable insight into the numerous challenges inherent in malignant glioma treatment, some of which OVs can help overcome.
Collapse
Affiliation(s)
| | | | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
Feldman L. Hypoxia within the glioblastoma tumor microenvironment: a master saboteur of novel treatments. Front Immunol 2024; 15:1384249. [PMID: 38994360 PMCID: PMC11238147 DOI: 10.3389/fimmu.2024.1384249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Glioblastoma (GBM) tumors are the most aggressive primary brain tumors in adults that, despite maximum treatment, carry a dismal prognosis. GBM tumors exhibit tissue hypoxia, which promotes tumor aggressiveness and maintenance of glioma stem cells and creates an overall immunosuppressive landscape. This article reviews how hypoxic conditions overlap with inflammatory responses, favoring the proliferation of immunosuppressive cells and inhibiting cytotoxic T cell development. Immunotherapies, including vaccines, immune checkpoint inhibitors, and CAR-T cell therapy, represent promising avenues for GBM treatment. However, challenges such as tumor heterogeneity, immunosuppressive TME, and BBB restrictiveness hinder their effectiveness. Strategies to address these challenges, including combination therapies and targeting hypoxia, are actively being explored to improve outcomes for GBM patients. Targeting hypoxia in combination with immunotherapy represents a potential strategy to enhance treatment efficacy.
Collapse
Affiliation(s)
- Lisa Feldman
- Division of Neurosurgery, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
23
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
24
|
Ageenko A, Vasileva N, Richter V, Kuligina E. Combination of Oncolytic Virotherapy with Different Antitumor Approaches against Glioblastoma. Int J Mol Sci 2024; 25:2042. [PMID: 38396720 PMCID: PMC10889383 DOI: 10.3390/ijms25042042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma is one of the most malignant and aggressive tumors of the central nervous system. Despite the standard therapy consisting of maximal surgical resection and chemo- and radiotherapy, the median survival of patients with this diagnosis is about 15 months. Oncolytic virus therapy is one of the promising areas for the treatment of malignant neoplasms. In this review, we have focused on emphasizing recent achievements in virotherapy, both as a monotherapy and in combination with other therapeutic schemes to improve survival rate and quality of life among patients with glioblastoma.
Collapse
Affiliation(s)
- Alisa Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Natalia Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Elena Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| |
Collapse
|
25
|
Zhang H, Chen Y, Jiang X, Gu Q, Yao J, Wang X, Wu J. Unveiling the landscape of cytokine research in glioma immunotherapy: a scientometrics analysis. Front Pharmacol 2024; 14:1333124. [PMID: 38259287 PMCID: PMC10800575 DOI: 10.3389/fphar.2023.1333124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Cytokines modulate the glioma tumor microenvironment, influencing occurrence, progression, and treatment response. Strategic cytokine application may improve glioma immunotherapy outcomes. Gliomas remain refractory to standard therapeutic modalities, but immunotherapy shows promise given the integral immunomodulatory roles of cytokines. However, systematic evaluation of cytokine glioma immunotherapy research is absent. Bibliometric mapping of the research landscape, recognition of impactful contributions, and elucidation of evolutive trajectories and hot topics has yet to occur, potentially guiding future efforts. Here, we analyzed the structure, evolution, trends, and hotspots of the cytokine glioma immunotherapy research field, subsequently focusing on avenues for future investigation. Methods: This investigation conducted comprehensive bibliometric analyses on a corpus of 1529 English-language publications, from 1 January 2000, to 4 October 2023, extracted from the Web of Science database. The study employed tools including Microsoft Excel, Origin, VOSviewer, CiteSpace, and the Bibliometrix R package, to systematically assess trends in publication, contributions from various countries, institutions, authors, and journals, as well as to examine literature co-citation and keyword distributions within the domain of cytokines for glioma immunotherapy. The application of these methodologies facilitated a detailed exploration of the hotspots, the underlying knowledge structure, and the developments in the field of cytokines for glioma immunotherapy. Results: This bibliometric analysis revealed an exponential growth in annual publications, with the United States, China, and Germany as top contributors. Reviews constituted 17% and research articles 83% of total publications. Analysis of keywords like "interleukin-13," "TGF-beta," and "dendritic cells" indicated progression from foundational cytokine therapies to sophisticated understanding of the tumor microenvironment and immune dynamics. Key research avenues encompassed the tumor microenvironment, epidermal growth factor receptor, clinical trials, and interleukin pathways. This comprehensive quantitative mapping of the glioma immunotherapy cytokine literature provides valuable insights to advance future research and therapeutic development. Conclusion: This study has identified remaining knowledge gaps regarding the role of cytokines in glioma immunotherapy. Future research will likely focus on the tumor microenvironment, cancer vaccines, epidermal growth factor receptor, and interleukin-13 receptor alpha 2. Glioma immunotherapy development will continue through investigations into resistance mechanisms, microglia and macrophage biology, and interactions within the complex tumor microenvironment.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Chen
- Gamma Knife Center, Department of Oncology, Department of Neurological Surgery, Tianjin Huanhu Hospital, Tianjin Medical University, Tianjin, China
| | - Xinzhan Jiang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Qiang Gu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahao Yao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefeng Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianghua Wu
- School of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong, China
| |
Collapse
|
26
|
Liu Y, Peng C, Ahad F, Ali Zaidi SA, Muluh TA, Fu Q. Advanced Strategies of CAR-T Cell Therapy in Solid Tumors and Hematological Malignancies. Recent Pat Anticancer Drug Discov 2024; 19:557-572. [PMID: 38213150 DOI: 10.2174/0115748928277331231218115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024]
Abstract
Chimeric antigen receptor T-cells, known as CAR-T cells, represent a promising breakthrough in the realm of adoptive cell therapy. These T-cells are genetically engineered to carry chimeric antigen receptors that specifically target tumors. They have achieved notable success in the treatment of blood-related cancers, breathing new life into this field of medical research. However, numerous obstacles limit chimeric antigen receptors T-cell therapy's efficacy, such as it cannot survive in the body long. It is prone to fatigue and exhaustion, leading to difficult tumor elimination and repeated recurrence, affecting solid tumors and hematological malignancies. The challenges posed by solid tumors, especially in the context of the complex solid-tumor microenvironment, require specific strategies. This review outlines recent advancements in improving chimeric antigen receptors T-cell therapy by focusing on the chimeric antigen receptors protein, modifying T-cells, and optimizing the interaction between T-cells and other components within the tumor microenvironment. This article aims to provide an extensive summary of the latest discoveries regarding CAR-T cell therapy, encompassing its application across various types of human cancers. Moreover, it will delve into the obstacles that have emerged in recent times, offering insights into the challenges faced by this innovative approach. Finally, it highlights novel therapeutic options in treating hematological and solid malignancies with chimeric antigen receptors T-cell therapies.
Collapse
Affiliation(s)
- Yangjie Liu
- Department of Pharmacy, Luzhou People's Hospital, Luzhou 646000, Sichuan, PRC China
| | - Cao Peng
- Department of Pharmacy, Luzhou People's Hospital, Luzhou 646000, Sichuan PRC China
| | - Faiza Ahad
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Syed Aqib Ali Zaidi
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Qiuxia Fu
- Department of Pharmacy, Luzhou People's Hospital, Luzhou 646000, Sichuan PRC China
| |
Collapse
|
27
|
Pawlowski KD, Duffy JT, Gottschalk S, Balyasnikova IV. Cytokine Modification of Adoptive Chimeric Antigen Receptor Immunotherapy for Glioblastoma. Cancers (Basel) 2023; 15:5852. [PMID: 38136398 PMCID: PMC10741789 DOI: 10.3390/cancers15245852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Chimeric antigen receptor (CAR) cell-based therapies have demonstrated limited success in solid tumors, including glioblastoma (GBM). GBMs exhibit high heterogeneity and create an immunosuppressive tumor microenvironment (TME). In addition, other challenges exist for CAR therapy, including trafficking and infiltration into the tumor site, proliferation, persistence of CARs once in the tumor, and reduced functionality, such as suboptimal cytokine production. Cytokine modification is of interest, as one can enhance therapy efficacy and minimize off-target toxicity by directly combining CAR therapy with cytokines, antibodies, or oncolytic viruses that alter cytokine response pathways. Alternatively, one can genetically modify CAR T-cells or CAR NK-cells to secrete cytokines or express cytokines or cytokine receptors. Finally, CARs can be genetically altered to augment or suppress intracellular cytokine signaling pathways for a more direct approach. Codelivery of cytokines with CARs is the most straightforward method, but it has associated toxicity. Alternatively, combining CAR therapy with antibodies (e.g., anti-IL-6, anti-PD1, and anti-VEGF) or oncolytic viruses has enhanced CAR cell infiltration into GBM tumors and provided proinflammatory signals to the TME. CAR T- or NK-cells secreting cytokines (e.g., IL-12, IL-15, and IL-18) have shown improved efficacy within multiple GBM subtypes. Likewise, expressing cytokine-modulating receptors in CAR cells that promote or inhibit cytokine signaling has enhanced their activity. Finally, gene editing approaches are actively being pursued to directly influence immune signaling pathways in CAR cells. In this review, we summarize these cytokine modification methods and highlight any existing gaps in the hope of catalyzing an improved generation of CAR-based therapies for glioblastoma.
Collapse
Affiliation(s)
- Kristen D. Pawlowski
- Department of Neurological Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Joseph T. Duffy
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60208, USA;
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Irina V. Balyasnikova
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60208, USA;
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| |
Collapse
|
28
|
Hu D, Tian Y, Xu J, Xie D, Wang Y, Liu M, Wang Y, Yang L. Oncolytic viral therapy as promising immunotherapy against glioma. MEDCOMM – FUTURE MEDICINE 2023; 2. [DOI: 10.1002/mef2.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 03/19/2025]
Abstract
AbstractGlioma is a common primary central nervous system malignant tumor in clinical, traditional methods such as surgery and chemoradiotherapy are not effective in treatment. Therefore, more effective treatments need to be found. Oncolytic viruses (OVs) are a new type of immunotherapy that selectively infects and kills tumor cells instead of normal cells. OVs can mediate antitumor immune responses through a variety of mechanisms, and have the ability to activate antitumor immune responses, transform the tumor microenvironment from “cold” to “hot,” and enhance the efficacy of immune checkpoint inhibitors. Recently, a large number of preclinical and clinical studies have shown that OVs show great prospects in the treatment of gliomas. In this review, we summarize the current status of glioma therapies with a focus on OVs. First, this article introduces the current status of treatment of glioma and their respective shortcomings. Then, the important progress of OVs of in clinical trials of glioma is summarized. Finally, the urgent challenges of oncolytic virus treatment for glioma are sorted out, and related solutions are proposed. This review will help to further promote the use of OVs in the treatment of glioma.
Collapse
Affiliation(s)
- Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yaomei Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- College of Bioengineering Sichuan University of Science & Engineering Zigong China
| | - Jie Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Daoyuan Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yuanda Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| |
Collapse
|
29
|
von Roemeling C, Yegorov O, Yang C, Klippel K, Russell R, Trivedi V, Bhatia A, Doonan B, Carpenter S, Ryu D, Grippen A, Futch H, Ran Y, Hoang-Minh L, Weidert F, Golde T, Mitchell D. CXCL9 recombinant adeno-associated virus (AAV) virotherapy sensitizes glioblastoma (GBM) to anti-PD-1 immune checkpoint blockade. RESEARCH SQUARE 2023:rs.3.rs-3463730. [PMID: 38014191 PMCID: PMC10680939 DOI: 10.21203/rs.3.rs-3463730/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The promise of immunotherapy to induce long-term durable responses in conventionally treatment resistant tumors like glioblastoma (GBM) has given hope for patients with a dismal prognosis. Yet, few patients have demonstrated a significant survival benefit despite multiple clinical trials designed to invigorate immune recognition and tumor eradication. Insights gathered over the last two decades have revealed numerous mechanisms by which glioma cells resist conventional therapy and evade immunological detection, underscoring the need for strategic combinatorial treatments as necessary to achieve appreciable therapeutic effects. However, new combination therapies are inherently difficult to develop as a result of dose-limiting toxicities, the constraints of the blood-brain barrier, and the suppressive nature of the GBM tumor microenvironment (TME). GBM is notoriously devoid of lymphocytes driven in part by a paucity of lymphocyte trafficking factors necessary to prompt their recruitment, infiltration, and activation. We have developed a novel recombinant adeno-associated virus (AAV) gene therapy strategy that enables focal and stable reconstitution of the GBM TME with C-X-C motif ligand 9 (CXCL9), a powerful call-and-receive chemokine for cytotoxic T lymphocytes (CTLs). By precisely manipulating local chemokine directional guidance, AAV-CXCL9 increases tumor infiltration by CD8-postive cytotoxic lymphocytes, sensitizing GBM to anti-PD-1 immune checkpoint blockade (ICB). These effects are accompanied by immunologic signatures evocative of an inflamed and responsive TME. These findings support targeted AAV gene therapy as a promising adjuvant strategy for reconditioning GBM immunogenicity given its excellent safety profile, TME-tropism, modularity, and off-the-shelf capability, where focal delivery bypasses the constrains of the blood-brain barrier, further mitigating risks observed with high-dose systemic therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Frances Weidert
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida
| | | | | |
Collapse
|
30
|
Sharma S, Chepurna O, Sun T. Drug resistance in glioblastoma: from chemo- to immunotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:688-708. [PMID: 38239396 PMCID: PMC10792484 DOI: 10.20517/cdr.2023.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 01/22/2024]
Abstract
As the most common and aggressive type of primary brain tumor in adults, glioblastoma is estimated to end over 10,000 lives each year in the United States alone. Stand treatment for glioblastoma, including surgery followed by radiotherapy and chemotherapy (i.e., Temozolomide), has been largely unchanged since early 2000. Cancer immunotherapy has significantly shifted the paradigm of cancer management in the past decade with various degrees of success in treating many hematopoietic cancers and some solid tumors, such as melanoma and non-small cell lung cancer (NSCLC). However, little progress has been made in the field of neuro-oncology, especially in the application of immunotherapy to glioblastoma treatment. In this review, we attempted to summarize the common drug resistance mechanisms in glioblastoma from Temozolomide to immunotherapy. Our intent is not to repeat the well-known difficulty in the area of neuro-oncology, such as the blood-brain barrier, but to provide some fresh insights into the molecular mechanisms responsible for resistance by summarizing some of the most recent literature. Through this review, we also hope to share some new ideas for improving the immunotherapy outcome of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
31
|
Dal Bello S, Martinuzzi D, Tereshko Y, Veritti D, Sarao V, Gigli GL, Lanzetta P, Valente M. The Present and Future of Optic Pathway Glioma Therapy. Cells 2023; 12:2380. [PMID: 37830595 PMCID: PMC10572241 DOI: 10.3390/cells12192380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Optic pathway gliomas (OPGs) encompass two distinct categories: benign pediatric gliomas, which are characterized by favorable prognosis, and malignant adult gliomas, which are aggressive cancers associated with a poor outcome. Our review aims to explore the established standards of care for both types of tumors, highlight the emerging therapeutic strategies for OPG treatment, and propose potential alternative therapies that, while originally studied in a broader glioma context, may hold promise for OPGs pending further investigation. These potential therapies encompass immunotherapy approaches, molecular-targeted therapy, modulation of the tumor microenvironment, nanotechnologies, magnetic hyperthermia therapy, cyberKnife, cannabinoids, and the ketogenic diet. Restoring visual function is a significant challenge in cases where optic nerve damage has occurred due to the tumor or its therapeutic interventions. Numerous approaches, particularly those involving stem cells, are currently being investigated as potential facilitators of visual recovery in these patients.
Collapse
Affiliation(s)
- Simone Dal Bello
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| | - Deborah Martinuzzi
- Department of Medicine—Ophthalmology, University of Udine, 33100 Udine, Italy
| | - Yan Tereshko
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| | - Daniele Veritti
- Department of Medicine—Ophthalmology, University of Udine, 33100 Udine, Italy
| | - Valentina Sarao
- Department of Medicine—Ophthalmology, University of Udine, 33100 Udine, Italy
| | - Gian Luigi Gigli
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Paolo Lanzetta
- Department of Medicine—Ophthalmology, University of Udine, 33100 Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| |
Collapse
|
32
|
Wang Y, Ji N, Zhang Y, Chu J, Pan C, Zhang P, Ma W, Zhang X, Xi JJ, Chen M, Zhang Y, Zhang L, Sun T. B7H3-targeting chimeric antigen receptor modification enhances antitumor effect of Vγ9Vδ2 T cells in glioblastoma. J Transl Med 2023; 21:672. [PMID: 37770968 PMCID: PMC10537973 DOI: 10.1186/s12967-023-04514-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive primary brain tumor with a poor prognosis. This study investigates the therapeutic potential of human Vγ9Vδ2 T cells in GBM treatment. The sensitivity of different glioma specimens to Vγ9Vδ2 T cell-mediated cytotoxicity is assessed using a patient-derived tumor cell clusters (PTCs) model. METHODS The study evaluates the anti-tumor effect of Vγ9Vδ2 T cells in 26 glioma cases through the PTCs model. Protein expression of BTN2A1 and BTN3A1, along with gene expression related to lipid metabolism and glioma inflammatory response pathways, is analyzed in matched tumor tissue samples. Additionally, the study explores two strategies to re-sensitize tumors in the weak anti-tumor effect (WAT) group: utilizing a BTN3A1 agonistic antibody or employing bisphosphonates to inhibit farnesyl diphosphate synthase (FPPS). Furthermore, the study investigates the efficacy of genetically engineered Vγ9Vδ2 T cells expressing Car-B7H3 in targeting diverse GBM specimens. RESULTS The results demonstrate that Vγ9Vδ2 T cells display a stronger anti-tumor effect (SAT) in six glioma cases, while showing a weaker effect (WAT) in twenty cases. The SAT group exhibits elevated protein expression of BTN2A1 and BTN3A1, accompanied by differential gene expression related to lipid metabolism and glioma inflammatory response pathways. Importantly, the study reveals that the WAT group GBM can enhance Vγ9Vδ2 T cell-mediated killing sensitivity by incorporating either a BTN3A1 agonistic antibody or bisphosphonates. Both approaches support TCR-BTN mediated tumor recognition, which is distinct from the conventional MHC-peptide recognition by αβ T cells. Furthermore, the study explores an alternative strategy by genetically engineering Vγ9Vδ2 T cells with Car-B7H3, and both non-engineered and Car-B7H3 Vγ9Vδ2 T cells demonstrate promising efficacy in vivo, underscoring the versatile potential of Vγ9Vδ2 T cells for GBM treatment. CONCLUSIONS Vγ9Vδ2 T cells demonstrate a robust anti-tumor effect in some glioma cases, while weaker in others. Elevated BTN2A1 and BTN3A1 expression correlates with improved response. WAT group tumors can be sensitized using a BTN3A1 agonistic antibody or bisphosphonates. Genetically engineered Vγ9Vδ2 T cells, i.e., Car-B7H3, show promising efficacy. These results together highlight the versatility of Vγ9Vδ2 T cells for GBM treatment.
Collapse
Affiliation(s)
- Yi Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Nan Ji
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Junsheng Chu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Weiwei Ma
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, First Affiliated Hospital, Jiangsu Provincial Key Laboratory of Stem Cell and Biomedical Materials, Soochow University, Soochow University, Suzhou, 215000, China
| | - Jianzhong Jeff Xi
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Mingze Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yonghui Zhang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Liwei Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| | - Tao Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
33
|
Linares CA, Varghese A, Ghose A, Shinde SD, Adeleke S, Sanchez E, Sheriff M, Chargari C, Rassy E, Boussios S. Hallmarks of the Tumour Microenvironment of Gliomas and Its Interaction with Emerging Immunotherapy Modalities. Int J Mol Sci 2023; 24:13215. [PMID: 37686020 PMCID: PMC10487469 DOI: 10.3390/ijms241713215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Gliomas are aggressive, primary central nervous system tumours arising from glial cells. Glioblastomas are the most malignant. They are known for their poor prognosis or median overall survival. The current standard of care is overwhelmed by the heterogeneous, immunosuppressive tumour microenvironment promoting immune evasion and tumour proliferation. The advent of immunotherapy with its various modalities-immune checkpoint inhibitors, cancer vaccines, oncolytic viruses and chimeric antigen receptor T cells and NK cells-has shown promise. Clinical trials incorporating combination immunotherapies have overcome the microenvironment resistance and yielded promising survival and prognostic benefits. Rolling these new therapies out in the real-world scenario in a low-cost, high-throughput manner is the unmet need of the hour. These will have practice-changing implications to the glioma treatment landscape. Here, we review the immunobiological hallmarks of the TME of gliomas, how the TME evades immunotherapies and the work that is being conducted to overcome this interplay.
Collapse
Affiliation(s)
- Christian A. Linares
- Guy’s Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (C.A.L.); (S.A.)
| | - Anjana Varghese
- Kent Oncology Centre, Maidstone and Tunbridge Wells NHS Trust, Hermitage Lane, Maidstone, Kent ME16 9QQ, UK;
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
- Barts Cancer Centre, Barts Health NHS Trust, London EC1A 7BE, UK
- Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, Northwood HA6 2RN, UK
- Immuno-Oncology Clinical Network, UK
| | - Sayali D. Shinde
- Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Sola Adeleke
- Guy’s Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (C.A.L.); (S.A.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
| | - Matin Sheriff
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
| | - Cyrus Chargari
- Department of Radiation Oncology, Pitié-Salpêtrière University Hospital, 75013 Paris, France;
| | - Elie Rassy
- Department of Medical Oncology, Institut Gustave Roussy, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent and Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
34
|
Qi Y, Xiong W, Chen Q, Ye Z, Jiang C, He Y, Ye Q. New trends in brain tumor immunity with the opportunities of lymph nodes targeted drug delivery. J Nanobiotechnology 2023; 21:254. [PMID: 37542241 PMCID: PMC10401854 DOI: 10.1186/s12951-023-02011-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023] Open
Abstract
Lymph nodes targeted drug delivery is an attractive approach to improve cancer immunotherapy outcomes. Currently, the depth of understanding of afferent and efferent arms in brain immunity reveals the potential clinical applications of lymph node targeted drug delivery in brain tumors, e.g., glioblastoma. In this work, we systematically reviewed the microenvironment of glioblastoma and its structure as a basis for potential immunotherapy, including the glial-lymphatic pathway for substance exchange, the lymphatic drainage pathway from meningeal lymphatic vessels to deep cervical lymph nodes that communicate intra- and extracranial immunity, and the interaction between the blood-brain barrier and effector T cells. Furthermore, the carriers designed for lymph nodes targeted drug delivery were comprehensively summarized. The challenges and opportunities in developing a lymph nodes targeted delivery strategy for glioblastoma using nanotechnology are included at the end.
Collapse
Affiliation(s)
- Yangzhi Qi
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Gaoxin 6th Road, Jiangxia, Wuhan, 430000, Hubei, People's Republic of China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wei Xiong
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Gaoxin 6th Road, Jiangxia, Wuhan, 430000, Hubei, People's Republic of China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhifei Ye
- Clinical Research Center, The Second Linhai Renmin Hospital, Linhai, 317000, Zhejiang, China
| | - Cailei Jiang
- Institute of Translational and Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430040, Hubei, China
| | - Yan He
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Gaoxin 6th Road, Jiangxia, Wuhan, 430000, Hubei, People's Republic of China.
- Institute of Translational and Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430040, Hubei, China.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Gaoxin 6th Road, Jiangxia, Wuhan, 430000, Hubei, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
35
|
Wang S, Wei W, Yuan Y, Sun B, Yang D, Liu N, Zhao X. Chimeric antigen receptor T cells targeting cell surface GRP78 efficiently kill glioblastoma and cancer stem cells. J Transl Med 2023; 21:493. [PMID: 37481592 PMCID: PMC10362566 DOI: 10.1186/s12967-023-04330-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is recognized as among the most aggressive forms of brain tumor. Patients typically present with a five-year survival rate of less than 6% with traditional surgery and chemoradiotherapy, which calls for novel immunotherapies like chimeric antigen receptor T (CAR-T) cells therapy. In response to endoplasmic reticulum (ER) stress in multiple tumor cells including GBM, the glucose-regulated protein 78 (GRP78) expression increases and the protein is partially translocated to the cell surface, while it is restricted to the cytoplasm and the nucleus in normal cells. METHODS In this study, to target the cell surface GRP78 (csGRP78), CAR-T cells based on its binding peptide were generated. In vitro two GBM cell lines and glioma stem cells (GSCs) were used to confirm the localization of csGRP78 and the cytotoxicity of the CAR-T cells. In vivo a GBM xenograft model was used to assess the killing activity and the safety of the CAR-T cells. RESULTS We confirmed the localization of csGRP78 at the cell surface of two GBM cell lines (U-251MG and U-87MG) and in GSCs. Co-culture experiments revealed that the CAR-T cells could specifically kill the GBM tumor cells and GSCs with specific IFN-γ release. Furthermore, in the tumor xenograft model, the CAR-T cells could decrease the number of GSCs and significantly suppress tumor cell growth. Importantly, we found no obvious off-target effects or T cell infiltration in major organs following systemic administration of these cells. CONCLUSIONS The csGRP78 targeted CAR-T cells efficiently kill GBM tumor cells and GSCs both in vitro and in vivo, and ultimately suppress the xenograft tumors growth without obvious tissue injuries. Therefore, our study demonstrates that csGRP78 represents a valuable target and the csGRP78-targeted CAR-T cells strategy is an effective immunotherapy against GBM.
Collapse
Affiliation(s)
- Shijie Wang
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Wei
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuncang Yuan
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Sun
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Yang
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nan Liu
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xudong Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
36
|
Guo B, Zhang S, Xu L, Sun J, Chan WL, Zheng P, Zhang J, Zhang L. Efficacy and safety of innate and adaptive immunotherapy combined with standard of care in high-grade gliomas: a systematic review and meta-analysis. Front Immunol 2023; 14:966696. [PMID: 37483593 PMCID: PMC10357294 DOI: 10.3389/fimmu.2023.966696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 05/26/2023] [Indexed: 07/25/2023] Open
Abstract
Background Malignant glioma is the most common intracranial malignant tumor with the highest mortality. In the era of immunotherapy, it is important to determine what type of immunotherapy provides the best chance of survival. Method Here, the efficacy and safety of immunotherapy in high-grade glioma (HGG) were evaluated by systematic review and meta-analysis. The differences between various types of immunotherapy were explored. Retrieved hits were screened for inclusion in 2,317 articles. We extracted the overall survival (OS) and progression-free survival (PFS) hazard ratios (HRs) as two key outcomes for examining the efficacy of immunotherapy. We also analyzed data on the reported corresponding adverse events to assess the safety of immunotherapy. This study was registered with PROSPERO (CRD42019112356). Results We included a total of 1,271 patients, of which 524 received a combination of immunotherapy and standard of care (SOC), while 747 received SOC alone. We found that immunotherapy extended the OS (HR = 0.74; 95% confidence interval [CI], 0.56-0.99; Z = -2.00, P = 0.0458 < 0.05) and PFS (HR = 0.67; 95% CI, 0.45-0.99; Z = -1.99, P = 0.0466 < 0.05), although certain adverse events occurred (proportion = 0.0773, 95% CI, 0.0589-0.1014). Our data have demonstrated the efficacy of the dendritic cell (DC) vaccine in prolonging the OS (HR = 0.38; 95% CI, 0.21-0.68; Z = -3.23; P = 0.0012 < 0.05) of glioma patients. Oncolytic viral therapy (VT) only extended patient survival in a subgroup analysis (HR = 0.60; 95% CI, 0.45-0.80; Z = -3.53; P = 0.0004 < 0.05). By contrast, immunopotentiation (IP) did not prolong OS (HR = 0.69; 95% CI, 0.50-0.96; Z = -2.23; P = 0.0256). Conclusion Thus, DC vaccination significantly prolonged the OS of HGG patients, however, the efficacy of VT and IP should be explored in further studies. All the therapeutic schemes evaluated were associated with certain side effects. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=112356.
Collapse
Affiliation(s)
- Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shengnan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences of Jilin University, Changchun, Jilin, China
| | - Libo Xu
- Department of Pathophysiology, College of Basic Medical Sciences of Jilin University, Changchun, Jilin, China
| | - Jicheng Sun
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wai-Lun Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Pengfei Zheng
- Department of Pathophysiology, College of Basic Medical Sciences of Jilin University, Changchun, Jilin, China
| | - Jinnan Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ling Zhang
- Department of Pathophysiology, College of Basic Medical Sciences of Jilin University, Changchun, Jilin, China
| |
Collapse
|
37
|
McGovern M, Scanlon M, Stanton A, Lucke-Wold B. An introductory review of post-resection chemotherapeutics for primary brain tumors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:537-544. [PMID: 37455829 PMCID: PMC10344890 DOI: 10.37349/etat.2023.00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/01/2023] [Indexed: 07/18/2023] Open
Abstract
The treatment of central nervous system (CNS) tumors is complicated by high rates of recurrence and treatment resistance that contribute to high morbidity and mortality (Nat Rev Neurol. 2022;18:221-36. doi: 10.1038/s41582-022-00621-0). One of the challenges of treating these tumors is the limited permeability of the blood brain barrier (BBB). Early pharmacologic treatments worked to overcome the BBB by targeting vulnerabilities in the tumor cell replication process directly through alkylating agents like temozolomide. However, as advancements have been made options have expanded to include immunologic targets through the use of monoclonal antibodies. In the future, treatment will likely continue to focus on the use of immunotherapies, as well as emerging technology like the use of low-intensity focused ultrasound (LIFU). Ultimately, this paper serves as an introductory overview of current therapeutic options for post-resection primary brain tumors, as well as a look towards future work and emerging treatment options.
Collapse
Affiliation(s)
- Meaghan McGovern
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Michaela Scanlon
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Amanda Stanton
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
38
|
Xiong Q, Zhu J, Zhang Y, Deng H. CAR-NK cell therapy for glioblastoma: what to do next? Front Oncol 2023; 13:1192128. [PMID: 37404752 PMCID: PMC10315652 DOI: 10.3389/fonc.2023.1192128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
Glioblastoma is a malignant tumor with the highest morbidity and mortality in the central nervous system. Conventional surgical resection combined with radiotherapy or chemotherapy has a high recurrence rate and poor prognosis. The 5-year survival rate of patients is less than 10%. In tumor immunotherapy, CAR-T cell therapy represented by chimeric antigen receptor-modified T cells has achieved great success in hematological tumors. However, the application of CAR-T cells in solid tumors such as glioblastoma still faces many challenges. CAR-NK cells are another potential adoptive cell therapy strategy after CAR-T cells. Compared with CAR-T cell therapy, CAR-NK cells have similar anti-tumor effects. CAR-NK cells can also avoid some deficiencies in CAR-T cell therapy, a research hotspot in tumor immunity. This article summarizes the preclinical research status of CAR-NK cells in glioblastoma and the problems and challenges faced by CAR-NK in glioblastoma.
Collapse
|
39
|
Gatto L, Ricciotti I, Tosoni A, Di Nunno V, Bartolini S, Ranieri L, Franceschi E. CAR-T cells neurotoxicity from consolidated practice in hematological malignancies to fledgling experience in CNS tumors: fill the gap. Front Oncol 2023; 13:1206983. [PMID: 37397356 PMCID: PMC10312075 DOI: 10.3389/fonc.2023.1206983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Chimeric antigen receptor (CAR-T) therapy has marked a paradigm shift in the treatment of hematological malignancies and represent a promising growing field also in solid tumors. Neurotoxicity is a well-recognized common complication of CAR-T therapy and is at the forefront of concerns for CAR-based immunotherapy widespread adoption, as it necessitates a cautious approach. The non-specific targeting of the CAR-T cells against normal tissues (on-target off-tumor toxicities) can be life-threatening; likewise, immune-mediate neurological symptoms related to CAR-T cell induced inflammation in central nervous system (CNS) must be precociously identified and recognized and possibly distinguished from non-specific symptoms deriving from the tumor itself. The mechanisms leading to ICANS (Immune effector Cell-Associated Neurotoxicity Syndrome) remain largely unknown, even if blood-brain barrier (BBB) impairment, increased levels of cytokines, as well as endothelial activation are supposed to be involved in neurotoxicity development. Glucocorticoids, anti-IL-6, anti-IL-1 agents and supportive care are frequently used to manage patients with neurotoxicity, but clear therapeutic indications, supported by high-quality evidence do not yet exist. Since CAR-T cells are under investigation in CNS tumors, including glioblastoma (GBM), understanding of the full neurotoxicity profile in brain tumors and expanding strategies aimed at limiting adverse events become imperative. Education of physicians for assessing individualized risk and providing optimal management of neurotoxicity is crucial to make CAR-T therapies safer and adoptable in clinical practice also in brain tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Ilaria Ricciotti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Vincenzo Di Nunno
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucia Ranieri
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
40
|
Kilgour MK, Bastin DJ, Lee SH, Ardolino M, McComb S, Visram A. Advancements in CAR-NK therapy: lessons to be learned from CAR-T therapy. Front Immunol 2023; 14:1166038. [PMID: 37205115 PMCID: PMC10187144 DOI: 10.3389/fimmu.2023.1166038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Advancements in chimeric antigen receptor engineered T-cell (CAR-T) therapy have revolutionized treatment for several cancer types over the past decade. Despite this success, obstacles including the high price tag, manufacturing complexity, and treatment-associated toxicities have limited the broad application of this therapy. Chimeric antigen receptor engineered natural killer cell (CAR-NK) therapy offers a potential opportunity for a simpler and more affordable "off-the-shelf" treatment, likely with fewer toxicities. Unlike CAR-T, CAR-NK therapies are still in early development, with few clinical trials yet reported. Given the challenges experienced through the development of CAR-T therapies, this review explores what lessons we can apply to build better CAR-NK therapies. In particular, we explore the importance of optimizing the immunochemical properties of the CAR construct, understanding factors leading to cell product persistence, enhancing trafficking of transferred cells to the tumor, ensuring the metabolic fitness of the transferred product, and strategies to avoid tumor escape through antigen loss. We also review trogocytosis, an important emerging challenge that likely equally applies to CAR-T and CAR-NK cells. Finally, we discuss how these limitations are already being addressed in CAR-NK therapies, and what future directions may be possible.
Collapse
Affiliation(s)
- Marisa K. Kilgour
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | | | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Scott McComb
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Canada
| | - Alissa Visram
- Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
41
|
Zhao B, Wu J, Li H, Wang Y, Wang Y, Xing H, Wang Y, Ma W. Recent advances and future challenges of tumor vaccination therapy for recurrent glioblastoma. Cell Commun Signal 2023; 21:74. [PMID: 37046332 PMCID: PMC10091563 DOI: 10.1186/s12964-023-01098-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/07/2023] [Indexed: 04/14/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant CNS tumor with a highest incidence rate, and most patients would undergo a recurrence. Recurrent GBM (rGBM) shows an increasing resistance to chemotherapy and radiotherapy, leading to a significantly poorer prognosis and the urgent need for novel treatments. Immunotherapy, a rapidly developing anti-tumor therapy in recent years, has shown its potential value in rGBM. Recent studies on PD-1 immunotherapy and CAR-T therapy have shown some efficacy, but the outcome was not as expected. Tumor vaccination is the oldest approach of immunotherapies, which has returned to the research focus because of the failure of other strategies and subversive understanding of CNS. The isolation effect of blood brain barrier and the immunosuppressive cell infiltration could lead to resistance existing in all phases of the anti-tumor immune response, where novel tumor vaccines have been designed to overcome these problems through new tumor antigenic targets and regulatory of the systematic immune response. In this review, the immunological characteristics of CNS and GBM would be discussed and summarized, as well as the mechanism of each novel tumor vaccine for rGBM. And through the review of completed early-phase studies and ongoing large-scale phase III clinical trials, evaluation could be conducted for potential immune response, biosecurity and initial clinical outcome, which further draw a panorama of this vital research field and provide some deep thoughts for the prospective tendency of vaccination strategy. Video Abstract.
Collapse
Affiliation(s)
- Binghao Zhao
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiaming Wu
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Huanzhang Li
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuekun Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Yaning Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Hao Xing
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China.
| | - Wenbin Ma
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
42
|
Jovanovich N, Habib A, Hameed NF, Edwards L, Zinn PO. Applications and current challenges of chimeric antigen receptor T cells in treating high-grade gliomas in adult and pediatric populations. Immunotherapy 2023; 15:383-396. [PMID: 36876438 PMCID: PMC11921901 DOI: 10.2217/imt-2022-0200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/02/2023] [Indexed: 03/07/2023] Open
Abstract
High-grade gliomas (HGGs) continue to be some of the most devastating diseases in the USA. Despite extensive efforts, the survival of HGG patients has remained relatively stagnant. Chimeric antigen receptor (CAR) T-cell immunotherapy has recently been studied in the context of improving these tumors' clinical outcomes. HGG murine models treated with CAR T cells targeting tumor antigens have shown reduced tumor burden and longer overall survival than models without treatment. Subsequent clinical trials investigating the efficacy of CAR T cells have further shown that this therapy could be safe and might reduce tumor burden. However, there are still many challenges that need to be addressed to optimize the safety and efficacy of CAR T-cell therapy in treating HGG patients.
Collapse
Affiliation(s)
- Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Nu Farrukh Hameed
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Pascal O Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
43
|
Luksik AS, Yazigi E, Shah P, Jackson CM. CAR T Cell Therapy in Glioblastoma: Overcoming Challenges Related to Antigen Expression. Cancers (Basel) 2023; 15:cancers15051414. [PMID: 36900205 PMCID: PMC10000604 DOI: 10.3390/cancers15051414] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor, yet prognosis remains dismal with current treatment. Immunotherapeutic strategies have had limited effectiveness to date in GBM, but recent advances hold promise. One such immunotherapeutic advance is chimeric antigen receptor (CAR) T cell therapy, where autologous T cells are extracted and engineered to express a specific receptor against a GBM antigen and are then infused back into the patient. There have been numerous preclinical studies showing promising results, and several of these CAR T cell therapies are being tested in clinical trials for GBM and other brain cancers. While results in tumors such as lymphomas and diffuse intrinsic pontine gliomas have been encouraging, early results in GBM have not shown clinical benefit. Potential reasons for this are the limited number of specific antigens in GBM, their heterogenous expression, and their loss after initiating antigen-specific therapy due to immunoediting. Here, we review the current preclinical and clinical experiences with CAR T cell therapy in GBM and potential strategies to develop more effective CAR T cells for this indication.
Collapse
|
44
|
Maalej KM, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C, Cherif H, Uddin S, Steinhoff M, Marincola FM, Dermime S. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer 2023; 22:20. [PMID: 36717905 PMCID: PMC9885707 DOI: 10.1186/s12943-023-01723-z] [Citation(s) in RCA: 275] [Impact Index Per Article: 137.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
In the last decade, Chimeric Antigen Receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach to fight cancers. This approach consists of genetically engineered immune cells expressing a surface receptor, called CAR, that specifically targets antigens expressed on the surface of tumor cells. In hematological malignancies like leukemias, myeloma, and non-Hodgkin B-cell lymphomas, adoptive CAR-T cell therapy has shown efficacy in treating chemotherapy refractory patients. However, the value of this therapy remains inconclusive in the context of solid tumors and is restrained by several obstacles including limited tumor trafficking and infiltration, the presence of an immunosuppressive tumor microenvironment, as well as adverse events associated with such therapy. Recently, CAR-Natural Killer (CAR-NK) and CAR-macrophages (CAR-M) were introduced as a complement/alternative to CAR-T cell therapy for solid tumors. CAR-NK cells could be a favorable substitute for CAR-T cells since they do not require HLA compatibility and have limited toxicity. Additionally, CAR-NK cells might be generated in large scale from several sources which would suggest them as promising off-the-shelf product. CAR-M immunotherapy with its capabilities of phagocytosis, tumor-antigen presentation, and broad tumor infiltration, is currently being investigated. Here, we discuss the emerging role of CAR-T, CAR-NK, and CAR-M cells in solid tumors. We also highlight the advantages and drawbacks of CAR-NK and CAR-M cells compared to CAR-T cells. Finally, we suggest prospective solutions such as potential combination therapies to enhance the efficacy of CAR-cells immunotherapy.
Collapse
Affiliation(s)
- Karama Makni Maalej
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar.
| | - Varghese P Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Majid Alam
- Translational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Cristina Maccalli
- Laboratory of Immune and Biological Therapy, Research Department, Sidra Medicine, Doha, Qatar
| | - Honar Cherif
- Department of Hematology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, USA
| | | | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar.
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
45
|
Rhee JY, Ghannam JY, Choi BD, Gerstner ER. Labeling T Cells to Track Immune Response to Immunotherapy in Glioblastoma. Tomography 2023; 9:274-284. [PMID: 36828374 PMCID: PMC9959194 DOI: 10.3390/tomography9010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
While the advent of immunotherapy has revolutionized cancer treatment, its use in the treatment of glioblastoma (GBM) has been less successful. Most studies using immunotherapy in GBM have been negative and the reasons for this are still being studied. In clinical practice, interpreting response to immunotherapy has been challenging, particularly when trying to differentiate between treatment-related changes (i.e., pseudoprogression) or true tumor progression. T cell tagging is one promising technique to noninvasively monitor treatment efficacy by assessing the migration, expansion, and engagement of T cells and their ability to target tumor cells at the tumor site.
Collapse
Affiliation(s)
- John Y. Rhee
- Department of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Department of Neuro-Oncology, Dana Farber Cancer Institute, Brigham and Women’s Cancer Center, Boston, MA 02215, USA
| | - Jack Y. Ghannam
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Bryan D. Choi
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Elizabeth R. Gerstner
- Department of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| |
Collapse
|
46
|
Mantica M, Drappatz J. Immunotherapy associated central nervous system complications in primary brain tumors. Front Oncol 2023; 13:1124198. [PMID: 36874119 PMCID: PMC9981156 DOI: 10.3389/fonc.2023.1124198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Advances clarifying the genetics and function of the immune system within the central nervous system (CNS) and brain tumor microenvironment have led to increasing momentum and number of clinical trials using immunotherapy for primary brain tumors. While neurological complications of immunotherapy in extra-cranial malignancies is well described, the CNS toxicities of immunotherapy in patients with primary brain tumors with their own unique physiology and challenges are burgeoning. This review highlights the emerging and unique CNS complications associated with immunotherapy including checkpoint inhibitors, oncolytic viruses, adoptive cell transfer/chimeric antigen receptor (CAR) T cell and vaccines for primary brain tumors, as well as reviews modalities that have been currently employed or are undergoing investigation for treatment of such toxicities.
Collapse
Affiliation(s)
- Megan Mantica
- Department of Neurology, University of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Jan Drappatz
- Department of Neurology, University of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| |
Collapse
|
47
|
Abdulmajeed F, Hamandi M, Malaiyandi D, Shutter L. Neurocritical Care in the General Intensive Care Unit. Crit Care Clin 2023; 39:153-169. [DOI: 10.1016/j.ccc.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Paret C, Ustjanzew A, Ersali S, Seidmann L, Jennemann R, Ziegler N, Malki KE, Russo A, Wingerter A, Ortmüller F, Bornas A, Wehling PC, Lepădatu A, Ottenhausen M, Roth W, Sommer C, Fliss B, Frauenknecht KBM, Sandhoff R, Faber J. GD2 Expression in Medulloblastoma and Neuroblastoma for Personalized Immunotherapy: A Matter of Subtype. Cancers (Basel) 2022; 14:cancers14246051. [PMID: 36551537 PMCID: PMC9775636 DOI: 10.3390/cancers14246051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma (NBL) and medulloblastoma (MB) are aggressive pediatric cancers which can benefit from therapies targeting gangliosides. Therefore, we compared the ganglioside profile of 9 MB and 14 NBL samples by thin layer chromatography and mass spectrometry. NBL had the highest expression of GD2 (median 0.54 nmol GD2/mg protein), and also expressed complex gangliosides. GD2-low samples expressed GD1a and were more differentiated. MB mainly expressed GD2 (median 0.032 nmol GD2/mg protein) or GM3. Four sonic hedgehog-activated (SHH) as well as one group 4 and one group 3 MBs were GD2-positive. Two group 3 MB samples were GD2-negative but GM3-positive. N-glycolyl neuraminic acid-containing GM3 was neither detected in NBL nor MB by mass spectrometry. Furthermore, a GD2-phenotype predicting two-gene signature (ST8SIA1 and B4GALNT1) was applied to RNA-Seq datasets, including 86 MBs and validated by qRT-PCR. The signature values were decreased in group 3 and wingless-activated (WNT) compared to SHH and group 4 MBs. These results suggest that while NBL is GD2-positive, only some MB patients can benefit from a GD2-directed therapy. The expression of genes involved in the ganglioside synthesis may allow the identification of GD2-positive MBs. Finally, the ganglioside profile may reflect the differentiation status in NBL and could help to define MB subtypes.
Collapse
Affiliation(s)
- Claudia Paret
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Correspondence:
| | - Arsenij Ustjanzew
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Sara Ersali
- Lipid Pathobiochemistry, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Larissa Seidmann
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Richard Jennemann
- Lipid Pathobiochemistry, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Nicole Ziegler
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Khalifa El Malki
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Arthur Wingerter
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Franziska Ortmüller
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
| | - Angelina Bornas
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Pia Charlotte Wehling
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Adina Lepădatu
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Malte Ottenhausen
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Wilfried Roth
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Clemens Sommer
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Barbara Fliss
- Institute of Forensic Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Katrin B. M. Frauenknecht
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- National Center of Pathology (NCP), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
| | - Roger Sandhoff
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- Lipid Pathobiochemistry, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Jörg Faber
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
49
|
Cryopreserved anti-CD22 and bispecific anti-CD19/22 CAR T cells are as effective as freshly infused cells. Mol Ther Methods Clin Dev 2022; 28:51-61. [PMID: 36620075 PMCID: PMC9798176 DOI: 10.1016/j.omtm.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Cryopreservation of chimeric antigen receptor (CAR) T cells facilitates shipment, timing of infusions, and storage of subsequent doses. However, reports on the impact of cryopreservation on CAR T cell efficacy have been mixed. We retrospectively compared clinical outcomes between patients who received cryopreserved versus fresh CAR T cells for treatment of B cell leukemia across two cohorts of pediatric and young adult patients: those who received anti-CD22 CAR T cells and those who received bispecific anti-CD19/22 CAR T cells. Manufacturing methods were consistent within each trial but differed between the two trials, allowing for exploration of cryopreservation within different manufacturing platforms. Among 40 patients who received anti-CD22 CAR T cells (21 cryopreserved cells and 19 fresh), there were no differences in in vivo expansion, persistence, incidence of toxicities, or disease response between groups with cryopreserved and fresh CAR T cells. Among 19 patients who received anti-CD19/22 CAR T cells (11 cryopreserved and 8 fresh), patients with cryopreserved cells had similar expansion, toxicity incidence, and disease response, with decreased CAR T cell persistence. Overall, our data demonstrate efficacy of cryopreserved CAR T cells as comparable to fresh infusions, supporting cryopreservation, which will be crucial for advancing the field of cell therapy.
Collapse
|
50
|
Aggarwal P, Luo W, Pehlivan KC, Hoang H, Rajappa P, Cripe TP, Cassady KA, Lee DA, Cairo MS. Pediatric versus adult high grade glioma: Immunotherapeutic and genomic considerations. Front Immunol 2022; 13:1038096. [PMID: 36483545 PMCID: PMC9722734 DOI: 10.3389/fimmu.2022.1038096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
High grade gliomas are identified as malignant central nervous tumors that spread rapidly and have a universally poor prognosis. Historically high grade gliomas in the pediatric population have been treated similarly to adult high grade gliomas. For the first time, the most recent classification of central nervous system tumors by World Health Organization has divided adult from pediatric type diffuse high grade gliomas, underscoring the biologic differences between these tumors in different age groups. The objective of our review is to compare high grade gliomas in the adult versus pediatric patient populations, highlighting similarities and differences in epidemiology, etiology, pathogenesis and therapeutic approaches. High grade gliomas in adults versus children have varying clinical presentations, molecular biology background, and response to chemotherapy, as well as unique molecular targets. However, increasing evidence show that they both respond to recently developed immunotherapies. This review summarizes the distinctions and commonalities between the two in disease pathogenesis and response to therapeutic interventions with a focus on immunotherapy.
Collapse
Affiliation(s)
- Payal Aggarwal
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States,Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | | | - Hai Hoang
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Prajwal Rajappa
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kevin A. Cassady
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Dean A. Lee
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States,Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States,Department of Medicine, New York Medical College, Valhalla, NY, United States,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States,*Correspondence: Mitchell S. Cairo,
| |
Collapse
|