1
|
Lupon E, Berkane Y, Cornacchini J, Cetrulo CL, Oubari H, Sicard A, Lellouch AG, Camuzard O. [Vascularized composite allografts in France: An update]. ANN CHIR PLAST ESTH 2025; 70:140-147. [PMID: 39645414 DOI: 10.1016/j.anplas.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/19/2024] [Indexed: 12/09/2024]
Abstract
Vascularized composite allografts (VCA) encompass the face, upper limb, trachea, penis, abdominal wall, and, more recently, uterus transplants. They offer unique reconstructive possibilities to overcome the limitations of traditional reconstructive techniques. Unlike solid organ transplants (heart, liver, kidney, lung, etc.), VCA is not generally performed in a life-threatening situation but aims to improve quality of life, at the cost of a major constraint to its expansion: the need for lifelong immunosuppressive treatment. Nevertheless, VCA is considered one of the five most important innovations of the modern era of the discipline, and a worldwide survey of plastic surgeons has confirmed that significant changes in reconstructive surgery will be related to VCA in the future. France pioneered this type of transplantation by successfully performing the first VCA (unilateral hand transplant), the first double hand transplant, the first face transplant, the first face retransplant, and the first bilateral shoulder and arm transplant, and continues to demonstrate unprecedented surgical prowess. This activity continues to expand across the country, with active VCA programs notably in the upper limb, face, uterus and penis. This article aims to provide an update on the clinical advances made in France in the field of composite tissue allografts.
Collapse
Affiliation(s)
- E Lupon
- Department of Plastic and Reconstructive Surgery, Institut Universitaire Locomoteur et du Sport, Pasteur 2 Hospital, University Côte d'Azur, Nice, France; Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis.
| | - Y Berkane
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis; Department of Plastic, Reconstructive and Aesthetic Surgery, Hospital Sud, University of Rennes 1, Rennes, France
| | - J Cornacchini
- Department of Plastic and Reconstructive Surgery, Institut Universitaire Locomoteur et du Sport, Pasteur 2 Hospital, University Côte d'Azur, Nice, France; Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
| | - C L Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis; Department of Plastic, Reconstructive and Aesthetic Surgery, Cedars Sinai Hospital, Los Angeles, États-Unis
| | - H Oubari
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis; Department of Plastic, Reconstructive and Aesthetic Surgery, Grenobles University Hospital Center, Grenobles, France
| | - A Sicard
- Department of Nephrology, Dialysis and Kidney Transplantation, University Hospital of Nice, Nice, France; Laboratory of Molecular PhysioMedicine (LP2M), UMR 7370, CNRS, University Côte d'Azur, Nice, France
| | - A G Lellouch
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis; Department of Plastic, Reconstructive and Aesthetic Surgery, Cedars Sinai Hospital, Los Angeles, États-Unis
| | - O Camuzard
- Department of Plastic and Reconstructive Surgery, Institut Universitaire Locomoteur et du Sport, Pasteur 2 Hospital, University Côte d'Azur, Nice, France
| |
Collapse
|
2
|
Berkane Y, Oubari H, Lupon E, Goutard M, Tawa P, Randolph MA, Cetrulo CL, Bertheuil N, Lellouch AG, Uygun K. [Advances and perspectives in vascularized composite allotransplantation preservation]. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2024; 208:1299-1308. [PMID: 39906406 PMCID: PMC11790288 DOI: 10.1016/j.banm.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Vascularized composite allotransplantation (VCA) involves transplants of the face, upper limb, trachea, penis, abdominal wall and, more recently, uterus. These grafts are unique in that they comprise numerous specialized tissues derived from several embryonic layers, each with its own specific constraints. Whereas the skin component, as an immunological barrier, is a real challenge in terms of immune tolerance, the muscle is highly sensitive to ischemia, and ischemia-reperfusion injuries can lead to antigen release and eventually rejection episodes. While the gold standard for the preservation of these grafts remains static cold storage (4 °C), the emergence of dynamic perfusion techniques in solid organ transplantation suggests their adaptation to VCAs. In this review, we outline the challenges imposed by composite tissue allotransplantation, and discuss the latest advances in VCA preservation based on machine perfusion but also on static techniques at negative temperatures. Particular attention is paid to subnormothermic perfusion preservation and supercooling techniques, developed by our team in an attempt to import these optimized techniques from solid organ preservation.
Collapse
Affiliation(s)
- Yanis Berkane
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
- Service de chirurgie plastique, reconstructrice et esthétique, CHU de Rennes, université de Rennes, Rennes, France
- Suivi immunologique des thérapeutiques innovantes, UMR1236, Inserm, EFS, université de Rennes, Rennes, France
| | - Haizam Oubari
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
- Service de chirurgie plastique, reconstructrice et esthétique, CHU de Grenoble, université de Grenoble-Alpes, Grenoble, France
| | - Elise Lupon
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
- Service de chirurgie plastique, reconstructrice et esthétique, hôpital Pasteur 2, université Nice Côte d’Azur, Nice, France
| | - Marion Goutard
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
| | - Pierre Tawa
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
| | - Mark A. Randolph
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
- Plastic Surgery Research Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
| | - Curtis L. Cetrulo
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
- Plastic Surgery Research Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Department of Plastic, Reconstructive and Aesthetic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, États-Unis
| | - Nicolas Bertheuil
- Service de chirurgie plastique, reconstructrice et esthétique, CHU de Rennes, université de Rennes, Rennes, France
- Suivi immunologique des thérapeutiques innovantes, UMR1236, Inserm, EFS, université de Rennes, Rennes, France
| | - Alexandre G. Lellouch
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
- Innovative Therapies in Haemostasis, Inserm UMR-S 1140, université de Paris, Paris, France
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, États-Unis
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, États-Unis
| |
Collapse
|
3
|
Zuo Y. Miniaturization of Porcine Hindlimb Model for Vascularized Composite Tissue Allotransplantation: Anatomic Research and Technical Note. EXP CLIN TRANSPLANT 2024; 22:964-966. [PMID: 39810584 DOI: 10.6002/ect.2024.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Affiliation(s)
- Yanhai Zuo
- >From the Department of Orthopedics, Sijing Hospital of Songjiang District, Shanghai, China
| |
Collapse
|
4
|
Blades CM, Huang CA, Mathes DW. The current state of tolerance induction in vascularized composite allotransplantation. Curr Opin Organ Transplant 2024; 29:368-375. [PMID: 39422587 PMCID: PMC11537808 DOI: 10.1097/mot.0000000000001176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
PURPOSE OF REVIEW Significant advancements have been made in the field of vascularized composite allotransplantation (VCA); however, like solid organ transplantation, bypassing the recipient's immune response remains a significant obstacle to long-term allograft survival. Therefore, strategies to overcome acute and chronic rejection and minimize immunosuppressive therapy are crucial for the future of VCA. This review highlights recent attempts to induce tolerance in VCA and discusses key findings through a clinical lens. RECENT FINDINGS Promising VCA tolerance protocols are being investigated, with five recent studies illustrating various successes. These preclinical approaches demonstrate a correlation between the presence of donor-derived T cells and VCA tolerance, the importance of using clinically available reagents within preclinical protocols, and the ability to induce sustained tolerance through nonmyeloablative methods. Furthermore, environmental factors, such as NB-UVB light are being investigated for their immunomodulation properties and may influence VCA graft rejection. SUMMARY To widen the scope of VCA, minimization of immunosuppression is needed. Overall, tolerance induction protocols should have a low-toxicity level, minimally invasive induction therapies, and utilize short-term immunosuppressive medications. By examining the milestones of recent studies, researchers can gain new technical approaches to immune modulation and make data-driven amendments to tolerance protocols in preparation for clinical translation.
Collapse
Affiliation(s)
- Caitlin M. Blades
- Department of Surgery, University of Colorado Denver / Anschutz Medical Campus, Aurora, CO, USA
| | - Christene A. Huang
- Department of Surgery, University of Colorado Denver / Anschutz Medical Campus, Aurora, CO, USA
| | - David W. Mathes
- Department of Surgery, University of Colorado Denver / Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Filz von Reiterdank I, Taggart MS, McCarthy ME, Dinicu AT, Uygun BE, Coert JH, Mink van der Molen AB, Uygun K. Enhanced VCA Storage: A Pilot Study Demonstrating Supercooling in Orthotopic Rodent Hindlimb Transplantation. Transplant Proc 2024; 56:2039-2045. [PMID: 39490377 PMCID: PMC11625614 DOI: 10.1016/j.transproceed.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024]
Abstract
The field of vascularized composite allograft (VCA) transplantation has seen steady, rapid growth, with new innovations driving the evolution from experimental procedures to more standardized therapies. With this expansion comes challenges with graft allocation, preservation, and postoperative graft rejection. Here, we outline the first example of subzero nonfreezing (SZNF), supercooled storage of a whole rat hindlimb with orthotopic transplantation. Rat hindlimbs were procured, loaded, and supercooled for 48 hours at -4°C (n = 4), after which, they were recovered. The loading and recovery phase were performed using subnormothermic machine perfusion (SNMP) during which viability markers (glucose and oxygen consumption, lactate, and resistance) were tracked. Control limbs underwent static cold storage (SCS). After ex vivo validation, the model was piloted in a transplant model, comparing 48 hours of SZNF (n = 1), 48 hours of SCS (n = 1), and 72 hours of SCS (n = 1), which demonstrated no survival beyond postoperative day 4 in the SCS models, and survival until the end of study (postoperative day [POD] 28) in the SZNF model. This study demonstrates the promise of this model in future studies on long-term VCA preservation.
Collapse
Affiliation(s)
- Irina Filz von Reiterdank
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Shriners Children's Boston, Boston, Massachusetts; Department of Plastic, Reconstructive, and Hand Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - McLean S Taggart
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Shriners Children's Boston, Boston, Massachusetts
| | - Michelle E McCarthy
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Shriners Children's Boston, Boston, Massachusetts; Department of General Surgery, Beth Israel Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Antonia T Dinicu
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Shriners Children's Boston, Boston, Massachusetts
| | - Basak E Uygun
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Shriners Children's Boston, Boston, Massachusetts
| | - J Henk Coert
- Department of Plastic, Reconstructive, and Hand Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aebele B Mink van der Molen
- Department of Plastic, Reconstructive, and Hand Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Korkut Uygun
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Shriners Children's Boston, Boston, Massachusetts.
| |
Collapse
|
6
|
Ozgur OS, Taggart M, Mojoudi M, Pendexter C, Filz von Reiterdank I, Kharga A, Yeh H, Toner M, Longchamp A, Tessier SN, Uygun K. Optimized partial freezing protocol enables 10-day storage of rat livers. Sci Rep 2024; 14:25260. [PMID: 39448774 PMCID: PMC11502795 DOI: 10.1038/s41598-024-76674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Preserving organs at subzero temperatures with halted metabolic activity holds the potential to prolong preservation and expand the donor organ pool for transplant. Our group recently introduced partial freezing, a novel approach in high-subzero storage at -15 °C, enabling 5-day storage of rodent livers through precise control over ice nucleation and unfrozen fraction. However, increased vascular resistance and tissue edema suggested a need for improvements to extend viable preservation. Here, we describe an optimized partial freezing protocol with key optimizations, including an increased concentration of polyethylene glycol (PEG) to enhance membrane stability while minimizing shear stress during cryoprotectant unloading with an acclimation period and a maintained osmotic balance through an increase in bovine serum albumin (BSA). These approaches ensured the viability during preservation and recovery processes, promoting liver function and ensuring optimal preservation. This was evidenced by increased oxygen consumption, decreased vascular resistance, and edema. Ultimately, we show that using the optimized protocol, livers can be stored for 10 days with comparable vascular resistance and lactate levels to 5 days, outperforming the viability of time-matched static cold stored (SCS) livers as the current gold standard. This study represents a significant advancement in expanding organ availability through prolonged preservation, thereby revolutionizing transplant medicine.
Collapse
Affiliation(s)
- Ozge Sila Ozgur
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Mclean Taggart
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Mohammedreza Mojoudi
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Casie Pendexter
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Irina Filz von Reiterdank
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Anil Kharga
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Heidi Yeh
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Alban Longchamp
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA.
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA.
| |
Collapse
|
7
|
Filz von Reiterdank I, Dinicu AT, Rosales I, Cetrulo CL, Coert JH, Mink van der Molen AB, Uygun K. Supercooling preservation of vascularized composite allografts through CPA optimization, thermal tracking, and stepwise loading techniques. Sci Rep 2024; 14:22339. [PMID: 39333375 PMCID: PMC11436631 DOI: 10.1038/s41598-024-73549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Vascularized composite allografts (VCAs) present unique challenges in transplant medicine, owing to their complex structure and vulnerability to ischemic injury. Innovative preservation techniques are crucial for extending the viability of these grafts, from procurement to transplantation. This study addresses these challenges by integrating cryoprotectant agent (CPA) optimization, advanced thermal tracking, and stepwise CPA loading strategies within an ex vivo rodent model. CPA optimization focused on various combinations, identifying those that effectively suppress ice nucleation while mitigating cytotoxicity. Thermal dynamics were monitored using invasive thermocouples and non-invasive FLIR imaging, yielding detailed temperature profiles crucial for managing warm ischemia time and optimizing cooling rates. The efficacy of stepwise CPA loading versus conventional flush protocols demonstrated that stepwise (un)loading significantly improved arterial resistance and weight change outcomes. In summary, this study presents comprehensive advancements in VCA preservation strategies, combining CPA optimization, precise thermal monitoring, and stepwise loading techniques. These findings hold potential implications for refining transplantation protocols and improving graft viability in VCA transplantation.
Collapse
Affiliation(s)
- I Filz von Reiterdank
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
- Shriners Children's Boston, Boston, MA, USA
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - A T Dinicu
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
- Shriners Children's Boston, Boston, MA, USA
| | - I Rosales
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - C L Cetrulo
- Shriners Children's Boston, Boston, MA, USA
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - J H Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A B Mink van der Molen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K Uygun
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA.
- Shriners Children's Boston, Boston, MA, USA.
| |
Collapse
|
8
|
Filz von Reiterdank I, Tawa P, Berkane Y, de Clermont-Tonnerre E, Dinicu AT, Pendexter C, Goutard M, Lellouch AG, Mink van der Molen AB, Coert JH, Cetrulo CL, Uygun K. Sub-zero non-freezing of vascularized composite allografts in a rodent partial hindlimb model. Cryobiology 2024; 116:104950. [PMID: 39134131 PMCID: PMC11404353 DOI: 10.1016/j.cryobiol.2024.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Ischemia is a major limiting factor in Vascularized Composite Allotransplantation (VCA) as irreversible muscular injury can occur after as early as 4-6 h of static cold storage (SCS). Organ preservation technologies have led to the development of storage protocols extending rat liver ex vivo preservation up to 4 days. Development of such a protocol for VCAs has the added challenge of inherent ice nucleating factors of the graft, therefore, this study focused on developing a robust protocol for VCA supercooling. Rodent partial hindlimbs underwent subnormothermic machine perfusion (SNMP) with several loading solutions, followed by a storage solution with cryoprotective agents (CPA) developed for VCAs. Storage occurred in suspended animation for 24h and VCAs were recovered using SNMP with modified Steen. This study shows a robust VCA supercooling preservation protocol in a rodent model. Further optimization is expected to allow for its application in a transplantation model, which would be a breakthrough in the field of VCA preservation.
Collapse
Affiliation(s)
- I Filz von Reiterdank
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA; Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands; Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - P Tawa
- Shriners Children's Boston, Boston, MA, USA; Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Plastic, Reconstructive et Aesthetic Surgery, Hôpital Paris Saint-Joseph, Paris, France
| | - Y Berkane
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA; Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
| | - E de Clermont-Tonnerre
- Shriners Children's Boston, Boston, MA, USA; Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Plastic, Reconstructive et Aesthetic Surgery, Hôpital Paris Saint-Joseph, Paris, France
| | - A T Dinicu
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - C Pendexter
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Goutard
- Shriners Children's Boston, Boston, MA, USA; Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Plastic, Reconstructive et Aesthetic Surgery, Hôpital Paris Saint-Joseph, Paris, France
| | - A G Lellouch
- Shriners Children's Boston, Boston, MA, USA; Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
| | - A B Mink van der Molen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J H Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - C L Cetrulo
- Shriners Children's Boston, Boston, MA, USA; Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - K Uygun
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA.
| |
Collapse
|
9
|
von Reiterdank IF, Dinicu AT, Cetrulo CL, Coert JH, Mink van der Molen AB, Uygun K. Enhancing Vascularized Composite Allograft Supercooling Preservation: A Multifaceted Approach with CPA Optimization, Thermal Tracking, and Stepwise Loading Techniques. RESEARCH SQUARE 2024:rs.3.rs-4431685. [PMID: 38946999 PMCID: PMC11213217 DOI: 10.21203/rs.3.rs-4431685/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Vascularized composite allografts (VCAs) present unique challenges in transplant medicine, owing to their complex structure and vulnerability to ischemic injury. Innovative preservation techniques are crucial for extending the viability of these grafts, from procurement to transplantation. This study addresses these challenges by integrating cryoprotectant agent (CPA) optimization, advanced thermal tracking, and stepwise CPA loading strategies within an ex vivo rodent model. CPA optimization focused on various combinations, identifying those that effectively suppress ice nucleation while mitigating cytotoxicity. Thermal dynamics were monitored using invasive thermocouples and non-invasive FLIR imaging, yielding detailed temperature profiles crucial for managing warm ischemia time and optimizing cooling rates. The efficacy of stepwise CPA loading versus conventional flush protocols demonstrated that stepwise (un)loading significantly improved arterial resistance and weight change outcomes. In summary, this study presents comprehensive advancements in VCA preservation strategies, combining CPA optimization, precise thermal monitoring, and stepwise loading techniques. These findings hold potential implications for refining transplantation protocols and improving graft viability in VCA transplantation.
Collapse
|
10
|
Amin KR, Fildes JE. The contribution of the donor vascularised hand and face allograft in transplant rejection: An immunological perspective. Transpl Immunol 2024; 84:102035. [PMID: 38518826 DOI: 10.1016/j.trim.2024.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Overcoming immunological rejection remains a barrier to the safe adoption of Vascularised Composite Allotransplantation (VCA). To mitigate this risk, clinical protocols have been derived from solid organ transplantation, targeting recipient immunomodulation, yet VCA is unique. Face and hand composite allografts are composed of multiple different tissues, each with their own immunological properties. Experimental work suggests that allografts carry variable numbers and populations of donor leukocytes in an organ specific manner. Ordinarily, these passenger leukocytes are transferred from the donor graft into the recipient circulation after transplantation. Whether alloantigen presentation manifests as acute allograft rejection or transplant tolerance is unknown. This review aims to characterise the immunological properties of the constituent parts of the donor face and hand, the potential fate of donor leukocytes and to consider theoretical graft specific interventions to mitigate early rejection.
Collapse
Affiliation(s)
- Kavit R Amin
- Department of Plastic Surgery, Manchester University NHS Foundation Trust, Manchester, UK; Division of Cell Matrix, Biology and Regenerative Medicine, University of Manchester, Manchester, UK; The Pebble Institute, Manchester, UK.
| | - James E Fildes
- The Pebble Institute, Manchester, UK; The Healthcare Technologies Institute, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Berkane Y, Filz von Reiterdank I, Tawa P, Charlès L, Goutard M, Dinicu AT, Toner M, Bertheuil N, Mink van der Molen AB, Coert JH, Lellouch AG, Randolph MA, Cetrulo CL, Uygun K. VCA supercooling in a swine partial hindlimb model. Sci Rep 2024; 14:12618. [PMID: 38824189 PMCID: PMC11144209 DOI: 10.1038/s41598-024-63041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Vascularized composite allotransplantations are complex procedures with substantial functional impact on patients. Extended preservation of VCAs is of major importance in advancing this field. It would result in improved donor-recipient matching as well as the potential for ex vivo manipulation with gene and cell therapies. Moreover, it would make logistically feasible immune tolerance induction protocols through mixed chimerism. Supercooling techniques have shown promising results in multi-day liver preservation. It consists of reaching sub-zero temperatures while preventing ice formation within the graft by using various cryoprotective agents. By drastically decreasing the cell metabolism and need for oxygen and nutrients, supercooling allows extended preservation and recovery with lower ischemia-reperfusion injuries. This study is the first to demonstrate the supercooling of a large animal model of VCA. Porcine hindlimbs underwent 48 h of preservation at - 5 °C followed by recovery and normothermic machine perfusion assessment, with no issues in ice formation and favorable levels of injury markers. Our findings provide valuable preliminary results, suggesting a promising future for extended VCA preservation.
Collapse
Affiliation(s)
- Yanis Berkane
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
- SITI Laboratory, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Irina Filz von Reiterdank
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Pierre Tawa
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Laura Charlès
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Marion Goutard
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
- SITI Laboratory, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Antonia T Dinicu
- Shriners Children's Boston, Boston, MA, USA
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Mehmet Toner
- Shriners Children's Boston, Boston, MA, USA
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Nicolas Bertheuil
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
- SITI Laboratory, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Aebele B Mink van der Molen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J Henk Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexandre G Lellouch
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, 75006, Paris, France
| | - Mark A Randolph
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Curtis L Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Korkut Uygun
- Shriners Children's Boston, Boston, MA, USA.
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
12
|
Van Dieren L, Tawa P, Coppens M, Naenen L, Dogan O, Quisenaerts T, Lancia HH, Oubari H, Dabi Y, De Fré M, Thiessen Ef F, Cetrulo CL, Lellouch AG. Acute Rejection Rates in Vascularized Composite Allografts: A Systematic Review of Case Reports. J Surg Res 2024; 298:137-148. [PMID: 38603944 DOI: 10.1016/j.jss.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/20/2024] [Accepted: 02/29/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Vascularized Composite Allografts (VCA) are usually performed in a full major histocompatibility complex mismatch setting, with a risk of acute rejection depending on factors such as the type of immunosuppression therapy and the quality of graft preservation. In this systematic review, we present the different immunosuppression protocols used in VCA and point out relationships between acute rejection rates and possible factors that might influence it. METHODS This systematic review was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We systematically searched Medline (PubMed), Embase, and The Cochrane Library between November 2022 and February 2023, using following Mesh Terms: Transplant, Transplantation, Hand, Face, Uterus, Penis, Abdominal Wall, Larynx, and Composite Tissue Allografts. All VCA case reports and reviews describing multiple case reports were included. RESULTS We discovered 211 VCA cases reported. The preferred treatment was a combination of antithymocyte globulins, mycophenolate mofetil (MMF), tacrolimus, and steroids; and a combination of MMF, tacrolimus, and steroids for induction and maintenance treatment, respectively. Burn patients showed a higher acute rejection rate (P = 0.073) and were administered higher MMF doses (P = 0.020). CONCLUSIONS In contrast to previous statements, the field of VCA is not rapidly evolving, as it has encountered challenges in addressing immune-related concerns. This is highlighted by the absence of a standardized immunosuppression regimen. Consequently, more substantial data are required to draw more conclusive results regarding the immunogenicity of VCAs and the potential superiority of one immunosuppressive treatment over another. Future efforts should be made to report the VCA surgeries comprehensively, and muti-institutional long-term prospective follow-up studies should be performed to compare the number of acute rejections with influencing factors.
Collapse
Affiliation(s)
- Loïc Van Dieren
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Faculty of Medicine and Health Sciences, Antwerp, Belgium; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Pierre Tawa
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts; Shriners Hospitals for Children-Boston, Boston, Massachusetts
| | - Marie Coppens
- Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Laura Naenen
- Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Omer Dogan
- Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | | | - Hyshem H Lancia
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Haïzam Oubari
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Yohann Dabi
- Department of Obstetrics, Gynecology and Reproductive Medicine, Sorbonne University, Tenon Hospital (AP-HP), Paris, France
| | - Maxime De Fré
- Department of Plastic, Reconstructive and Aesthetic Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Filip Thiessen Ef
- Department of Plastic, Reconstructive and Aesthetic Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Curtis L Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts; Shriners Hospitals for Children-Boston, Boston, Massachusetts
| | - Alexandre G Lellouch
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts; Shriners Hospitals for Children-Boston, Boston, Massachusetts.
| |
Collapse
|
13
|
Goutard M, Tawa P, Berkane Y, Andrews AR, Pendexter CA, de Vries RJ, Pozzo V, Romano G, Lancia HH, Filz von Reiterdank I, Bertheuil N, Rosales IA, How IDAL, Randolph MA, Lellouch AG, Cetrulo CL, Uygun K. Machine Perfusion Enables 24-h Preservation of Vascularized Composite Allografts in a Swine Model of Allotransplantation. Transpl Int 2024; 37:12338. [PMID: 38813393 PMCID: PMC11133529 DOI: 10.3389/ti.2024.12338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
The current gold standard for preserving vascularized composite allografts (VCA) is 4°C static cold storage (SCS), albeit muscle vulnerability to ischemia can be described as early as after 2 h of SCS. Alternatively, machine perfusion (MP) is growing in the world of organ preservation. Herein, we investigated the outcomes of oxygenated acellular subnormothermic machine perfusion (SNMP) for 24-h VCA preservation before allotransplantation in a swine model. Six partial hindlimbs were procured on adult pigs and preserved ex vivo for 24 h with either SNMP (n = 3) or SCS (n = 3) before heterotopic allotransplantation. Recipient animals received immunosuppression and were followed up for 14 days. Clinical monitoring was carried out twice daily, and graft biopsies and blood samples were regularly collected. Two blinded pathologists assessed skin and muscle samples. Overall survival was higher in the SNMP group. Early euthanasia of 2 animals in the SCS group was linked to significant graft degeneration. Analyses of the grafts showed massive muscle degeneration in the SCS group and a normal aspect in the SNMP group 2 weeks after allotransplantation. Therefore, this 24-h SNMP protocol using a modified Steen solution generated better clinical and histological outcomes in allotransplantation when compared to time-matched SCS.
Collapse
Affiliation(s)
- Marion Goutard
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Pierre Tawa
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Yanis Berkane
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
- Suivi Immunologique des Thérapeutiques Innovantes Laboratory, INSERM U1236, University of Rennes 1, Rennes, France
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Centre Hospitalier Universitaire de Rennes, Université de Rennes 1, Rennes, France
| | - Alec R. Andrews
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Casie A. Pendexter
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Reinier J. de Vries
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Surgery, Amsterdam University Medical Centers—Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Victor Pozzo
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Golda Romano
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Hyshem H. Lancia
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Irina Filz von Reiterdank
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States
- University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nicolas Bertheuil
- Suivi Immunologique des Thérapeutiques Innovantes Laboratory, INSERM U1236, University of Rennes 1, Rennes, France
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Centre Hospitalier Universitaire de Rennes, Université de Rennes 1, Rennes, France
| | - Ivy A. Rosales
- Immunopathology Research Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
| | - Ira Doressa Anne L. How
- Immunopathology Research Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
| | - Mark A. Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Alexandre G. Lellouch
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Curtis L. Cetrulo
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Korkut Uygun
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
14
|
Grosu-Bularda A, Hodea FV, Zamfirescu D, Stoian A, Teodoreanu RN, Lascăr I, Hariga CS. Exploring Costimulatory Blockade-Based Immunologic Strategies in Transplantation: Are They a Promising Immunomodulatory Approach for Organ and Vascularized Composite Allotransplantation? J Pers Med 2024; 14:322. [PMID: 38541064 PMCID: PMC10971463 DOI: 10.3390/jpm14030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 11/12/2024] Open
Abstract
The field of transplantation, including the specialized area of vascularized composite allotransplantation (VCA), has been transformed since the first hand transplant in 1998. The major challenge in VCA comes from the need for life-long immunosuppressive therapy due to its non-vital nature and a high rate of systemic complications. Ongoing research is focused on immunosuppressive therapeutic strategies to avoid toxicity and promote donor-specific tolerance. This includes studying the balance between tolerance and effector mechanisms in immune modulation, particularly the role of costimulatory signals in T lymphocyte activation. Costimulatory signals during T cell activation can have either stimulatory or inhibitory effects. Interfering with T cell activation through costimulation blockade strategies shows potential in avoiding rejection and prolonging the survival of transplanted organs. This review paper aims to summarize current data on the immunologic role of costimulatory blockade in the field of transplantation. It focuses on strategies that can be applied in vascularized composite allotransplantation, offering insights into novel methods for enhancing the success and safety of these procedures.
Collapse
Affiliation(s)
- Andreea Grosu-Bularda
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Florin-Vlad Hodea
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | | | | | - Răzvan Nicolae Teodoreanu
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Ioan Lascăr
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Cristian Sorin Hariga
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
15
|
Sun J(A, Adil A, Biniazan F, Haykal S. Immunogenicity and tolerance induction in vascularized composite allotransplantation. FRONTIERS IN TRANSPLANTATION 2024; 3:1350546. [PMID: 38993748 PMCID: PMC11235364 DOI: 10.3389/frtra.2024.1350546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 07/13/2024]
Abstract
Vascularized composite allotransplantation (VCA) is the transplantation of multiple tissues such as skin, muscle, bone, nerve, and vessels, as a functional unit (i.e., hand or face) to patients suffering from major tissue trauma and functional deficits. Though the surgical feasibility has been optimized, issues regarding graft rejection remains. VCA rejection involves a diverse population of cells but is primarily driven by both donor and recipient lymphocytes, antigen-presenting cells, macrophages, and other immune as well as donor-derived cells. In addition, it is commonly understood that different tissues within VCA, such as the skin, elicits a stronger rejection response. Currently, VCA recipients are required to follow potent and lifelong immunosuppressing regimens to maximize graft survival. This puts patients at risk for malignancies, opportunistic infections, and cancers, thereby posing a need for less perilous methods of inducing graft tolerance. This review will provide an overview of cell populations and mechanisms, specific tissue involved in VCA rejection, as well as an updated scope of current methods of tolerance induction.
Collapse
Affiliation(s)
- Jiahui (Angela) Sun
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aisha Adil
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Felor Biniazan
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
von Reiterdank IF, Tawa P, Berkane Y, de Clermont-Tonnerre E, Dinicu A, Pendexter C, Goutard M, Lellouch AG, van der Molen ABM, Coert JH, Cetrulo CL, Uygun K. Sub-Zero Non-Freezing of Vascularized Composite Allografts Preservation in Rodents. RESEARCH SQUARE 2023:rs.3.rs-3750450. [PMID: 38234765 PMCID: PMC10793490 DOI: 10.21203/rs.3.rs-3750450/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Ischemia is a major limiting factor in Vascularized Composite Allotransplantation (VCA) as irreversible muscular injury can occur after as early as 4-6 hours of static cold storage (SCS). Organ preservation technologies have led to the development of storage protocols extending rat liver ex vivo preservation up to 4 days. Development of such a protocol for VCAs has the added challenge of inherent ice nucleating factors of the graft, therefore this study focused on developing a robust protocol for VCA supercooling. Rodent partial hindlimbs underwent subnormothermic machine perfusion (SNMP) with several loading solutions, followed by cryoprotective agent (CPA) cocktail developed for VCAs. Storage occurred in suspended animation for 24h and VCAs were recovered using SNMP with modified Steen. This study shows a robust VCA supercooling preservation protocol in a rodent model. Further optimization is expected to allow for its application in a transplantation model, which would be a breakthrough in the field of VCA preservation.
Collapse
Affiliation(s)
- Irina Filz von Reiterdank
- Center for Engineering in Medicine and Surgery, Derpartment of Surgery, Massachusetts General Hospital, Harvard Medical School
| | - Pierre Tawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Paris Saint-Joseph
| | - Yanis Berkane
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes
| | | | - Antonia Dinicu
- Center for Engineering in Medicine and Surgery, Derpartment of Surgery, Massachusetts General Hospital, Harvard Medical School
| | - Casie Pendexter
- Center for Engineering in Medicine and Surgery, Derpartment of Surgery, Massachusetts General Hospital, Harvard Medical School
| | - Marion Goutard
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Paris Saint-Joseph
| | - Alexandre G Lellouch
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006
| | - Aebele B Mink van der Molen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht University
| | - J Henk Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht University
| | - Curtis L Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Derpartment of Surgery, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
17
|
Siemionow M, Kulahci Y, Zor F. Novel cell-based strategies for immunomodulation in vascularized composite allotransplantation. Curr Opin Organ Transplant 2023; 28:431-439. [PMID: 37800652 DOI: 10.1097/mot.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW Vascularized composite allotransplantation (VCA) has become a clinical reality in the past two decades. However, its routine clinical applications are limited by the risk of acute rejection, and the side effects of the lifelong immunosuppression. Therefore, there is a need for new protocols to induce tolerance and extend VCA survival. Cell- based therapies have emerged as an attractive strategy for tolerance induction in VCA. This manuscript reviews the current strategies and applications of cell-based therapies for tolerance induction in VCA. RECENT FINDINGS Cellular therapies, including the application of bone marrow cells (BMC), mesenchymal stem cells (MSC), adipose stem cells, regulatory T cells (Treg) cells, dendritic cells and donor recipient chimeric cells (DRCC) show promising potential as a strategy to induce tolerance in VCA. Ongoing basic science research aims to provide insights into the mechanisms of action, homing, functional specialization and standardization of these cellular therapies. Additionally, translational preclinical and clinical studies are underway, showing encouraging outcomes. SUMMARY Cellular therapies hold great potential and are supported by preclinical studies and clinical trials demonstrating safety and efficacy. However, further research is needed to develop novel cell-based immunosuppressive protocol for VCA.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopeadics, University of Illinois at Chicago, Chicago, Illinois
| | - Yalcin Kulahci
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Fatih Zor
- Department of Plastic Surgery, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
18
|
Berkane Y, Hayau J, Filz von Reiterdank I, Kharga A, Charlès L, Mink van der Molen AB, Coert JH, Bertheuil N, Randolph MA, Cetrulo CL, Longchamp A, Lellouch AG, Uygun K. Supercooling: A Promising Technique for Prolonged Organ Preservation in Solid Organ Transplantation, and Early Perspectives in Vascularized Composite Allografts. FRONTIERS IN TRANSPLANTATION 2023; 2:1269706. [PMID: 38682043 PMCID: PMC11052586 DOI: 10.3389/frtra.2023.1269706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/29/2023] [Indexed: 05/01/2024]
Abstract
Ex-vivo preservation of transplanted organs is undergoing spectacular advances. Machine perfusion is now used in common practice for abdominal and thoracic organ transportation and preservation, and early results are in favor of substantially improved outcomes. It is based on decreasing ischemia-reperfusion phenomena by providing physiological or sub-physiological conditions until transplantation. Alternatively, supercooling techniques involving static preservation at negative temperatures while avoiding ice formation have shown encouraging results in solid organs. Here, the rationale is to decrease the organ's metabolism and need for oxygen and nutrients, allowing for extended preservation durations. The aim of this work is to review all advances of supercooling in transplantation, browsing the literature for each organ. A specific objective was also to study the initial evidence, the prospects, and potential applications of supercooling preservation in Vascularized Composite Allotransplantation (VCA). This complex entity needs a substantial effort to improve long-term outcomes, marked by chronic rejection. Improving preservation techniques is critical to ensure the favorable evolution of VCAs, and supercooling techniques could greatly participate in these advances.
Collapse
Affiliation(s)
- Yanis Berkane
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
- MOBIDIC, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Justine Hayau
- Division of Plastic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Irina Filz von Reiterdank
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anil Kharga
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Laura Charlès
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Abele B. Mink van der Molen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. Henk Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nicolas Bertheuil
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
- MOBIDIC, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Mark A. Randolph
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Curtis L. Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Alban Longchamp
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Alexandre G. Lellouch
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Korkut Uygun
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
19
|
Huelsboemer L, Kauke-Navarro M, Reuter S, Stoegner VA, Feldmann J, Hirsch T, Kueckelhaus M, Dermietzel A. Tolerance Induction in Vascularized Composite Allotransplantation-A Brief Review of Preclinical Models. Transpl Int 2023; 36:10955. [PMID: 36846605 PMCID: PMC9946984 DOI: 10.3389/ti.2023.10955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
Pre-clinical studies are an obligatory tool to develop and translate novel therapeutic strategies into clinical practice. Acute and chronic rejection mediated by the recipient's immune system remains an important limiting factor for the (long-term) survival of vascularized composite allografts (VCA). Furthermore, high intensity immunosuppressive (IS) protocols are needed to mitigate the immediate and long-term effects of rejection. These IS regiments can have significant side-effects such as predisposing transplant recipients to infections, organ dysfunction and malignancies. To overcome these problems, tolerance induction has been proposed as one strategy to reduce the intensity of IS protocols and to thereby mitigate long-term effects of allograft rejection. In this review article, we provide an overview about animal models and strategies that have been used to induce tolerance. The induction of donor-specific tolerance was achieved in preclinical animal models and clinical translation may help improve short and long-term outcomes in VCAs in the future.
Collapse
Affiliation(s)
- Lioba Huelsboemer
- Division of Plastic and Reconstructive Surgery, School of Medicine, Yale University, New Haven, CT, United States
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Martin Kauke-Navarro
- Division of Plastic and Reconstructive Surgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Stefan Reuter
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital Münster, Münster, Germany
| | - Viola A. Stoegner
- Division of Plastic and Reconstructive Surgery, School of Medicine, Yale University, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Jan Feldmann
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Tobias Hirsch
- Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, Münster, Germany
| | - Maximilian Kueckelhaus
- Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, Münster, Germany
| | - Alexander Dermietzel
- Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, Münster, Germany
| |
Collapse
|