1
|
Ho BHT, Spicer BA, Dunstone MA. Action of the Terminal Complement Pathway on Cell Membranes. J Membr Biol 2025:10.1007/s00232-025-00343-6. [PMID: 40122920 DOI: 10.1007/s00232-025-00343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The complement pathway is one of the most ancient elements of the host's innate response and includes a set of protein effectors that rapidly react against pathogens. The late stages of the complement reaction are broadly categorised into two major outcomes. Firstly, C5a receptors, expressed on membranes of host cells, are activated by C5a to generate pro-inflammatory responses. Secondly, target cells are lysed by a hetero-oligomeric pore known as the membrane attack complex (MAC) that punctures the cellular membrane, causing ion and osmotic flux. Generally, several membrane-bound and soluble inhibitors protect the host membrane from complement damage. This includes inhibitors against the MAC, such as clusterin and CD59. This review addresses the most recent molecular and structural insights behind the activation and modulation of the integral membrane proteins, the C5a receptors (C5aR1 and C5aR2), as well as the regulation of MAC assembly. The second aspect of the review focuses on the molecular basis behind inflammatory diseases that are reflective of failure to regulate the terminal complement effectors. Although each arm is unique in its function, both pathways may share similar outcomes in these diseases. As such, the review outlines potential synergy and crosstalk between C5a receptor activation and MAC-mediated cellular responses.
Collapse
Affiliation(s)
- Bill H T Ho
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Bradley A Spicer
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Michelle A Dunstone
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Weiss S, Lin HM, Acosta E, Komarova NL, Chen P, Wodarz D, Baine I, Duerr R, Wajnberg A, Gervais A, Bastard P, Casanova JL, Arinsburg SA, Swartz TH, Aberg JA, Bouvier NM, Liu ST, Alvarez RA, Chen BK. Post-transfusion activation of coagulation pathways during severe COVID-19 correlates with COVID-19 convalescent plasma antibody profiles. J Clin Invest 2025; 135:e181136. [PMID: 40091845 PMCID: PMC11910229 DOI: 10.1172/jci181136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Early antibody therapy can prevent severe SARS-CoV-2 infection (COVID-19). However, the effectiveness of COVID-19 convalescent plasma (CCP) therapy in treating severe COVID-19 remains inconclusive. To test a hypothesis that some CCP units are associated with a coagulopathy hazard in severe disease that offsets its benefits, we tracked 304 CCP units administered to 414 hospitalized COVID-19 patients to assess their association with the onset of unfavorable post-transfusion D-dimer trends. CCP recipients with increasing or persistently elevated D-dimer trajectories after transfusion experienced higher mortality than those whose D-dimer levels were persistently low or decreasing after transfusion. Within the CCP donor-recipient network, recipients with increasing or persistently high D-dimer trajectories were skewed toward association with a minority of CCP units. In in vitro assays, CCP from "higher-risk" units had higher cross-reactivity with the spike protein of human seasonal betacoronavirus OC43. "Higher-risk" CCP units also mediated greater Fcγ receptor IIa signaling against cells expressing SARS-CoV-2 spike compared with "lower-risk" units. This study finds that post-transfusion activation of coagulation pathways during severe COVID-19 is associated with specific CCP antibody profiles and supports a potential mechanism of immune complex-activated coagulopathy.
Collapse
Affiliation(s)
| | - Hung-Mo Lin
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | - Dominik Wodarz
- Department of Ecology, Behavior and Evolution, UCSD, La Jolla, California, USA
| | - Ian Baine
- Department of Transfusion Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ralf Duerr
- Department of Medicine
- Department of Microbiology, and
- Vaccine Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Ania Wajnberg
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adrian Gervais
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | | | | | | | - Nicole M. Bouvier
- Division of Infectious Diseases and
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sean T.H. Liu
- Division of Infectious Diseases and
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | |
Collapse
|
3
|
Collins SP, Shotwell MS, Strich JR, Gibbs KW, de Wit M, Files DC, Harkins M, Hudock K, Merck LH, Moskowitz A, Apodaca KD, Barksdale A, Safdar B, Javaheri A, Sturek JM, Schrager H, Iovine NM, Tiffany B, Douglas I, Levitt J, Ginde AA, Hager DN, Shapiro N, Duggal A, Khan A, Lanspa M, Chen P, Gentile N, Harris E, Gong M, Sellers S, Goodwin AJ, Tidswell MA, Filbin M, Desai N, Gutiérrez F, Estrada V, Burgos J, Boyles T, Paño-Pardo JR, Hussen N, Rosenberg Y, Troendle J, Bernard GR, Bistran-Hall AJ, Walsh K, Casey JD, DeClercq J, Joly MM, Pulley J, Rice TW, Schildcrout JS, Wang L, Semler MW, Self WH. Fostamatinib for Hospitalized Adults With COVID-19 and Hypoxemia: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2448215. [PMID: 39625722 PMCID: PMC11615712 DOI: 10.1001/jamanetworkopen.2024.48215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 12/06/2024] Open
Abstract
Importance Fostamatinib, a spleen tyrosine kinase inhibitor, has been reported to improve outcomes of COVID-19. Objective To evaluate the efficacy and safety of fostamatinib in adults hospitalized with COVID-19 and hypoxemia. Design, Setting, and Participants This multicenter, phase 3, placebo-controlled, double-blinded randomized clinical trial was conducted at 41 US sites and 21 international sites between November 17, 2021, and September 27, 2023; the last follow-up visit was December 31, 2023. Participants were adults aged 18 years or older hospitalized with acute SARS-CoV-2 infection and hypoxemia. Data were analyzed between January 10 and March 8, 2024. Interventions Fostamatinib, 150 mg orally twice daily for 14 days, or placebo. Main Outcomes and Measures The primary outcome was oxygen-free days, an ordinal outcome classifying a participant's status at day 28 based on mortality and duration of supplemental oxygen use. An adjusted odds ratio (AOR) greater than 1.0 was considered to indicate superiority of fostamatinib over placebo. A key secondary outcome was 28-day all-cause mortality. Safety outcomes included elevated transaminase values, neutropenia, and hypertension. Results Of the 400 participants randomized (median age, 67 years [IQR, 58-76 years]; 210 [52.5%] men), 199 received fostamatinib and 201 received placebo. The mean (SD) number of oxygen-free days was 13.4 (12.4) in the fostamatinib group and 14.2 (12.1) in the placebo group (unadjusted mean difference, -1.26 days [95% CI, -3.52 to 1.00 days]; AOR, 0.82 [95% credible interval (CrI), 0.58-1.17]). Mortality at 28 days occurred in 22 of 195 patients (11.3%) in the fostamatinib group and 16 of 197 (8.1%) in the placebo group (AOR, 1.44; 95% CrI, 0.72-2.90). Aspartate aminotransferase elevation occurred more commonly in the fostamatinib group (23 [11.6%]) than in the placebo group (11 [5.5%]; AOR, 2.28; 95% CrI, 1.07-4.84). Other safety outcomes were similar between groups. Conclusions and Relevance In this randomized clinical trial of adults hospitalized with COVID-19 and hypoxemia, fostamatinib did not increase the number of oxygen-free days compared with placebo. These results do not support the hypothesis that fostamatinib improves outcomes among adults hospitalized with hypoxemia during the Omicron era. Trial Registration ClinicalTrials.gov Identifier: NCT04924660.
Collapse
Affiliation(s)
- Sean P. Collins
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Geriatric Research, Education and Clinical Center, Nashville, Tennessee
| | - Matthew S. Shotwell
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeffrey R. Strich
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Kevin W. Gibbs
- Department of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Marjolein de Wit
- Department of Medicine, Virginia Commonwealth University, Richmond
| | - D. Clark Files
- Department of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Michelle Harkins
- Department of Internal Medicine, University of New Mexico, Albuquerque
| | - Kris Hudock
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Lisa H. Merck
- Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond
| | - Ari Moskowitz
- Department of Medicine, Montefiore Medical Center, Bronx, New York
| | | | - Aaron Barksdale
- Department of Medicine, University of Nebraska Medical Center, Omaha
| | - Basmah Safdar
- Department of Medicine, Yale University, New Haven, Connecticut
| | - Ali Javaheri
- Department of Medicine, Washington University and John Cochran VA Medical Center, St Louis, Missouri
| | | | - Harry Schrager
- Department of Medicine, Tufts School of Medicine, Newton-Wellesley Hospital, Newton, Massachusetts
| | | | | | - Ivor Douglas
- Department of Medicine, Denver Health Medical Center, Denver, Colorado
| | - Joseph Levitt
- Department of Medicine, Stanford University, Stanford, California
| | - Adit A. Ginde
- Department of Emergency Medicine, University of Colorado, Aurora
| | - David N. Hager
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Nathan Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Abhijit Duggal
- Department of Medicine, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Akram Khan
- Department of Medicine, Oregon Health and Science University, Portland
| | - Michael Lanspa
- Department of Medicine, Intermountain Medical Center, Murray, Utah
| | - Peter Chen
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Nina Gentile
- Department of Emergency Medicine, Temple University, Philadelphia, Pennsylvania
| | - Estelle Harris
- Department of Medicine, University of Utah Health Sciences, Salt Lake City
| | - Michelle Gong
- Department of Medicine, Jack D. Weiler Hospital, Albert Einstein College of Medicine, Bronx, New York
| | | | - Andrew J. Goodwin
- Department of Medicine, Medical University of South Carolina, Charleston
| | - Mark A. Tidswell
- Department of Medicine, Baystate Health, Springfield, Massachusetts
| | - Michael Filbin
- Department of Emergency Medicine, Massachusetts General Hospital, Boston
| | - Neeraj Desai
- Department of Medicine, St Alexius Medical Center, Hoffman Estates, Illinois
| | - Felix Gutiérrez
- Department of Medicine, Division of Infectious Diseases, Centro de Investigación Biomédica en Red (CIBERINFEC), Hospital General de Elche & Universidad Miguel Hernández, Alicante, Spain
| | - Vicente Estrada
- Hospital Clinico San Carlos, Ciber de Enfermedades Infecciosas, CIBERINFEC, Universidad Complutense de Madrid, Madrid, Spain
| | - Joaquin Burgos
- Department of Infectious Diseases, Hospital Universitario Vall d’Hebron, Barcelona, Spain
| | - Tom Boyles
- Clinical HIV Research Unit, Helen Joseph Hospital, Johannesburg, South Africa
| | - Jose R. Paño-Pardo
- Department of Infectious Diseases, Hospital Clinico Universitario Lozano Blesa, Jaragoza, Spain
| | - Nazreen Hussen
- Department of Clinical Research, Worthwhile Clinical Trials (Lakeview Hospital), Benoni, South Africa
| | - Yves Rosenberg
- National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - James Troendle
- National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Gordon R. Bernard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amanda J. Bistran-Hall
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kelly Walsh
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jonathan D. Casey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Josh DeClercq
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Meghan Morrison Joly
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jill Pulley
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Todd W. Rice
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Li Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew W. Semler
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wesley H. Self
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
4
|
Lehmann M, Krishnan R, Sucre J, Kulkarni HS, Pineda RH, Anderson C, Banovich NE, Behrsing HP, Dean CH, Haak A, Gosens R, Kaminski N, Zagorska A, Koziol-White C, Metcalf JP, Kim YH, Loebel C, Neptune E, Noel A, Raghu G, Sewald K, Sharma A, Suki B, Sperling A, Tatler A, Turner S, Rosas IO, van Ry P, Wille T, Randell SH, Pryhuber G, Rojas M, Bourke J, Königshoff M. Precision Cut Lung Slices: Emerging Tools for Preclinical and Translational Lung Research. An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2024; 72:16-31. [PMID: 39499861 PMCID: PMC11707673 DOI: 10.1165/rcmb.2024-0479st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Indexed: 11/07/2024] Open
Abstract
The urgent need for effective treatments for acute and chronic lung diseases underscores the significance of developing innovative preclinical human research tools. The 2023 ATS Workshop on Precision Cut Lung Slices (PCLS) brought together 35 experts to discuss and address the role of human tissue-derived PCLS as a unique tool for target and drug discovery and validation in pulmonary medicine. With increasing interest and usage, along with advancements in methods and technology, there is a growing need for consensus on PCLS methodology and readouts. The current document recommends standard reporting criteria and emphasizes the requirement for careful collection and integration of clinical metadata. We further discuss current clinically relevant readouts that can be applied to PCLS and highlight recent developments and future steps for implementing novel technologies for PCLS modeling and analysis. The collection and correlation of clinical metadata and multiomic analysis will further advent the integration of this preclinical platform into patient endotyping and the development of tailored therapies for lung disease patients.
Collapse
Affiliation(s)
- Mareike Lehmann
- Philipps University Marburg, Institute for Lung Research, Marburg, Germany
- Helmholtz Center Munich, Institute for Lung Health and Immunity, Munich, Germany;
| | - Ramaswamy Krishnan
- Beth Israel Deaconess Medical Center, Emergency Medicine, Boston, United States
| | - Jennifer Sucre
- Vanderbilt University Medical Center, Pediatrics, Nashville, Tennessee, United States
| | - Hrishikesh S Kulkarni
- Washington University in Saint Louis, Division of Pulmonary and Critical Care Medicine, Saint Louis, Missouri, United States
| | - Ricardo H Pineda
- University of Pittsburgh, Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, United States
| | | | | | - Holger P Behrsing
- Institute for In Vitro Sciences Inc, Gaithersburg, Maryland, United States
| | - Charlotte H Dean
- Imperial College, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Andrew Haak
- Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Reinoud Gosens
- University of Groningen, Molecular Pharmacology, Groningen, Netherlands
| | - Naftali Kaminski
- Yale School of Medicine , Pulmonary, Critical Care and Sleep Mediine , New Haven, Connecticut, United States
| | - Anna Zagorska
- Gilead Sciences Inc, Foster City, California, United States
| | - Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey, United States
| | - Jordan P Metcalf
- The University of Oklahoma Health Sciences Center, Medicine, Oklahoma City, Oklahoma, United States
| | - Yong Ho Kim
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | | | - Enid Neptune
- Johns Hopkins, Medicine/Pulmonary and Critical Care, Baltimore, Maryland, United States
| | - Alexandra Noel
- Louisiana State University, Baton Rouge, Louisiana, United States
| | - Ganesh Raghu
- University of Washington Medical Center, Division of Pulmonary and Critical Care Medicine, Seattle, Washington, United States
| | | | - Ashish Sharma
- University of Florida, Gainesville, Florida, United States
| | - Bela Suki
- Boston University, Biomedical Engineering, Boston, Massachusetts, United States
| | - Anne Sperling
- University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Amanda Tatler
- University of Nottingham, Respiratory Medicine , Nottingham, United Kingdom of Great Britain and Northern Ireland
| | - Scott Turner
- Pliant Therapeutics, South San Francisco, California, United States
| | - Ivan O Rosas
- Brigham and Women's Hospital, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Boston, Massachusetts, United States
| | - Pam van Ry
- Brigham Young University, Chemistry and Biochemistry, Provo, Utah, United States
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Bundeswehr Medical Academy, Germany, Munich, Germany
| | - Scott H Randell
- University of North Carolina, Department of Cell Biology & Physiology, Chapel Hill, North Carolina, United States
| | - Gloria Pryhuber
- University of Rochester, Pediatrics, Rochester, New York, United States
| | - Mauricio Rojas
- Ohio State University, Columbus, OH, Pulmonary, Critical Care and Sleep Medicine, College of Medicine, , Columbus, Ohio, United States
| | - Jane Bourke
- Monash University, Department of Pharmacology, Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Melanie Königshoff
- University of Pittsburgh, Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
5
|
Gupta P, Dev K, Kaur G. Phytoconstituents as modulator of inflammatory pathways for COVID-19: A comprehensive review and recommendations. Phytother Res 2024; 38:5389-5416. [PMID: 39246209 DOI: 10.1002/ptr.8302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 09/10/2024]
Abstract
SARS-CoV-2 infection causes disruptions in inflammatory pathways, which fundamentally contribute to COVID-19 pathophysiology. The present review critically evaluates the gaps in scientific literature and presents the current status regarding the inflammatory signaling pathways in COVID-19. We propose that phytoconstituents can be used to treat COVID-19 associated inflammation, several already formulated in traditional medications. For this purpose, extensive literature analysis was conducted in the PubMed database to collect relevant in vitro, in vivo, and human patient studies where inflammation pathways were shown to be upregulated in COVID-19. Parallelly, scientific literature was screened for phytoconstituents with known cellular mechanisms implicated for inflammation or COVID-19 associated inflammation. Studies with insufficient evidence on cellular pathways for autophagy and mitophagy were considered out of scope and excluded from the study. The final analysis was visualized in figures and evaluated for accuracy. Our findings demonstrate the frequent participation of NF-κB, a transcription factor, in inflammatory signaling pathways linked to COVID-19. Moreover, the MAPK signaling pathway is also implicated in producing inflammatory molecules. Furthermore, it was also analyzed that the phytoconstituents with flavonoid and phenolic backbones could inhibit either the TLR4 receptor or its consecutive signaling molecules, thereby, decreasing NF-κB activity and suppressing cytokine production. Although, allopathy has treated the early phase of COVID-19, anti-inflammatory phytoconstituents and existing ayurvedic formulations may act on the COVID-19 associated inflammatory pathways and provide an additional treatment strategy. Therefore, we recommend the usage of flavonoids and phenolic phytoconstituents for the treatment of inflammation associated with COVID-19 infection and similar viral ailments.
Collapse
Affiliation(s)
- Pragati Gupta
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Kamal Dev
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
- Department of Pharmacology & Toxicology, Wright State University, Dayton, Ohio, USA
| | - Gurjot Kaur
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
- National Center cum Department of Human Genome Research Center and Studies, Panjab University, Chandigarh, Punjab, India
| |
Collapse
|
6
|
Zhang Q, Li W, Mao X, Miao S. Platelet FcγRIIA: An emerging regulator and biomarker in cardiovascular disease and cancer. Thromb Res 2024; 238:19-26. [PMID: 38643522 DOI: 10.1016/j.thromres.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Platelets, anucleate blood cells derive from megakaryocytes, are involved in cardiovascular diseases and tumors. FcγRIIA, the only FcγR expressed on human platelets, is known for its role in immune-related diseases. A growing body of evidence reveals that platelet FcγRIIA is a potential target for the prevention and control of cardiovascular disease and cancer, and is an advantageous biomarker. In this review, we describe the structure and physiological function of platelet FcγRIIA, its regulatory role in cardiovascular disease and cancer, and its potential clinical application.
Collapse
Affiliation(s)
- Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenxian Li
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Mao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuo Miao
- School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Choi HS, Choi AY, Kopp JB, Winkler CA, Cho SK. Review of COVID-19 Therapeutics by Mechanism: From Discovery to Approval. J Korean Med Sci 2024; 39:e134. [PMID: 38622939 PMCID: PMC11018982 DOI: 10.3346/jkms.2024.39.e134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
The global research and pharmaceutical community rapidly mobilized to develop treatments for coronavirus disease 2019 (COVID-19). Existing treatments have been repurposed and new drugs have emerged. Here we summarize mechanisms and clinical trials of COVID-19 therapeutics approved or in development. Two reviewers, working independently, reviewed published data for approved COVID-19 vaccines and drugs, as well as developmental pipelines, using databases from the following organizations: United States Food and Drug Administration (US-FDA), European Medicines Agency (EMA), Japanese Pharmaceutical and Medical Devices Agency (PMDA), and ClinicalTrials.gov. In all, 387 drugs were found for initial review. After removing unrelated trials and drugs, 66 drugs were selected, including 17 approved drugs and 49 drugs under development. These drugs were classified into six categories: 1) drugs targeting the viral life cycle 2) Anti-severe acute respiratory syndrome coronavirus 2 Monoclonal Antibodies, 3) immunomodulators, 4) anti-coagulants, 5) COVID-19-induced neuropathy drugs, and 6) other therapeutics. Among the 49 drugs under development are the following: 6 drugs targeting the viral life cycle, 12 immunosuppression drugs, 2 immunostimulants, 2 HIF-PHD targeting drugs, 3 GM-CSF targeting drugs, 5 anti-coagulants, 2 COVID-19-induced neuropathy drugs, and 17 others. This review provides insight into mechanisms of action, properties, and indications for COVID-19 medications.
Collapse
Affiliation(s)
- Hee Sun Choi
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - A Young Choi
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases, Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cheryl A Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Sung Kweon Cho
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
8
|
Zhou Z, Zeng X, Liao J, Dong X, Deng Y, Wang Y, Zhou M. Immune Characteristic Genes and Neutrophil Immune Transformation Studies in Severe COVID-19. Microorganisms 2024; 12:737. [PMID: 38674681 PMCID: PMC11052247 DOI: 10.3390/microorganisms12040737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
As a disease causing a global pandemic, the progression of symptoms to severe disease in patients with COVID-19 often has adverse outcomes, but research on the immunopathology of COVID-19 severe disease remains limited. In this study, we used mRNA-seq data from the peripheral blood of COVID-19 patients to identify six COVID-19 severe immune characteristic genes (FPR1, FCGR2A, TLR4, S100A12, CXCL1, and L TF), and found neutrophils to be the critical immune cells in COVID-19 severe disease. Subsequently, using scRNA-seq data from bronchoalveolar lavage fluid from COVID-19 patients, neutrophil subtypes highly expressing the S100A family were found to be located at the end of cellular differentiation and tended to release neutrophil extracellular traps. Finally, it was also found that alveolar macrophages, macrophages, and monocytes with a high expression of COVID-19 severe disease immune characteristic genes may influence neutrophils through intercellular ligand-receptor pairs to promote neutrophil extracellular trap release. This study provides immune characteristic genes, critical immune pathways, and immune cells in COVID-19 severe disease, explores intracellular immune transitions of critical immune cells and pit-induced intercellular communication of immune transitions, and provides new biomarkers and potential drug targets for the treatment of patients with COVID-19 severe disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.Z.); (X.Z.); (J.L.); (X.D.); (Y.D.)
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.Z.); (X.Z.); (J.L.); (X.D.); (Y.D.)
| |
Collapse
|
9
|
Yang Y, Ivanov DG, Levin MD, Olenyuk B, Cordova-Robles O, Cederstrom B, Schnitzer JE, Kaltashov IA. Characterization of Large Immune Complexes with Size Exclusion Chromatography and Native Mass Spectrometry Supplemented with Gas Phase Ion Chemistry. Anal Chem 2024. [PMID: 38319243 DOI: 10.1021/acs.analchem.3c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Large immune complexes formed by the cross-linking of antibodies with polyvalent antigens play critical roles in modulating cell-mediated immunity. While both the size and the shape of immune complexes are important determinants in Fc receptor-mediated signaling responsible for phagocytosis, degranulation, and, in some instances, autoimmune pathologies, their characterization remains extremely challenging due to their large size and structural heterogeneity. We use native mass spectrometry (MS) supplemented with limited charge reduction in the gas phase to determine the stoichiometry of immune complexes formed by a bivalent (homodimeric) antigen, a 163 kDa aminopeptidase P2 (APP2), and a monoclonal antibody (mAb) to APP2. The observed (APP2·mAb)n complexes populate a wide range of stoichiometries (n = 1-4) with the largest detected species exceeding 1 MDa, although the gas-phase dissociation products are also evident in the mass spectra. While frequently considering a nuisance that complicates interpretation of native MS data, limited dissociation provides an additional dimension for characterization of the immune complex quaternary structure. APP2/mAb associations with identical composition but slightly different elution times in size exclusion chromatography exhibit notable differences in their spontaneous fragmentation profiles. The latter indicates the presence of both extended linear and cyclized (APP2·mAb)n configurations. The unique ability of MS to distinguish between such isomeric structures will be invaluable for a variety of applications where the biological effects of immune complexes are determined by their ability to assemble Fc receptor clusters of certain density on cell surfaces, such as platelet activation by clustering the low-affinity receptors FcγRIIa on their surface.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | - Daniil G Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | - Michael D Levin
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Oscar Cordova-Robles
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Brittany Cederstrom
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
10
|
Xu X, Wang Y, Tao Y, Dang W, Yang B, Li Y. The role of platelets in sepsis: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:741-752. [PMID: 38236204 PMCID: PMC11293227 DOI: 10.17305/bb.2023.10135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/19/2024]
Abstract
Sepsis, a life-threatening condition characterized by organ dysfunction, results from a complex series of pathophysiological mechanisms including immune dysfunction, an uncontrolled inflammatory response, and coagulation abnormalities. It is a major contributor to global mortality and severe disease development. Platelets, abundant in the circulatory system, are sensitive to changes in the body's internal environment and are among the first cells to respond to dysregulated pro-inflammatory and pro-coagulant reactions at the onset of sepsis. In the initial stages of sepsis, the coagulation cascade, inflammatory response, and endothelial tissue damage perpetually trigger platelet activation. These activated platelets then engage in complex inflammatory and immune reactions, potentially leading to organ dysfunction. Therefore, further research is essential to fully understand the role of platelets in sepsis pathology and to develop effective therapeutic strategies targeting the associated pathogenic pathways. This review delves into the involvement of platelets in sepsis and briefly outlines the clinical applications of associated biomarkers.
Collapse
Affiliation(s)
- Xinxin Xu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yurou Wang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenpei Dang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Osmanoglu Ö, Gupta SK, Almasi A, Yagci S, Srivastava M, Araujo GHM, Nagy Z, Balkenhol J, Dandekar T. Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection. Front Immunol 2023; 14:1285345. [PMID: 38187394 PMCID: PMC10768010 DOI: 10.3389/fimmu.2023.1285345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/.
Collapse
Affiliation(s)
- Özge Osmanoglu
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Shishir K. Gupta
- Evolutionary Genomics Group, Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Anna Almasi
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Seray Yagci
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Mugdha Srivastava
- Core Unit Systems Medicine, University of Wuerzburg, Wuerzburg, Germany
- Algorithmic Bioinformatics, Department of Computer Science, Heinrich Heine University, Düsseldorf, Germany
| | - Gabriel H. M. Araujo
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Zoltan Nagy
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Johannes Balkenhol
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Chair of Molecular Microscopy, Rudolf Virchow Center for Integrative and Translation Bioimaging, University of Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- European Molecular Biology Laboratory (EMBL) Heidelberg, BioComputing Unit, Heidelberg, Germany
| |
Collapse
|
12
|
Sakurai Y, Hardy ET, Lam WA. Hemostasis-on-a-chip / incorporating the endothelium in microfluidic models of bleeding. Platelets 2023; 34:2185453. [PMID: 36872890 PMCID: PMC10197822 DOI: 10.1080/09537104.2023.2185453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Currently, point-of-care assays for human platelet function and coagulation are used to assess bleeding risks and drug testing, but they lack intact endothelium, a critical component of the human vascular system. Within these assays, the assessment of bleeding risk is typically indicated by the lack of or reduced platelet function and coagulation without true evaluation of hemostasis. Hemostasis is defined as the cessation of bleeding. Additionally, animal models of hemostasis also, by definition, lack human endothelium, which may limit their clinical relevance. This review discusses the current state-of-the-art of hemostasis-on-a-chip, specifically, human cell-based microfluidic models that incorporate endothelial cells, which function as physiologically relevant in vitro models of bleeding. These assays recapitulate the entire process of vascular injury, bleeding, and hemostasis, and provide real-time, direct observation, thereby serving as research-enabling tools that enhance our understanding of hemostasis and also as novel drug discovery platforms.
Collapse
Affiliation(s)
- Yumiko Sakurai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Center of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Elaissa T. Hardy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Center of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Center of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
13
|
Kusudo E, Murata Y, Kawamoto S, Egi M. Variant-derived SARS-CoV-2 spike protein does not directly cause platelet activation or hypercoagulability. Clin Exp Med 2023; 23:3701-3708. [PMID: 37208552 PMCID: PMC10198021 DOI: 10.1007/s10238-023-01091-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Thrombosis has been associated with severity and mortality in COVID-19. SARS-CoV-2 infects the host via its spike protein. However, direct effects of spike proteins from SARS-CoV-2 variants on platelet activity and coagulability have not been examined. An ethically approved ex vivo study was performed under a preplanned power analysis. Venous blood was collected from 6 healthy subjects who gave prior written consent. The samples were divided into 5 groups: without spike proteins (group N) and with spike proteins derived from alpha, beta, gamma, and delta SARS-CoV-2 variants (groups A, B, C, and D, respectively). Platelet aggregability, P-selectin expression, platelet-associated complement-1 (PAC-1) binding, platelet count, and mean platelet volume (MPV) were measured in all 5 groups, and thromboelastography (TEG) parameters were measured in groups N and D. The % change in each parameter in groups A to D was calculated relative to the value in group N. Data were analyzed by Friedman test, except for TEG parameters, which were evaluated by Wilcoxon matched pairs test. P < 0.05 was considered significant. This study included 6 participants based on a power analysis. There were no significant differences in platelet aggregability under stimulation with adenosine diphosphate 5 µg/ml, collagen 0.2 or 0.5 µg/ml, and Ser-Phe-Leu-Leu-Arg-Asn-amide trifluoroacetate salt (SFLLRN) 0.5 or 1 µM in groups A-D compared to group N. There were also no significant differences in P-selectin expression and PAC-1 binding under basal conditions or SFLLRN stimulation, and no significant differences in platelet count, MPV and TEG parameters. Platelet hyperactivity and blood hypercoagulability have been reported in COVID-19 patients, but spike proteins at 5 µg/ml from SARS-CoV-2 variants (alpha, beta, gamma, delta) did not directly cause these effects in an ex vivo study. This study was approved by the Ethics Committee of Kyoto University Hospital (R0978-1) on March 06, 2020.
Collapse
Affiliation(s)
- Eriko Kusudo
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yutaka Murata
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Anesthesia, Kitano Hospital, 2-4-20 Ohgimachi, Kita-ku, Osaka, 530-8480, Japan
| | - Shuji Kawamoto
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Moritoki Egi
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
14
|
Fritch EJ, Mordant AL, Gilbert TSK, Wells CI, Yang X, Barker NK, Madden EA, Dinnon KH, Hou YJ, Tse LV, Castillo IN, Sims AC, Moorman NJ, Lakshmanane P, Willson TM, Herring LE, Graves LM, Baric RS. Investigation of the Host Kinome Response to Coronavirus Infection Reveals PI3K/mTOR Inhibitors as Betacoronavirus Antivirals. J Proteome Res 2023; 22:3159-3177. [PMID: 37634194 DOI: 10.1021/acs.jproteome.3c00182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Host kinases play essential roles in the host cell cycle, innate immune signaling, the stress response to viral infection, and inflammation. Previous work has demonstrated that coronaviruses specifically target kinase cascades to subvert host cell responses to infection and rely upon host kinase activity to phosphorylate viral proteins to enhance replication. Given the number of kinase inhibitors that are already FDA approved to treat cancers, fibrosis, and other human disease, they represent an attractive class of compounds to repurpose for host-targeted therapies against emerging coronavirus infections. To further understand the host kinome response to betacoronavirus infection, we employed multiplex inhibitory bead mass spectrometry (MIB-MS) following MERS-CoV and SARS-CoV-2 infection of human lung epithelial cell lines. Our MIB-MS analyses revealed activation of mTOR and MAPK signaling following MERS-CoV and SARS-CoV-2 infection, respectively. SARS-CoV-2 host kinome responses were further characterized using paired phosphoproteomics, which identified activation of MAPK, PI3K, and mTOR signaling. Through chemogenomic screening, we found that clinically relevant PI3K/mTOR inhibitors were able to inhibit coronavirus replication at nanomolar concentrations similar to direct-acting antivirals. This study lays the groundwork for identifying broad-acting, host-targeted therapies to reduce betacoronavirus replication that can be rapidly repurposed during future outbreaks and epidemics. The proteomics, phosphoproteomics, and MIB-MS datasets generated in this study are available in the Proteomics Identification Database (PRIDE) repository under project identifiers PXD040897 and PXD040901.
Collapse
Affiliation(s)
- Ethan J Fritch
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
| | - Angie L Mordant
- UNC Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas S K Gilbert
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, United States
| | - Carrow I Wells
- Structural Genomics Consortium, Department of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7264, United States
| | - Xuan Yang
- Structural Genomics Consortium, Department of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7264, United States
| | - Natalie K Barker
- UNC Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily A Madden
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
| | - Yixuan J Hou
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| | - Longping V Tse
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| | - Izabella N Castillo
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
| | - Amy C Sims
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Premkumar Lakshmanane
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
| | - Timothy M Willson
- Structural Genomics Consortium, Department of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7264, United States
| | - Laura E Herring
- UNC Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, United States
| | - Lee M Graves
- UNC Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Ralph S Baric
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
15
|
Huynh A, Arnold DM, Ivetic N, Clare R, Hadzi-Tosev M, Liu Y, Smith JW, Bissola AL, Daka M, Kelton JG, Nazy I. Antibodies against platelet factor 4 and the risk of cerebral venous sinus thrombosis in patients with vaccine-induced immune thrombotic thrombocytopenia. J Thromb Haemost 2023; 21:2833-2843. [PMID: 37394121 DOI: 10.1016/j.jtha.2023.06.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare complication of adenoviral vector-based vaccines against SARS-CoV-2. This syndrome is caused by antibodies against platelet factor 4 (PF4; CXCL4) that lead to platelet activation and is characterized by thrombocytopenia and thrombosis in unusual locations, including cerebral venous sinus thrombosis (CVST). VITT can be classified based on anti-PF4 antibodies properties in vitro: those that require PF4 to activate platelets (PF4-dependent) and those that can activate platelets without additional PF4 (PF4-independent) in the serotonin release assay. OBJECTIVES We aim to characterize the relationship of VITT platelet-activating profiles with CVST. METHODS We conducted a retrospective cohort study involving patients with confirmed VITT who were tested between March and June 2021. Data were collected with an anonymized form and cases were identified as VITT with high clinical suspicion according to platelet activation assays. Anti-PF4 antibody binding regions on PF4 were further characterized with alanine scanning mutagenesis. RESULTS Of the patients with confirmed VITT (n = 39), 17 (43.6%) had PF4-dependent antibodies and 22 (56.4%) had PF4-independent antibodies. CVST occurred almost exclusively in PF4-independent patients (11 of 22 vs 1 of 17; P < .05). Additionally, PF4-independent antibodies bound to 2 distinct epitopes on PF4, the heparin-binding region and a site typical for heparin-induced thrombocytopenia antibodies, whereas PF4-dependent antibodies bound to only the heparin-binding region. CONCLUSION These findings suggest that VITT antibodies that cause PF4-independent platelet activation represent a unique subset of patients more likely to be associated with CVST, possibly due to the 2 different types of anti-PF4 antibodies.
Collapse
Affiliation(s)
- Angela Huynh
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Donald M Arnold
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; Michael G DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Nikola Ivetic
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rumi Clare
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Milena Hadzi-Tosev
- Michael G DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Yang Liu
- Michael G DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - James W Smith
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna-Lise Bissola
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Mercy Daka
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - John G Kelton
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; Michael G DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Ishac Nazy
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; Michael G DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
16
|
Wei X, Pan C, Zhang X, Zhang W. Total network controllability analysis discovers explainable drugs for Covid-19 treatment. Biol Direct 2023; 18:55. [PMID: 37670359 PMCID: PMC10478273 DOI: 10.1186/s13062-023-00410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND The active pursuit of network medicine for drug repurposing, particularly for combating Covid-19, has stimulated interest in the concept of structural controllability in cellular networks. We sought to extend this theory, focusing on the defense rather than control of the cell against viral infections. Accordingly, we extended structural controllability to total structural controllability and introduced the concept of control hubs. Perturbing any control hub may render the cell uncontrollable by exogenous stimuli like viral infections, so control hubs are ideal drug targets. RESULTS We developed an efficient algorithm to identify all control hubs, applying it to a largest homogeneous network of human protein interactions, including interactions between human and SARS-CoV-2 proteins. Our method recognized 65 druggable control hubs with enriched antiviral functions. Utilizing these hubs, we categorized potential drugs into four groups: antiviral and anti-inflammatory agents, drugs acting on the central nervous system, dietary supplements, and compounds enhancing immunity. An exemplification of our approach's effectiveness, Fostamatinib, a drug initially developed for chronic immune thrombocytopenia, is now in clinical trials for treating Covid-19. Preclinical trial data demonstrated that Fostamatinib could reduce mortality rates, ICU stay length, and disease severity in Covid-19 patients. CONCLUSIONS Our findings confirm the efficacy of our novel strategy that leverages control hubs as drug targets. This approach provides insights into the molecular mechanisms of potential therapeutics for Covid-19, making it a valuable tool for interpretable drug discovery. Our new approach is general and applicable to repurposing drugs for other diseases.
Collapse
Affiliation(s)
- Xinru Wei
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 210001, China
| | - Chunyu Pan
- School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, 110167, China
| | - Xizhe Zhang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 210001, China.
| | - Weixiong Zhang
- Department of Health Technology and Informatics, Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
17
|
Wolny M, Rozanova S, Knabbe C, Pfeiffer K, Barkovits K, Marcus K, Birschmann I. Changes in the Proteome of Platelets from Patients with Critical Progression of COVID-19. Cells 2023; 12:2191. [PMID: 37681923 PMCID: PMC10486756 DOI: 10.3390/cells12172191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Platelets, the smallest cells in human blood, known for their role in primary hemostasis, are also able to interact with pathogens and play a crucial role in the immune response. In severe coronavirus disease 2019 (COVID-19) cases, platelets become overactivated, resulting in the release of granules, exacerbating inflammation and contributing to the cytokine storm. This study aims to further elucidate the role of platelets in COVID-19 progression and to identify predictive biomarkers for disease outcomes. A comparative proteome analysis of highly purified platelets from critically diseased COVID-19 patients with different outcomes (survivors and non-survivors) and age- and sex-matched controls was performed. Platelets from critically diseased COVID-19 patients exhibited significant changes in the levels of proteins associated with protein folding. In addition, a number of proteins with isomerase activity were found to be more highly abundant in patient samples, apparently exerting an influence on platelet activity via the non-genomic properties of the glucocorticoid receptor (GR) and the nuclear factor κ-light-chain-enhancer of activated B cells (NFκB). Moreover, carbonic anhydrase 1 (CA-1) was found to be a candidate biomarker in platelets, showing a significant increase in COVID-19 patients.
Collapse
Affiliation(s)
- Monika Wolny
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Svitlana Rozanova
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Kathy Pfeiffer
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Katalin Barkovits
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ingvild Birschmann
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
18
|
Li YH, Wang XH, Huang WW, Tian RR, Pang W, Zheng YT. Severe fever with thrombocytopenia syndrome virus induces platelet activation and apoptosis via a reactive oxygen species-dependent pathway. Redox Biol 2023; 65:102837. [PMID: 37544244 PMCID: PMC10428115 DOI: 10.1016/j.redox.2023.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease caused by the SFTS virus (SFTSV) and with a high fatality rate. Thrombocytopenia is a major clinical manifestation observed in SFTS patients, but the underlying mechanism remains largely unclear. Here, we explored the effects of SFTSV infection on platelet function in vivo in severely infected SFTSV IFNar-/- mice and on mouse and human platelet function in vitro. Results showed that SFTSV-induced platelet clearance acceleration may be the main reason for thrombocytopenia. SFTSV-potentiated platelet activation and apoptosis were also observed in infected mice. Further investigation showed that SFTSV infection induced platelet reactive oxygen species (ROS) production and mitochondrial dysfunction. In vitro experiments revealed that administration of SFTSV or SFTSV glycoprotein (Gn) increased activation, apoptosis, ROS production, and mitochondrial dysfunction in separated mouse platelets, which could be effectively ameliorated by the application of antioxidants (NAC (N-acetyl-l-cysteine), SKQ1 (10-(6'-plastoquinonyl) decyltriphenylphosphonium) and resveratrol). In vivo experiments showed that the antioxidants partially rescued SFTSV infection-induced thrombocytopenia by improving excessive ROS production and mitochondrial dysfunction and down-regulating platelet apoptosis and activation. Furthermore, while SFTSV and Gn directly potentiated human platelet activation, it was completely abolished by antioxidants. This study revealed that SFTSV and Gn can directly trigger platelet activation and apoptosis in an ROS-MAPK-dependent manner, which may contribute to thrombocytopenia and hemorrhage during infection, but can be abolished by antioxidants.
Collapse
Affiliation(s)
- Yi-Hui Li
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Hui Wang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Department of Pediatric Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Wen-Wu Huang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Office of Science and Technology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Ren-Rong Tian
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Wei Pang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
19
|
Ishida T, Takagi K, Wang G, Tanahashi N, Kawanokuchi J, Takagi H, Guo Y, Ma N. A Greater Increase in Complement C5a Receptor 1 Level at Onset and a Smaller Decrease in Immunoglobulin G Level after Recovery in Severer Coronavirus Disease 2019 Patients: A New Analysis of Existing Data with a New Two-Tailed t-Test. BIOLOGY 2023; 12:1176. [PMID: 37759576 PMCID: PMC10525237 DOI: 10.3390/biology12091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
(1) Background: It is our purpose to identify the differences in the changes in Complement C5a receptor 1 (C5aR1) levels showing the degree of inflammation at onset and Immunoglobulin G (IgG) levels showing the extent of survival of the virus fragments after recovery between coronavirus disease 2019 (COVID-19) and pneumonia coronavirus disease (non-COVID-19) for saving patients' lives. (2) Methods: First, the studies showing these markers' levels in individual patients before and after the passage of time were selected from the PubMed Central® databases with the keywords (((COVID-19) AND individual) NOT review) AND C5a/IgG. Then, no changes in these markers' levels with conventional analyses were selected from the studies. Finally, the no changes were reexamined with our new two-tailed t-test using the values on the regression line between initial levels and changed levels instead of the mean or median of changed levels as the expected values of changed levels. (3) Results: Not conventional analyses but our new t-test suggested a greater increase in C5aR1-levels at onset and a smaller decrease in IgG-levels after recovery in COVID-19 patients than non-COVID-19 patients. (4) Conclusion: Our new t-test also should be used in clinics for COVID-19 patients.
Collapse
Affiliation(s)
- Torao Ishida
- Project for Advanced Science, Suzuka University of Medical Science, Suzuka 510-0293, Japan
| | - Ken Takagi
- Project for Advanced Science, Suzuka University of Medical Science, Suzuka 510-0293, Japan
| | - Guifeng Wang
- Project for Advanced Science, Suzuka University of Medical Science, Suzuka 510-0293, Japan
| | - Nobuyuki Tanahashi
- Project for Advanced Science, Suzuka University of Medical Science, Suzuka 510-0293, Japan
| | - Jun Kawanokuchi
- Project for Advanced Science, Suzuka University of Medical Science, Suzuka 510-0293, Japan
| | - Hisayo Takagi
- Project for Advanced Science, Suzuka University of Medical Science, Suzuka 510-0293, Japan
| | - Yi Guo
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Ning Ma
- Project for Advanced Science, Suzuka University of Medical Science, Suzuka 510-0293, Japan
| |
Collapse
|
20
|
Zhang Z, Zhou XH, Cheng ZP, Hu Y. [Research on immunological function of platelet receptor FcγRⅡA]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:609-614. [PMID: 37749049 PMCID: PMC10509618 DOI: 10.3760/cma.j.issn.0253-2727.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 09/27/2023]
Affiliation(s)
- Z Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - X H Zhou
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Z P Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Y Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
21
|
Zelek WM, Harrison RA. Complement and COVID-19: Three years on, what we know, what we don't know, and what we ought to know. Immunobiology 2023; 228:152393. [PMID: 37187043 PMCID: PMC10174470 DOI: 10.1016/j.imbio.2023.152393] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus was identified in China in 2019 as the causative agent of COVID-19, and quickly spread throughout the world, causing over 7 million deaths, of which 2 million occurred prior to the introduction of the first vaccine. In the following discussion, while recognising that complement is just one of many players in COVID-19, we focus on the relationship between complement and COVID-19 disease, with limited digression into directly-related areas such as the relationship between complement, kinin release, and coagulation. Prior to the 2019 COVID-19 outbreak, an important role for complement in coronavirus diseases had been established. Subsequently, multiple investigations of patients with COVID-19 confirmed that complement dysregulation is likely to be a major driver of disease pathology, in some, if not all, patients. These data fuelled evaluation of many complement-directed therapeutic agents in small patient cohorts, with claims of significant beneficial effect. As yet, these early results have not been reflected in larger clinical trials, posing questions such as who to treat, appropriate time to treat, duration of treatment, and optimal target for treatment. While significant control of the pandemic has been achieved through a global scientific and medical effort to comprehend the etiology of the disease, through extensive SARS-CoV-2 testing and quarantine measures, through vaccine development, and through improved therapy, possibly aided by attenuation of the dominant strains, it is not yet over. In this review, we summarise complement-relevant literature, emphasise its main conclusions, and formulate a hypothesis for complement involvement in COVID-19. Based on this we make suggestions as to how any future outbreak might be better managed in order to minimise impact on patients.
Collapse
Affiliation(s)
- Wioleta M Zelek
- Dementia Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
22
|
Goudswaard LJ, Williams CM, Khalil J, Burley KL, Hamilton F, Arnold D, Milne A, Lewis PA, Heesom KJ, Mundell SJ, Davidson AD, Poole AW, Hers I. Alterations in platelet proteome signature and impaired platelet integrin α IIbβ 3 activation in patients with COVID-19. J Thromb Haemost 2023; 21:1307-1321. [PMID: 36716966 PMCID: PMC9883069 DOI: 10.1016/j.jtha.2023.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Patients with COVID-19 are at increased risk of thrombosis, which is associated with altered platelet function and coagulopathy, contributing to excess mortality. OBJECTIVES To characterize the mechanism of altered platelet function in COVID-19 patients. METHODS The platelet proteome, platelet functional responses, and platelet-neutrophil aggregates were compared between patients hospitalized with COVID-19 and healthy control subjects using tandem mass tag proteomic analysis, Western blotting, and flow cytometry. RESULTS COVID-19 patients showed a different profile of platelet protein expression (858 altered of the 5773 quantified). Levels of COVID-19 plasma markers were enhanced in the platelets of COVID-19 patients. Gene ontology pathway analysis demonstrated that the levels of granule secretory proteins were raised, whereas those of platelet activation proteins, such as the thrombopoietin receptor and protein kinase Cα, were lowered. Basally, platelets of COVID-19 patients showed enhanced phosphatidylserine exposure, with unaltered integrin αIIbβ3 activation and P-selectin expression. Agonist-stimulated integrin αIIbβ3 activation and phosphatidylserine exposure, but not P-selectin expression, were decreased in COVID-19 patients. COVID-19 patients had high levels of platelet-neutrophil aggregates, even under basal conditions, compared to controls. This association was disrupted by blocking P-selectin, demonstrating that platelet P-selectin is critical for the interaction. CONCLUSIONS Overall, our data suggest the presence of 2 platelet populations in patients with COVID-19: one of circulating platelets with an altered proteome and reduced functional responses and another of P-selectin-expressing neutrophil-associated platelets. Platelet-driven thromboinflammation may therefore be one of the key factors enhancing the risk of thrombosis in COVID-19 patients.
Collapse
Affiliation(s)
- Lucy J Goudswaard
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK; Population Health Sciences, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK. https://twitter.com/lucygoudswaard
| | - Christopher M Williams
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Jawad Khalil
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Kate L Burley
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Fergus Hamilton
- Population Health Sciences, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK; Department of Infection Sciences, North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - David Arnold
- Academic Respiratory Unit, North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - Alice Milne
- Academic Respiratory Unit, North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - Phil A Lewis
- Proteomics Facility, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Kate J Heesom
- Proteomics Facility, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Stuart J Mundell
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
23
|
Wigerblad G, Warner SA, Ramos-Benitez MJ, Kardava L, Tian X, Miao R, Reger R, Chakraborty M, Wong S, Kanthi Y, Suffredini AF, Dell’Orso S, Brooks S, King C, Shlobin O, Nathan SD, Cohen J, Moir S, Childs RW, Kaplan MJ, Chertow DS, Strich JR. Spleen tyrosine kinase inhibition restores myeloid homeostasis in COVID-19. SCIENCE ADVANCES 2023; 9:eade8272. [PMID: 36598976 PMCID: PMC9812373 DOI: 10.1126/sciadv.ade8272] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Spleen tyrosine kinase (SYK) is a previously unidentified therapeutic target that inhibits neutrophil and macrophage activation in coronavirus disease 2019 (COVID-19). Fostamatinib, a SYK inhibitor, was studied in a phase 2 placebo-controlled randomized clinical trial and was associated with improvements in many secondary end points related to efficacy. Here, we used a multiomic approach to evaluate cellular and soluble immune mediator responses of patients enrolled in this trial. We demonstrated that SYK inhibition was associated with reduced neutrophil activation, increased circulation of mature neutrophils (CD10+CD33-), and decreased circulation of low-density granulocytes and polymorphonuclear myeloid-derived suppressor cells (HLA-DR-CD33+CD11b-). SYK inhibition was also associated with normalization of transcriptional activity in circulating monocytes relative to healthy controls, an increase in frequency of circulating nonclassical and HLA-DRhi classical monocyte populations, and restoration of interferon responses. Together, these data suggest that SYK inhibition may mitigate proinflammatory myeloid cellular and soluble mediator responses thought to contribute to immunopathogenesis of severe COVID-19.
Collapse
Affiliation(s)
- Gustaf Wigerblad
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, USA
| | - Seth A. Warner
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Marcos J. Ramos-Benitez
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, Bethesda, MD, USA
- Ponce Health Science University and Ponce Research Institute, Department of Basic Sciences, School of Medicine, Ponce, Puerto Rico, USA
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Rui Miao
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Robert Reger
- Laboratory of Transplantation Immunotherapy, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Mala Chakraborty
- Laboratory of Transplantation Immunotherapy, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Susan Wong
- Laboratory of Transplantation Immunotherapy, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Anthony F. Suffredini
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Stefania Dell’Orso
- Genomic Technology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher King
- Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Oksana Shlobin
- Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Steven D. Nathan
- Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Jonathan Cohen
- Adventist Healthcare Shady Grove Medical Center, Rockville, MD, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Richard W. Childs
- Laboratory of Transplantation Immunotherapy, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
- United States Public Health Service Commissioned Corps, Rockville, MD, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, USA
| | - Daniel S. Chertow
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
- United States Public Health Service Commissioned Corps, Rockville, MD, USA
| | - Jeffrey R. Strich
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
- United States Public Health Service Commissioned Corps, Rockville, MD, USA
| |
Collapse
|
24
|
Beyond neutralization: Fc-dependent antibody effector functions in SARS-CoV-2 infection. Nat Rev Immunol 2022:10.1038/s41577-022-00813-1. [PMID: 36536068 PMCID: PMC9761659 DOI: 10.1038/s41577-022-00813-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Neutralizing antibodies are known to have a crucial role in protecting against SARS-CoV-2 infection and have been suggested to be a useful correlate of protection for vaccine clinical trials and for population-level surveys. In addition to neutralizing virus directly, antibodies can also engage immune effectors through their Fc domains, including Fc receptor-expressing immune cells and complement. The outcome of these interactions depends on a range of factors, including antibody isotype-Fc receptor combinations, Fc receptor-bearing cell types and antibody post-translational modifications. A growing body of evidence has shown roles for these Fc-dependent antibody effector functions in determining the outcome of SARS-CoV-2 infection. However, measuring these functions is more complicated than assays that measure antibody binding and virus neutralization. Here, we examine recent data illuminating the roles of Fc-dependent antibody effector functions in the context of SARS-CoV-2 infection, and we discuss the implications of these data for the development of next-generation SARS-CoV-2 vaccines and therapeutics.
Collapse
|
25
|
Sharma S, Tyagi T, Antoniak S. Platelet in thrombo-inflammation: Unraveling new therapeutic targets. Front Immunol 2022; 13:1039843. [PMID: 36451834 PMCID: PMC9702553 DOI: 10.3389/fimmu.2022.1039843] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
In the broad range of human diseases, thrombo-inflammation appears as a clinical manifestation. Clinically, it is well characterized in context of superficial thrombophlebitis that is recognized as thrombosis and inflammation of superficial veins. However, it is more hazardous when developed in the microvasculature of injured/inflamed/infected tissues and organs. Several diseases like sepsis and ischemia-reperfusion can cause formation of microvascular thrombosis subsequently leading to thrombo-inflammation. Thrombo-inflammation can also occur in cases of antiphospholipid syndrome, preeclampsia, sickle cell disease, bacterial and viral infection. One of the major contributors to thrombo-inflammation is the loss of normal anti-thrombotic and anti-inflammatory potential of the endothelial cells of vasculature. This manifest itself in the form of dysregulation of the coagulation pathway and complement system, pathologic platelet activation, and increased recruitment of leukocyte within the microvasculature. The role of platelets in hemostasis and formation of thrombi under pathologic and non-pathologic conditions is well established. Platelets are anucleate cells known for their essential role in primary hemostasis and the coagulation pathway. In recent years, studies provide strong evidence for the critical involvement of platelets in inflammatory processes like acute ischemic stroke, and viral infections like Coronavirus disease 2019 (COVID-19). This has encouraged the researchers to investigate the contribution of platelets in the pathology of various thrombo-inflammatory diseases. The inhibition of platelet surface receptors or their intracellular signaling which mediate initial platelet activation and adhesion might prove to be suitable targets in thrombo-inflammatory disorders. Thus, the present review summarizes the concept and mechanism of platelet signaling and briefly discuss their role in sterile and non-sterile thrombo-inflammation, with the emphasis on role of platelets in COVID-19 induced thrombo-inflammation. The aim of this review is to summarize the recent developments in deciphering the role of the platelets in thrombo-inflammation and discuss their potential as pharmaceutical targets.
Collapse
Affiliation(s)
- Swati Sharma
- UNC Blood Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, United States
| | - Silvio Antoniak
- UNC Blood Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
26
|
Malengier-Devlies B, Filtjens J, Ahmadzadeh K, Boeckx B, Vandenhaute J, De Visscher A, Bernaerts E, Mitera T, Jacobs C, Vanderbeke L, Van Mol P, Van Herck Y, Hermans G, Meersseman P, Wilmer A, Gouwy M, Garg AD, Humblet-Baron S, De Smet F, Martinod K, Wauters E, Proost P, Wouters C, Leclercq G, Lambrechts D, Wauters J, Matthys P. Severe COVID-19 patients display hyper-activated NK cells and NK cell-platelet aggregates. Front Immunol 2022; 13:861251. [PMID: 36275702 PMCID: PMC9581751 DOI: 10.3389/fimmu.2022.861251] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/15/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is characterised by a broad spectrum of clinical and pathological features. Natural killer (NK) cells play an important role in innate immune responses to viral infections. Here, we analysed the phenotype and activity of NK cells in the blood of COVID-19 patients using flow cytometry, single-cell RNA-sequencing (scRNA-seq), and a cytotoxic killing assay. In the plasma of patients, we quantified the main cytokines and chemokines. Our cohort comprises COVID-19 patients hospitalised in a low-care ward unit (WARD), patients with severe COVID-19 disease symptoms hospitalised in intensive care units (ICU), and post-COVID-19 patients, who were discharged from hospital six weeks earlier. NK cells from hospitalised COVID-19 patients displayed an activated phenotype with substantial differences between WARD and ICU patients and the timing when samples were taken post-onset of symptoms. While NK cells from COVID-19 patients at an early stage of infection showed increased expression of the cytotoxic molecules perforin and granzyme A and B, NK cells from patients at later stages of COVID-19 presented enhanced levels of IFN-γ and TNF-α which were measured ex vivo in the absence of usual in vitro stimulation. These activated NK cells were phenotyped as CD49a+CD69a+CD107a+ cells, and their emergence in patients correlated to the number of neutrophils, and plasma IL-15, a key cytokine in NK cell activation. Despite lower amounts of cytotoxic molecules in NK cells of patients with severe symptoms, majority of COVID-19 patients displayed a normal cytotoxic killing of Raji tumour target cells. In vitro stimulation of patients blood cells by IL-12+IL-18 revealed a defective IFN-γ production in NK cells of ICU patients only, indicative of an exhausted phenotype. ScRNA-seq revealed, predominantly in patients with severe COVID-19 disease symptoms, the emergence of an NK cell subset with a platelet gene signature that we identified by flow and imaging cytometry as aggregates of NK cells with CD42a+CD62P+ activated platelets. Post-COVID-19 patients show slow recovery of NK cell frequencies and phenotype. Our study points to substantial changes in NK cell phenotype during COVID-19 disease and forms a basis to explore the contribution of platelet-NK cell aggregates to antiviral immunity against SARS-CoV-2 and disease pathology.
Collapse
Affiliation(s)
- Bert Malengier-Devlies
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jessica Filtjens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Department of Human Genetics, VIB-KU Leuven, Leuven, Belgium
| | - Jessica Vandenhaute
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Amber De Visscher
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eline Bernaerts
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Cato Jacobs
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Pierre Van Mol
- Laboratory of Translational Genetics, Department of Human Genetics, VIB-KU Leuven, Leuven, Belgium
| | - Yannick Van Herck
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Greet Hermans
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Philippe Meersseman
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Alexander Wilmer
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Laboratory for Cell Stress & Immunity (CSI), Department of Cellular and Molecular Medicine (CMM), KU Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Georges Leclercq
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Human Genetics, VIB-KU Leuven, Leuven, Belgium
| | - Joost Wauters
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Schrottmaier WC, Schmuckenschlager A, Pirabe A, Assinger A. Platelets in Viral Infections - Brave Soldiers or Trojan Horses. Front Immunol 2022; 13:856713. [PMID: 35419008 PMCID: PMC9001014 DOI: 10.3389/fimmu.2022.856713] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infections are often associated with platelet activation and haemostatic complications. In line, low platelet counts represent a hallmark for poor prognosis in many infectious diseases. The underlying cause of platelet dysfunction in viral infections is multifaceted and complex. While some viruses directly interact with platelets and/or megakaryocytes to modulate their function, also immune and inflammatory responses directly and indirectly favour platelet activation. Platelet activation results in increased platelet consumption and degradation, which contributes to thrombocytopenia in these patients. The role of platelets is often bi-phasic. Initial platelet hyper-activation is followed by a state of platelet exhaustion and/or hypo-responsiveness, which together with low platelet counts promotes bleeding events. Thereby infectious diseases not only increase the thrombotic but also the bleeding risk or both, which represents a most dreaded clinical complication. Treatment options in these patients are limited and new therapeutic strategies are urgently needed to prevent adverse outcome. This review summarizes the current literature on platelet-virus interactions and their impact on viral pathologies and discusses potential intervention strategies. As pandemics and concomitant haemostatic dysregulations will remain a recurrent threat, understanding the role of platelets in viral infections represents a timely and pivotal challenge.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|