1
|
Alonzi T, Petruccioli E, Aiello A, Repele F, Goletti D. Diagnostic tests for tuberculosis infection and predictive indicators of disease progression: Utilizing host and pathogen biomarkers to enhance the tuberculosis elimination strategies. Int J Infect Dis 2025; 155:107880. [PMID: 40086617 DOI: 10.1016/j.ijid.2025.107880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025] Open
Abstract
Tuberculosis (TB) remains the leading cause of death worldwide from a single infectious disease. An estimated quarter of the world's population, about 2 billion people, has an immune response to Mycobacterium tuberculosis (Mtb) without clinical, microbiological, or radiological signs of TB disease. This condition is known as TB infection (TBI) and carries a lifelong risk of reactivation with 5%-10% of individuals eventually developing TB disease during their lifetime. Interferon-γ release assay and skin-tests are World Health Organization (WHO)-approved tests for TBI diagnosis and allow to identify those needing TB preventive therapy. The WHO End TB Strategy proposes several approaches to mitigate the global burden of TB. Achieving the goal of TB elimination requires improved early diagnosis of TBI individuals at risk of developing TB disease, provision of preventive therapy, and development of new diagnostic tests to address the current limitations. This review provides an update on the tests currently used for TBI diagnosis and offers an overview of experimental tests based on either host response analysis or pathogen detection. Additionally, we briefly report experimental tests, such as those based on host RNA signatures, which can help identifying TBI individuals at high risk of progressing toward TB disease. Although these experimental tests show promise, further investigation and randomized clinical trials are required to establish reliable proof-of-concept.
Collapse
Affiliation(s)
- Tonino Alonzi
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Elisa Petruccioli
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Federica Repele
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.
| |
Collapse
|
2
|
Kelkar NS, Curtis NC, Lahey TP, Wieland-Alter W, Stout JE, Larson EC, Jauro S, Scanga CA, Darrah PA, Roederer M, Seder RA, von Reyn CF, Lee J, Ackerman ME. Humoral correlate of vaccine-mediated protection from tuberculosis identified in humans and non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627012. [PMID: 39713388 PMCID: PMC11661070 DOI: 10.1101/2024.12.05.627012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Development of an effective tuberculosis (TB) vaccine has been challenged by incomplete understanding of specific factors that provide protection against Mycobacterium tuberculosis (Mtb) and the lack of a known correlate of protection (CoP). Using a combination of samples from a vaccine showing efficacy (DarDar [NCT00052195]) and Bacille Calmette-Guerin (BCG)-immunized humans and nonhuman primates (NHP), we identify a humoral CoP that translates across species and vaccine regimens. Antibodies specific to the DarDar vaccine strain (M. obuense) sonicate (MOS) correlate with protection from the efficacy endpoint of definite TB. In humans, antibodies to MOS also scale with vaccine dose, are elicited by BCG vaccination, are observed during TB disease, and demonstrate cross-reactivity with Mtb; in NHP, MOS-specific antibodies scale with dose and serve as a CoP mediated by BCG vaccination. Collectively, this study reports a novel humoral CoP and specific antigenic targets that may be relevant to achieving vaccine-mediated protection from TB.
Collapse
Affiliation(s)
- Natasha S. Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | | | - Timothy P. Lahey
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Wendy Wieland-Alter
- Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH, USA
| | - Jason E. Stout
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Erica C. Larson
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Solomon Jauro
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia A. Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Bethesda, MD, USA
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Bethesda, MD, USA
| | - C. Fordham von Reyn
- Dartmouth International Vaccine Initiative, Geisel School of Medicine, 1 Medical Center Drive, Lebanon, NH, USA
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
3
|
Spatola M, Nziza N, Irvine EB, Cizmeci D, Jung W, Van LH, Nhat LTH, Ha VTN, Phu NH, Ho DTN, Thwaites GE, Lauffenburger DA, Fortune S, Thuong NTT, Alter G. Distinctive antibody responses to Mycobacterium tuberculosis in pulmonary and brain infection. Brain 2024; 147:3247-3260. [PMID: 38442687 PMCID: PMC11370789 DOI: 10.1093/brain/awae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a global health burden. While M. tuberculosis is primarily a respiratory pathogen, it can spread to other organs, including the brain and meninges, causing TB meningitis (TBM). However, little is known about the immunological mechanisms that lead to differential disease across organs. Attention has focused on differences in T cell responses in the control of M. tuberculosis in the lungs, but emerging data point to a role for antibodies, as both biomarkers of disease control and as antimicrobial molecules. Given an increasing appreciation for compartmentalized antibody responses across the blood-brain barrier, here we characterized the antibody profiles across the blood and brain compartments in TBM and determined whether M. tuberculosis-specific humoral immune responses differed between M. tuberculosis infection of the lung (pulmonary TB) and TBM. Using a high throughput systems serology approach, we deeply profiled the antibody responses against 10 different M. tuberculosis antigens, including lipoarabinomannan (LAM) and purified protein derivative (PPD), in HIV-negative adults with pulmonary TB (n = 10) versus TBM (n = 60). Antibody studies included analysis of immunoglobulin isotypes (IgG, IgM, IgA) and subclass levels (IgG1-4) and the capacity of M. tuberculosis-specific antibodies to bind to Fc receptors or C1q and to activate innate immune effector functions (complement and natural killer cell activation; monocyte or neutrophil phagocytosis). Machine learning methods were applied to characterize serum and CSF responses in TBM, identify prognostic factors associated with disease severity, and define the key antibody features that distinguish TBM from pulmonary TB. In individuals with TBM, we identified CSF-specific antibody profiles that marked a unique and compartmentalized humoral response against M. tuberculosis, characterized by an enrichment of M. tuberculosis-specific antibodies able to robustly activate complement and drive phagocytosis by monocytes and neutrophils, all of which were associated with milder TBM severity at presentation. Moreover, individuals with TBM exhibited M. tuberculosis-specific antibodies in the serum with an increased capacity to activate phagocytosis by monocytes, compared with individuals with pulmonary TB, despite having lower IgG titres and Fcγ receptor-binding capacity. Collectively, these data point to functionally divergent humoral responses depending on the site of infection (i.e. lungs versus brain) and demonstrate a highly compartmentalized M. tuberculosis-specific antibody response within the CSF in TBM. Moreover, our results suggest that phagocytosis- and complement-mediating antibodies may promote attenuated neuropathology and milder TBM disease.
Collapse
Affiliation(s)
- Marianna Spatola
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
| | - Nadège Nziza
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
| | - Edward B Irvine
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Deniz Cizmeci
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wonyeong Jung
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Le Hong Van
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
| | - Le Thanh Hoang Nhat
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
| | - Vu Thi Ngoc Ha
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
| | - Nguyen Hoan Phu
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
- Vietnam National University, School of Medicine, 700000 Ho Chi Minh City, Vietnam
| | - Dang Trung Nghia Ho
- Hospital for Tropical Diseases, 700000 Ho Chi Minh City, Vietnam
- Pham Ngoc Thach University of Medicine, 700000 Ho Chi Minh City, Vietnam
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7LG, UK
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7LG, UK
| | - Galit Alter
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Wang Q, Nag D, Baldwin SL, Coler RN, McNamara RP. Antibodies as key mediators of protection against Mycobacterium tuberculosis. Front Immunol 2024; 15:1430955. [PMID: 39286260 PMCID: PMC11402706 DOI: 10.3389/fimmu.2024.1430955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Tuberculosis (TB) is caused by infection with the bacterial pathogen Mycobacterium tuberculosis (M.tb) in the respiratory tract. There was an estimated 10.6 million people newly diagnosed with TB, and there were approximately 1.3 million deaths caused by TB in 2022. Although the global prevalence of TB has remained high for decades and is an annual leading cause of death attributed to infectious diseases, only one vaccine, Bacillus Calmette-Guérin (BCG), has been approved so far to prevent/attenuate TB disease. Correlates of protection or immunological mechanisms that are needed to control M.tb remain unknown. The protective role of antibodies after BCG vaccination has also remained largely unclear; however, recent studies have provided evidence for their involvement in protection against disease, as biomarkers for the state of infection, and as potential predictors of outcomes. Interestingly, the antibodies generated post-vaccination with BCG are linked to the activation of innate immune cascades, providing further evidence that antibody effector functions are critical for protection against respiratory pathogens such as M.tb. In this review, we aim to provide current knowledge of antibody application in TB diagnosis, prevention, and treatment. Particularly, this review will focus on 1) The role of antibodies in preventing M.tb infections through preventing Mtb adherence to epithelium, antibody-mediated phagocytosis, and antibody-mediated cellular cytotoxicity; 2) The M.tb-directed antibody response generated after vaccination and how humoral profiles with different glycosylation patterns of these antibodies are linked with protection against the disease state; and 3) How antibody-mediated immunity against M.tb can be further explored as early diagnosis biomarkers and different detection methods to combat the global M.tb burden. Broadening the paradigm of differentiated antibody profiling and antibody-based detection during TB disease progression offers new directions for diagnosis, treatment, and preventative strategies. This approach involves linking the aforementioned humoral responses with the disease state, progression, and clearance.
Collapse
Affiliation(s)
- Qixin Wang
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| | - Deepika Nag
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Susan L. Baldwin
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Ryan P. McNamara
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
5
|
Cooper SK, Ackart DF, Lanni F, Henao-Tamayo M, Anderson GB, Podell BK. Heterogeneity in immune cell composition is associated with Mycobacterium tuberculosis replication at the granuloma level. Front Immunol 2024; 15:1427472. [PMID: 39253081 PMCID: PMC11381408 DOI: 10.3389/fimmu.2024.1427472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024] Open
Abstract
The control of bacterial growth is key to the prevention and treatment of tuberculosis (TB). Granulomas represent independent foci of the host immune response that present heterogeneous capacity for control of bacterial growth. At the whole tissue level, B cells and CD4 or CD8 T cells have an established role in immune protection against TB. Immune cells interact within each granuloma response, but the impact of granuloma immune composition on bacterial replication remains unknown. Here we investigate the associations between immune cell composition, including B cell, CD4, and CD8 T cells, and the state of replicating Mycobacterium tuberculosis (Mtb) within the granuloma. A measure of ribosomal RNA synthesis, the RS ratio®, represents a proxy measure of Mtb replication at the whole tissue level. We adapted the RS ratio through use of in situ hybridization, to identify replicating and non-replicating Mtb within each designated granuloma. We applied a regression model to characterize the associations between immune cell populations and the state of Mtb replication within each respective granuloma. In the evaluation of nearly 200 granulomas, we identified heterogeneity in both immune cell composition and proportion of replicating bacteria. We found clear evidence of directional associations between immune cell composition and replicating Mtb. Controlling for vaccination status and endpoint post-infection, granulomas with lower CD4 or higher CD8 cell counts are associated with a higher percent of replicating Mtb. Conversely, changes in B cell proportions were associated with little change in Mtb replication. This study establishes heterogeneity across granulomas, demonstrating that certain immune cell types are differentially associated with control of Mtb replication. These data suggest that evaluation at the granuloma level may be imperative to identifying correlates of immune protection.
Collapse
Affiliation(s)
- Sarah K Cooper
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - David Forrest Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - Faye Lanni
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - Marcela Henao-Tamayo
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - G Brooke Anderson
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
- Consortium for Applied Microbial Metrics, Aurora, CO, United States
| |
Collapse
|
6
|
Li X, Zhao W, Han H, Yang Z, Bi F, He Y. Retrospective analysis of the clinical utility of multi-cytokine profiles in smear-negative pulmonary tuberculosis. Saudi Med J 2024; 45:658-666. [PMID: 38955446 PMCID: PMC11237276 DOI: 10.15537/smj.2024.45.7.20240310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVES To evaluate cytokine profiles and interferon-gamma release assay (IGRA) for their diagnostic capabilities in the differentiation of tuberculosis (TB) from non-TB conditions, as well as smear-negative pulmonary tuberculosis (SNPT) from smear-positive pulmonary tuberculosis (SPPT). METHODS A total of 125 participants were included, 77 of whom had TB and 48 who didn't, and demographic, clinical, and laboratory data were collected, including cytokine levels and IGRA results. The TB patients were further divided into 2 subgroups: SNPT (n=42) and SPPT (n=35). RESULTS Compared to non-TB, the TB group had lower BMI, higher WBC, neutrophils, monocytes, ESR and CRP (p<0.05). TB patients showed higher IL-2, IL-6, IFN-γ, IL-8 (p<0.001) and higher IGRA positivity (88.3% versus [vs.] 29.2%, p<0.001). Between SNPT and SPPT, moderate effect sizes were observed for IFN-α, IL-2, IL-10, IL-8 (Cohen's d 0.59-0.76), with lower IGRA positivity in SNPT (81.0% vs. 97.1%, p=0.015). ROC analysis indicated IFN-α, IL-2, IL-10, IL-8 had moderate accuracy for SNPT diagnosis (AUCs 0.668-0.734), and combining these improved accuracy (AUC 0.759, 80% sensitivity, 64.2% specificity). CONCLUSION A multi-biomarker approach combining these cytokines demonstrates enhanced diagnostic accuracy for tuberculosis.
Collapse
Affiliation(s)
- Xuemei Li
- From the Department of Clinical Laboratory (Li, Han, Yang, Bi, He), First Affiliated Hospital of Dali University; from the Department of Clinical Laboratory (Zhao), School of Clinical Medicine, Dali University, Dali, Yunnan, China; and from the Department of Clinical Laboratory (Zhao), Second Infectious Disease Hospital of Yunnan Province, Dali, Yunnan, China.
| | - Weidong Zhao
- From the Department of Clinical Laboratory (Li, Han, Yang, Bi, He), First Affiliated Hospital of Dali University; from the Department of Clinical Laboratory (Zhao), School of Clinical Medicine, Dali University, Dali, Yunnan, China; and from the Department of Clinical Laboratory (Zhao), Second Infectious Disease Hospital of Yunnan Province, Dali, Yunnan, China.
| | - Hong Han
- From the Department of Clinical Laboratory (Li, Han, Yang, Bi, He), First Affiliated Hospital of Dali University; from the Department of Clinical Laboratory (Zhao), School of Clinical Medicine, Dali University, Dali, Yunnan, China; and from the Department of Clinical Laboratory (Zhao), Second Infectious Disease Hospital of Yunnan Province, Dali, Yunnan, China.
| | - Zhi Yang
- From the Department of Clinical Laboratory (Li, Han, Yang, Bi, He), First Affiliated Hospital of Dali University; from the Department of Clinical Laboratory (Zhao), School of Clinical Medicine, Dali University, Dali, Yunnan, China; and from the Department of Clinical Laboratory (Zhao), Second Infectious Disease Hospital of Yunnan Province, Dali, Yunnan, China.
| | - Fengqing Bi
- From the Department of Clinical Laboratory (Li, Han, Yang, Bi, He), First Affiliated Hospital of Dali University; from the Department of Clinical Laboratory (Zhao), School of Clinical Medicine, Dali University, Dali, Yunnan, China; and from the Department of Clinical Laboratory (Zhao), Second Infectious Disease Hospital of Yunnan Province, Dali, Yunnan, China.
| | - Yingchun He
- From the Department of Clinical Laboratory (Li, Han, Yang, Bi, He), First Affiliated Hospital of Dali University; from the Department of Clinical Laboratory (Zhao), School of Clinical Medicine, Dali University, Dali, Yunnan, China; and from the Department of Clinical Laboratory (Zhao), Second Infectious Disease Hospital of Yunnan Province, Dali, Yunnan, China.
| |
Collapse
|
7
|
Davies LRL, Wang C, Steigler P, Bowman KA, Fischinger S, Hatherill M, Fisher M, Mbandi SK, Rodo M, Ottenhoff THM, Dockrell HM, Sutherland JS, Mayanja-Kizza H, Boom WH, Walzl G, Kaufmann SHE, Nemes E, Scriba TJ, Lauffenburger D, Alter G, Fortune SM. Age and sex influence antibody profiles associated with tuberculosis progression. Nat Microbiol 2024; 9:1513-1525. [PMID: 38658786 PMCID: PMC11153143 DOI: 10.1038/s41564-024-01678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Antibody features vary with tuberculosis (TB) disease state. Whether clinical variables, such as age or sex, influence associations between Mycobacterium tuberculosis-specific antibody responses and disease state is not well explored. Here we profiled Mycobacterium tuberculosis-specific antibody responses in 140 TB-exposed South African individuals from the Adolescent Cohort Study. We identified distinct response features in individuals progressing to active TB from non-progressing, matched controls. A multivariate antibody score differentially associated with progression (SeroScore) identified progressors up to 2 years before TB diagnosis, earlier than that achieved with the RISK6 transcriptional signature of progression. We validated these antibody response features in the Grand Challenges 6-74 cohort. Both the SeroScore and RISK6 correlated better with risk of TB progression in adolescents compared with adults, and in males compared with females. This suggests that age and sex are important, underappreciated modifiers of antibody responses associated with TB progression.
Collapse
Affiliation(s)
- Leela R L Davies
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Chuangqi Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pia Steigler
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kathryn A Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | | | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michelle Fisher
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Miguel Rodo
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Hazel M Dockrell
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Harriet Mayanja-Kizza
- Department of Medicine and Department of Microbiology, Makerere University, Kampala, Uganda
| | - W Henry Boom
- Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH, USA
| | - Gerhard Walzl
- Department of Science and Technology National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
- Moderna Therapeutics, Cambridge, MA, USA.
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
8
|
Sun X, Li W, Zhao L, Fan K, Qin F, Shi L, Gao F, Zheng C. Current landscape of exosomes in tuberculosis development, diagnosis, and treatment applications. Front Immunol 2024; 15:1401867. [PMID: 38846947 PMCID: PMC11153741 DOI: 10.3389/fimmu.2024.1401867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Tuberculosis (TB), caused by the bacterial pathogen Mycobacterium tuberculosis (MTB), remains one of the most prevalent and deadly infectious diseases worldwide. Currently, there are complex interactions between host cells and pathogens in TB. The onset, progression, and regression of TB are correlated not only with the virulence of MTB but also with the immunity of TB patients. Exosomes are cell-secreted membrane-bound nanovesicles with lipid bilayers that contain a variety of biomolecules, such as metabolites, lipids, proteins, and nucleic acids. Exosome-mediated cell-cell communication and interactions with the microenvironment represent crucial mechanisms through which exosomes exert their functional effects. Exosomes harbor a wide range of regulatory roles in physiological and pathological conditions, including MTB infection. Exosomes can regulate the immune response, metabolism, and cellular death to remodel the progression of MTB infection. During MTB infection, exosomes display distinctive profiles and quantities that may act as diagnostic biomarkers, suggesting that exosomes provide a revealing glimpse into the evolving landscape of MTB infections. Furthermore, exosomes derived from MTB and mesenchymal stem cells can be harnessed as vaccine platforms and drug delivery vehicles for the precise targeting and treatment of TB. In this review, we highlight the functions and mechanisms through which exosomes influence the progression of TB. Additionally, we unravel the critical significance of exosomal constituents in the diagnosis and therapeutic applications of TB, aiming to offer novel perspectives and strategies for combating TB.
Collapse
Affiliation(s)
- Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
9
|
Pipitò L, Ricci ED, Maggi P, De Socio GV, Pellicano GF, Trizzino M, Rubino R, Lanzi A, Crupi L, Capriglione I, Squillace N, Nunnari G, Di Biagio A, Bonfanti P, Cascio A. Screening for Latent Tuberculosis Infection in People Living with HIV: TUBHIVIT Project, a Multicenter Italian Study. Viruses 2024; 16:777. [PMID: 38793658 PMCID: PMC11125621 DOI: 10.3390/v16050777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The coexistence of HIV infection and latent tuberculosis infection (LTBI) presents a significant public health concern due to the increased risk of tuberculosis (TB) reactivation and progression to active disease. The multicenter observational cohort study, TUBHIVIT, conducted in Italy from 2017 to 2023, aimed to assess the prevalence of LTBI among people living with HIV (PLHIV) and their outcomes following LTBI screening and therapy initiation. METHODS We performed a prospective study in five referral centers for HIV care in Italy. PLHIV who consented Tto participate underwent QuantiFERON-TB Gold Plus and clinical, microbiological, and radiological assessments to exclude subclinical tuberculosis, as opportune. PLHIV diagnosed with LTBI who started chemoprophylaxis were followed until the end of therapy. RESULTS A total of 1105 PLHIV were screened for LTBI using the QuantiFERON-TB Gold Plus test, revealing a prevalence of 3.4% of positive results (38/1105). Non-Italy-born individuals exhibited a significantly higher likelihood of testing positive. Thirty-one were diagnosed with LTBI, 1 showed active subclinical TB, and 6 were lost to follow-up before discriminating between latent and active TB. Among the PLHIV diagnosed with LTBI, 83.9% (26/31) started chemoprophylaxis. Most individuals received 6-9 months of isoniazid-based therapy. Of the 26 PLHIV commencing chemoprophylaxis, 18 (69.2%) completed the therapy, while 3 discontinued it and 5 were still on treatment at the time of the analysis. Adverse events were observed in two cases, while in one case the patient refused to continue the treatment.
Collapse
Affiliation(s)
- Luca Pipitò
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (L.P.); (M.T.); (R.R.)
- Infectious and Tropical Disease Unit, AOU Policlinico “P. Giaccone”, Via del Vespro 129, 90127 Palermo, Italy
| | | | - Paolo Maggi
- Infectious Diseases Unit, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy; (P.M.); (I.C.)
| | | | | | - Marcello Trizzino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (L.P.); (M.T.); (R.R.)
| | - Raffaella Rubino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (L.P.); (M.T.); (R.R.)
| | - Alessandra Lanzi
- Unit of Infectious Diseases, Santa Maria Hospital, 06156 Perugia, Italy; (G.V.D.S.); (A.L.)
| | - Lorenzo Crupi
- Infectious Diseases, San Martino Hospital Genoa, University of Genoa, 16131 Genoa, Italy; (L.C.); (A.D.B.)
| | - Ilaria Capriglione
- Infectious Diseases Unit, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy; (P.M.); (I.C.)
| | - Nicola Squillace
- Infectious Diseases Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (N.S.); (P.B.)
| | - Giuseppe Nunnari
- Infectious Diseases, G. Martino Hospital-University of Messina, 98147 Messina, Italy; (G.F.P.); (G.N.)
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, 95122 Catania, Italy
| | - Antonio Di Biagio
- Infectious Diseases, San Martino Hospital Genoa, University of Genoa, 16131 Genoa, Italy; (L.C.); (A.D.B.)
| | - Paolo Bonfanti
- Infectious Diseases Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (N.S.); (P.B.)
- Department of Medicine, University of Milano-Bicocca, 20126 Milano, Italy
| | - Antonio Cascio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (L.P.); (M.T.); (R.R.)
- Infectious and Tropical Disease Unit, AOU Policlinico “P. Giaccone”, Via del Vespro 129, 90127 Palermo, Italy
| |
Collapse
|
10
|
Neudecker D, Fritschi N, Sutter T, Lu LL, Lu P, Tebruegge M, Santiago-Garcia B, Ritz N. Evaluation of serological assays for the diagnosis of childhood tuberculosis disease: a study protocol. BMC Infect Dis 2024; 24:481. [PMID: 38730343 PMCID: PMC11084122 DOI: 10.1186/s12879-024-09359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) poses a major public health challenge, particularly in children. A substantial proportion of children with TB disease remain undetected and unconfirmed. Therefore, there is an urgent need for a highly sensitive point-of-care test. This study aims to assess the performance of serological assays based on various antigen targets and antibody properties in distinguishing children (0-18 years) with TB disease (1) from healthy TB-exposed children, (2) children with non-TB lower respiratory tract infections, and (3) from children with TB infection. METHODS The study will use biobanked plasma samples collected from three prospective multicentric diagnostic observational studies: the Childhood TB in Switzerland (CITRUS) study, the Pediatric TB Research Network in Spain (pTBred), and the Procalcitonin guidance to reduce antibiotic treatment of lower respiratory tract infections in children and adolescents (ProPAED) study. Included are children diagnosed with TB disease or infection, healthy TB-exposed children, and sick children with non-TB lower respiratory tract infection. Serological multiplex assays will be performed to identify M. tuberculosis antigen-specific antibody features, including isotypes, subclasses, Fc receptor (FcR) binding, and IgG glycosylation. DISCUSSION The findings from this study will help to design serological assays for diagnosing TB disease in children. Importantly, those assays could easily be developed as low-cost point-of-care tests, thereby offering a potential solution for resource-constrained settings. CLINICALTRIALS GOV IDENTIFIER NCT03044509.
Collapse
Affiliation(s)
- Daniela Neudecker
- Mycobacterial and Migrant Health Research Group, Department of Clinical Research, University of Basel Children's Hospital Basel, University of Basel, Spitalstrasse 33, Basel, CH-4031, Switzerland
| | - Nora Fritschi
- Mycobacterial and Migrant Health Research Group, Department of Clinical Research, University of Basel Children's Hospital Basel, University of Basel, Spitalstrasse 33, Basel, CH-4031, Switzerland
- University of Basel Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Thomas Sutter
- Department of Computer Science, Medical Data Science, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Lenette L Lu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
- Parkland Health and Hospital System, Dallas, TX, USA
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Pei Lu
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marc Tebruegge
- Department of Paediatrics, The Royal Children's Hospital Melbourne, The University of Melbourne, Parkville, Australia
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatrics & National Reference Centre for Paediatric TB, Klinik Ottakring, Vienna Healthcare Group, Vienna, Austria
| | - Begoña Santiago-Garcia
- Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Madrid, Spain
- Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBER INFEC), Instituto de Salud Carlos III, Madrid, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Nicole Ritz
- Mycobacterial and Migrant Health Research Group, Department of Clinical Research, University of Basel Children's Hospital Basel, University of Basel, Spitalstrasse 33, Basel, CH-4031, Switzerland.
- Department of Paediatrics, The Royal Children's Hospital Melbourne, The University of Melbourne, Parkville, Australia.
- Paediatric Infectious Diseases Unit, Children's Hospital, Lucerne Cantonal Hospital, Lucerne, Switzerland.
| |
Collapse
|
11
|
McIntyre S, Warner J, Rush C, Vanderven HA. Antibodies as clinical tools for tuberculosis. Front Immunol 2023; 14:1278947. [PMID: 38162666 PMCID: PMC10755875 DOI: 10.3389/fimmu.2023.1278947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of morbidity and mortality worldwide. Global research efforts to improve TB control are hindered by insufficient understanding of the role that antibodies play in protective immunity and pathogenesis. This impacts knowledge of rational and optimal vaccine design, appropriate diagnostic biomarkers, and development of therapeutics. Traditional approaches for the prevention and diagnosis of TB may be less efficacious in high prevalence, remote, and resource-poor settings. An improved understanding of the immune response to the causative agent of TB, Mycobacterium tuberculosis (Mtb), will be crucial for developing better vaccines, therapeutics, and diagnostics. While memory CD4+ T cells and cells and cytokine interferon gamma (IFN-g) have been the main identified correlates of protection in TB, mounting evidence suggests that other types of immunity may also have important roles. TB serology has identified antibodies and functional characteristics that may help diagnose Mtb infection and distinguish between different TB disease states. To date, no serological tests meet the World Health Organization (WHO) requirements for TB diagnosis, but multiplex assays show promise for improving the sensitivity and specificity of TB serodiagnosis. Monoclonal antibody (mAb) therapies and serum passive infusion studies in murine models of TB have also demonstrated some protective outcomes. However, animal models that better reflect the human immune response to Mtb are necessary to fully assess the clinical utility of antibody-based TB prophylactics and therapeutics. Candidate TB vaccines are not designed to elicit an Mtb-specific antibody response, but evidence suggests BCG and novel TB vaccines may induce protective Mtb antibodies. The potential of the humoral immune response in TB monitoring and control is being investigated and these studies provide important insight into the functional role of antibody-mediated immunity against TB. In this review, we describe the current state of development of antibody-based clinical tools for TB, with a focus on diagnostic, therapeutic, and vaccine-based applications.
Collapse
Affiliation(s)
- Sophie McIntyre
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Jeffrey Warner
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Catherine Rush
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Hillary A. Vanderven
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Kaufmann SHE. Vaccine development against tuberculosis before and after Covid-19. Front Immunol 2023; 14:1273938. [PMID: 38035095 PMCID: PMC10684952 DOI: 10.3389/fimmu.2023.1273938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease (Covid-19) has not only shaped awareness of the impact of infectious diseases on global health. It has also provided instructive lessons for better prevention strategies against new and current infectious diseases of major importance. Tuberculosis (TB) is a major current health threat caused by Mycobacterium tuberculosis (Mtb) which has claimed more lives than any other pathogen over the last few centuries. Hence, better intervention measures, notably novel vaccines, are urgently needed to accomplish the goal of the World Health Organization to end TB by 2030. This article describes how the research and development of TB vaccines can benefit from recent developments in the Covid-19 vaccine pipeline from research to clinical development and outlines how the field of TB research can pursue its own approaches. It begins with a brief discussion of major vaccine platforms in general terms followed by a short description of the most widely applied Covid-19 vaccines. Next, different vaccination regimes and particular hurdles for TB vaccine research and development are described. This specifically considers the complex immune mechanisms underlying protection and pathology in TB which involve innate as well as acquired immune mechanisms and strongly depend on fine tuning the response. A brief description of the TB vaccine candidates that have entered clinical trials follows. Finally, it discusses how experiences from Covid-19 vaccine research, development, and rollout can and have been applied to the TB vaccine pipeline, emphasizing similarities and dissimilarities.
Collapse
Affiliation(s)
- Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Systems Immunology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Larson EC, Ellis-Connell AL, Rodgers MA, Gubernat AK, Gleim JL, Moriarty RV, Balgeman AJ, Ameel CL, Jauro S, Tomko JA, Kracinovsky KB, Maiello P, Borish HJ, White AG, Klein E, Bucsan AN, Darrah PA, Seder RA, Roederer M, Lin PL, Flynn JL, O'Connor SL, Scanga CA. Intravenous Bacille Calmette-Guérin vaccination protects simian immunodeficiency virus-infected macaques from tuberculosis. Nat Microbiol 2023; 8:2080-2092. [PMID: 37814073 PMCID: PMC10627825 DOI: 10.1038/s41564-023-01503-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is the most common cause of death in people living with human immunodeficiency virus (HIV). Intra-dermal Bacille Calmette-Guérin (BCG) delivery is the only licensed vaccine against tuberculosis; however, it offers little protection from pulmonary tuberculosis in adults and is contraindicated in people living with HIV. Intravenous BCG confers protection against Mtb infection in rhesus macaques; we hypothesized that it might prevent tuberculosis in simian immunodeficiency virus (SIV)-infected macaques, a model for HIV infection. Here intravenous BCG-elicited robust airway T cell influx and elevated plasma and airway antibody titres in both SIV-infected and naive animals. Following Mtb challenge, all 7 vaccinated SIV-naive and 9 out of 12 vaccinated SIV-infected animals were protected, without any culturable bacteria detected from tissues. Peripheral blood mononuclear cell responses post-challenge indicated early clearance of Mtb in vaccinated animals, regardless of SIV infection. These data support that intravenous BCG is immunogenic and efficacious in SIV-infected animals.
Collapse
Affiliation(s)
- Erica C Larson
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amy L Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abigail K Gubernat
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janelle L Gleim
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan V Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Alexis J Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Cassaundra L Ameel
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Solomon Jauro
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kara B Kracinovsky
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - H Jake Borish
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison N Bucsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Palanivel J, Sounderrajan V, Thangam T, Rao SS, Harshavardhan S, Parthasarathy K. Latent Tuberculosis: Challenges in Diagnosis and Treatment, Perspectives, and the Crucial Role of Biomarkers. Curr Microbiol 2023; 80:392. [PMID: 37884822 DOI: 10.1007/s00284-023-03491-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
Tuberculosis (TB) is the major cause of morbidity and mortality globally, which is caused by a single infectious agent Mycobacterium tuberculosis. For years, many TB control programmes are established for effective diagnosis and treatment of active TB cases, but these approaches alone are insufficient for TB eradication. This review aims to discourse on the crucial management of latent tuberculosis infection. This review will first summarize the current status, and methods for diagnosing latent tuberculosis then describes the challenges involved in the diagnosis and treatment of latent tuberculosis, and finally encounters the purpose of biomarkers as predicting tool in latent tuberculosis.
Collapse
Affiliation(s)
- Jayanthi Palanivel
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India
| | - Vignesh Sounderrajan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India
| | - T Thangam
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India
| | - Sudhanarayani S Rao
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India
| | - Shakila Harshavardhan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Krupakar Parthasarathy
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India.
| |
Collapse
|
15
|
Alonzi T, Repele F, Goletti D. Research tests for the diagnosis of tuberculosis infection. Expert Rev Mol Diagn 2023; 23:783-795. [PMID: 37561602 DOI: 10.1080/14737159.2023.2240230] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Despite huge efforts, tuberculosis (TB) is still a major public health threat worldwide, it is estimated that a quarter of the global population is infected by Mycobacterium tuberculosis (Mtb). For controlling TB and reducing Mtb transmission it is fundamental to diagnose TB infection (TBI) as well as the progressors from TBI to disease to identify those requiring preventive therapy. At present, there is no gold standard test for TBI diagnosis although several new methodologies have been attempted. AREAS COVERED This review provides an update on the most recent approaches to develop reliable tests to diagnose TBI and progressors from infection to disease. Experimental tests are based on either the direct identification of Mtb (i.e., Mtb DNA upon host cells isolation; Mtb proteins or peptides) or host response (i.e., levels and quality of specific anti-Mtb antibodies; host blood transcriptome signatures). EXPERT OPINION The experimental tests described are very interesting. However, further investigation and randomized clinical trials are needed to improve the sensitivity and specificity of these new research-based tests. More reliable proofs-of-concept and simplification of technical procedures are necessary to develop new diagnostic tools for identifying TBI patients and those that will progress from infection to TB disease.
Collapse
Affiliation(s)
- Tonino Alonzi
- Translational Research Unit, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases L. Spallanzani-IRCCS, Rome, Italy
| | - Federica Repele
- Translational Research Unit, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases L. Spallanzani-IRCCS, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases L. Spallanzani-IRCCS, Rome, Italy
| |
Collapse
|
16
|
Flores-Gonzalez J, Ramón-Luing LA, Romero-Tendilla J, Urbán-Solano A, Cruz-Lagunas A, Chavez-Galan L. Latent Tuberculosis Patients Have an Increased Frequency of IFN-γ-Producing CD5+ B Cells, Which Respond Efficiently to Mycobacterial Proteins. Pathogens 2023; 12:818. [PMID: 37375508 DOI: 10.3390/pathogens12060818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Tuberculosis (TB) remains a public health problem worldwide and is one of the deadliest infectious diseases, only after the current COVID-19 pandemic. Despite significant advances in the TB field, there needs to be more immune response comprehension; for instance, the role played by humoral immunity is still controversial. This study aimed to identify the frequency and function of B1 and immature/transitional B cells in patients with active and latent TB (ATB and LTB, respectively). Here we show that LTB patients have an increased frequency of CD5+ B cells and decreased CD10+ B cells. Furthermore, LTB patients stimulated with mycobacteria's antigens increase the frequency of IFN-γ-producing B cells, whereas cells from ATB do not respond. Moreover, under the mycobacterial protein stimulus, LTB promotes a pro-inflammatory environment characterized by a high level of IFN-γ but also can produce IL-10. Regarding the ATB group, they cannot produce IFN-γ, and mycobacterial lipids and proteins stimulate only the IL-10 production. Finally, our data showed that in ATB, but not in LTB, B cell subsets correlate with clinical and laboratory parameters, suggesting that these CD5+ and CD10+ B cell subpopulations have the potential to be biomarkers to differentiate between LTB and ATB. In conclusion, LTB has increased CD5+ B cells, and these cells can maintain a rich microenvironment of IFN-γ, IL-10, and IL-4. In contrast, ATB only maintains an anti-inflammatory environment when stimulated with mycobacterial proteins or lipids.
Collapse
Affiliation(s)
- Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Lucero A Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Jesus Romero-Tendilla
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Alexia Urbán-Solano
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| |
Collapse
|
17
|
Nziza N, Jung W, Mendu M, Chen T, McNamara RP, Fortune SM, Franken KLMC, Ottenhoff THM, Bryson B, Ngonzi J, Bebell LM, Alter G. Maternal HIV infection drives altered placental Mtb-specific antibody transfer. Front Microbiol 2023; 14:1171990. [PMID: 37228375 PMCID: PMC10203169 DOI: 10.3389/fmicb.2023.1171990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Placental transfer of maternal antibodies is essential for neonatal immunity over the first months of life. In the setting of maternal HIV infection, HIV-exposed uninfected (HEU) infants are at higher risk of developing severe infections, including active tuberculosis (TB). Given our emerging appreciation for the potential role of antibodies in the control of Mycobacterium tuberculosis (Mtb), the bacteria that causes TB, here we aimed to determine whether maternal HIV status altered the quality of Mtb-specific placental antibody transfer. Methods Antigen-specific antibody systems serology was performed to comprehensively characterize the Mtb-specific humoral immune response in maternal and umbilical cord blood from HIV infected and uninfected pregnant people in Uganda. Results Significant differences were noted in overall antibody profiles in HIV positive and negative maternal plasma, resulting in heterogeneous transfer of Mtb-specific antibodies. Altered antibody transfer in HIV infected dyads was associated with impaired binding to IgG Fc-receptors, which was directly linked to HIV viral loads and CD4 counts. Conclusions These results highlight the importance of maternal HIV status on antibody transfer, providing clues related to alterations in transferred maternal immunity that may render HEU infants more vulnerable to TB than their HIV-unexposed peers.
Collapse
Affiliation(s)
- Nadege Nziza
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Maanasa Mendu
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA, United States
| | - Tina Chen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Sarah M. Fortune
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Kees L. M. C. Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Bryan Bryson
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joseph Ngonzi
- Department of Obstetrics and Gynecology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Lisa M. Bebell
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, MA, United States
- Center for Global Health, Massachusetts General Hospital, Boston, MA, United States
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
18
|
Larson EC, Ellis-Connell AL, Rodgers MA, Gubernat AK, Gleim JL, Moriarty RV, Balgeman AJ, Ameel CL, Jauro S, Tomko JA, Kracinovsky KB, Maiello P, Borish HJ, White AG, Klein E, Bucsan AN, Darrah PA, Seder RA, Roederer M, Lin PL, Flynn JL, O'Connor SL, Scanga CA. Vaccination with intravenous BCG protects macaques with pre-existing SIV infection from tuberculosis. RESEARCH SQUARE 2023:rs.3.rs-2802306. [PMID: 37090620 PMCID: PMC10120779 DOI: 10.21203/rs.3.rs-2802306/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Tuberculosis (TB) is the most common cause of death in people living with HIV. BCG delivered intradermally (ID) is the only licensed vaccine to prevent TB. However, it offers little protection from pulmonary TB in adults. Intravenous (IV) BCG, but not ID BCG, confers striking protection against Mycobacterium tuberculosis (Mtb) infection and disease in rhesus macaques. We investigated whether IV BCG could protect against TB in macaques with a pre-existing SIV infection. There was a robust influx of airway T cells following IV BCG in both SIV-infected and SIV-naïve animals, with elevated antibody titers in plasma and airways. Following Mtb challenge, all 7 SIV-naïve and 9 out of 12 SIV-infected vaccinated animals were completely protected, without any culturable bacilli in their tissues. PBMC responses post-challenge indicated early clearance of Mtb in vaccinated animals regardless of SIV infection. These data support that IV BCG is immunogenic and efficacious in SIV-infected animals.
Collapse
Affiliation(s)
- Erica C Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Amy L Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Abigail K Gubernat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Janelle L Gleim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Ryan V Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Alexis J Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Cassaundra L Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Solomon Jauro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Kara B Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - H Jake Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, PA, USA
| | - Allison N Bucsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Madison, WI, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Rais M, Abdelaal H, Reese VA, Ferede D, Larsen SE, Pecor T, Erasmus JH, Archer J, Khandhar AP, Cooper SK, Podell BK, Reed SG, Coler RN, Baldwin SL. Immunogenicity and protection against Mycobacterium avium with a heterologous RNA prime and protein boost vaccine regimen. Tuberculosis (Edinb) 2023; 138:102302. [PMID: 36586154 PMCID: PMC10361416 DOI: 10.1016/j.tube.2022.102302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Prophylactic efficacy of two different delivery platforms for vaccination against Mycobacterium avium (M. avium) were tested in this study; a subunit and an RNA-based vaccine. The vaccine antigen, ID91, includes four mycobacterial antigens: Rv3619, Rv2389, Rv3478, and Rv1886. We have shown that ID91+GLA-SE is effective against a clinical NTM isolate, M. avium 2-151 smt. Here, we extend these results and show that a heterologous prime/boost strategy with a repRNA-ID91 (replicon RNA) followed by protein ID91+GLA-SE boost is superior to the subunit protein vaccine given as a homologous prime/boost regimen. The repRNA-ID91/ID91+GLA-SE heterologous regimen elicited a higher polyfunctional CD4+ TH1 immune response when compared to the homologous protein prime/boost regimen. More significantly, among all the vaccine regimens tested only repRNA-ID91/ID91+GLA-SE induced IFN-γ and TNF-secreting CD8+ T cells. Furthermore, the repRNA-ID91/ID91+GLA-SE vaccine strategy elicited high systemic proinflammatory cytokine responses and induced strong ID91 and an Ag85B-specific humoral antibody response a pre- and post-challenge with M. avium 2-151 smt. Finally, while all prophylactic prime/boost vaccine regimens elicited a degree of protection in beige mice, the heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen provided greater pulmonary protection than the homologous protein prime/boost regimen. These data indicate that a prophylactic heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen augments immunogenicity and confers protection against M. avium.
Collapse
Affiliation(s)
- Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Hazem Abdelaal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Valerie A Reese
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Debora Ferede
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Tiffany Pecor
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | | | | | - Sarah K Cooper
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Brendan K Podell
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA; Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Susan L Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA.
| |
Collapse
|
20
|
Yan Z, Wang X, Yi L, Yang B, Wei P, Ruan H, Wang J, Yang X, Zhang H. Enhanced Serum IgG Detection Potential Using 38KD-MPT32-MPT64, CFP10-Mtb81-EspC Fusion Protein and Lipoarabinomannan (LAM) for Human Tuberculosis. Pathogens 2022; 11:pathogens11121545. [PMID: 36558879 PMCID: PMC9787591 DOI: 10.3390/pathogens11121545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
For the rapid, reliable, and cost-effective methods of tuberculosis (TB) auxiliary diagnosis, antibody (Ab) detection to multiple antigens of Mycobacterium tuberculosis (Mtb) has great potential; however, this methodology requires optimization. We constructed 38KD-MPT32-MPT64, CFP10-Mtb81-EspC, and Ag85B-HBHA fusion proteins and evaluated the serum Ab response to these fusion proteins and to lipoarabinomannan (LAM) by ELISA in 50 TB patients and 17 non-TB subjects. IgG responses to the three fusion proteins and to LAM were significantly higher in TB patients, especially in Xpert Mtb-positive TB patients (TB-Xpert+), than in non-TB subjects. Only the anti-38KD-MPT32-MPT64 Ab showed higher levels in the Xpert Mtb-negative TB patients (TB-Xpert-) than in the non-TB, and only the anti-LAM Ab showed higher levels in the TB-Xpert+ group than in the TB-Xpert- group. Anti-Ag85B-HBHA Ab-positive samples could be accurately identified using 38KD-MPT32-MPT64. The combination of 38KD-MPT32-MPT64, CFP10-Mtb81-EspC, and LAM conferred definite complementarity for the serum IgG detection of TB, with relatively high sensitivity (74.0%) and specificity (88.2%). These data suggest that the combination of 38KD-MPT32-MPT64, CFP10-Mtb81-EspC, and LAM antigens provided a basis for IgG detection and for evaluation of the humoral immune response in patients with TB.
Collapse
Affiliation(s)
- Zhuohong Yan
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Xiaojue Wang
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Ling Yi
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Bin Yang
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Panjian Wei
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Hongyun Ruan
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Jinghui Wang
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Xinting Yang
- The Third Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
- Correspondence: (X.Y.); (H.Z.)
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
- Correspondence: (X.Y.); (H.Z.)
| |
Collapse
|
21
|
Cheng P, Xue Y, Wang J, Jia Z, Wang L, Gong W. Evaluation of the consistence between the results of immunoinformatics predictions and real-world animal experiments of a new tuberculosis vaccine MP3RT. Front Cell Infect Microbiol 2022; 12:1047306. [PMID: 36405961 PMCID: PMC9666678 DOI: 10.3389/fcimb.2022.1047306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Background Our previous study developed a novel peptide-based vaccine, MP3RT, to fight against tuberculosis (TB) infection in a mouse model. However, the consistency between the immunoinformatics predictions and the results of real-world animal experiments on the MP3RT vaccine remains unclear. Method In this study, we predicted the antigenicity, immunogenicity, physicochemical parameters, secondary structure, and tertiary structure of MP3RT using bioinformatics technologies. The immune response properties of the MP3RT vaccine were then predicted using the C-ImmSim server. Finally, humanized mice were used to verify the characteristics of the humoral and cellular immune responses induced by the MP3RT vaccine. Results MP3RT is a non-toxic and non-allergenic vaccine with an antigenicity index of 0.88 and an immunogenicity index of 0.61, respectively. Our results showed that the MP3RT vaccine contained 53.36% α-helix in the secondary structure, and the favored region accounted for 98.22% in the optimized tertiary structure. The binding affinities of the MP3RT vaccine to the human leukocyte antigen (HLA)-DRB1*01:01 allele, toll-like receptor-2 (TLR-2), and TLR-4 receptors were -1234.1 kcal/mol, -1066.4 kcal/mol, and -1250.4 kcal/mol, respectively. The results of the C-ImmSim server showed that the MP3RT vaccine could stimulate T and B cells to produce immune responses, such as high levels of IgM and IgG antibodies, IFN-γ, TNF-α, and IL-2 cytokines. Results from real-world animal experiments showed that the MP3RT vaccine could stimulate the humanized mice to produce high levels of IgG and IgG2a antibodies and IFN-γ+ T lymphocytes. Furthermore, the levels of IFN-γ, IL-2, and IL-6 cytokines in mice immunized with the MP3RT vaccine were significantly higher than those in the control group. Conclusion MP3RT is a highly antigenic and immunogenic potential vaccine that can effectively induce Th1-type immune responses in silico analysis and animal experiments. This study lays the foundation for evaluating the value of computational tools and immunoinformatic techniques in reverse vaccinology research.
Collapse
Affiliation(s)
- Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Zaixing Jia
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei, China
| | - Liang Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Baldwin SL, Reese VA, Larsen SE, Pecor T, Brown BP, Granger B, Podell BK, Fox CB, Reed SG, Coler RN. Therapeutic efficacy against Mycobacterium tuberculosis using ID93 and liposomal adjuvant formulations. Front Microbiol 2022; 13:935444. [PMID: 36090093 PMCID: PMC9459154 DOI: 10.3389/fmicb.2022.935444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/22/2022] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) has led to approximately 1.3 million deaths globally in 2020 according to the World Health Organization (WHO). More effective treatments are therefore required to prevent the transmission of M.tb. Although Bacille Calmette-Guérin (BCG), a prophylactic vaccine against M.tb, already exists, other vaccines are being developed that could help boost BCG's noted incomplete protection. This includes ID93 + GLA-SE, an adjuvanted protein vaccine which is being tested in Phase 2 clinical trials. The aim of this study was to test new lipid-based adjuvant formulations with ID93 in the context of a therapeutic vaccine, which we hypothesize would act as an adjunct to drug treatment and provide better outcomes, such as survival, than drug treatment alone. The recent success of another adjuvanted recombinant protein vaccine, M72 + AS01E (GlaxoSmithKline Biologicals), which after 3 years provided approximately 50% efficacy against TB pulmonary disease, is paving the way for new and potentially more effective vaccines. We show that based on selected criteria, including survival, T helper 1 cytokine responses, and resident memory T cells in the lung, that a liposomal formulation of GLA with QS-21 (GLA-LSQ) combined with ID93 provided enhanced protection over drug treatment alone.
Collapse
Affiliation(s)
- Susan L. Baldwin
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| | - Valerie A. Reese
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Sasha E. Larsen
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Tiffany Pecor
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Bryan P. Brown
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Brian Granger
- Access to Advanced Health Institute, Seattle, WA, United States
| | - Brendan K. Podell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Christopher B. Fox
- Access to Advanced Health Institute, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | | | - Rhea N. Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|