1
|
Ma J, Lang B, Wang L, Zhou Y, Fu C, Tian C, Xue L. Pan-Cancer Analysis and Experimental Validation of CEND1 as a Prognostic and Immune Infiltration-Associated Biomarker for Gliomas. Mol Biotechnol 2025; 67:2286-2304. [PMID: 38836983 DOI: 10.1007/s12033-024-01197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024]
Abstract
Cell cycle exit and neuronal differentiation 1 (CEND1), highly expressed in the brain, is a specific transmembrane protein which plays a tumor suppressor role. This study is performed to investigate the role of CEND1 in various cancers through pan-cancer analysis, and further investigate its functions in gliomas by cell experiments. The expression and subcellular localization of CEND1 in different cancer types were analyzed utilizing the data from the GEPIA, UCSC, UALCAN and HPA databases. Relationships of CEND1 expression with prognosis, immunomodulation-related genes, immune checkpoint genes, microsatellite instability (MSI), tumor mutation burden (TMB) and RNA modifications were analyzed based on the TCGA database. The ESTIMATE algorithm was utilized to evaluate tumors' StromalScore, Immune Score, and ESTIMATES Score. The cBioPortal database was employed to analyze the categories and frequencies of CEND1 gene alterations. Biological functions and co-expression patterns of CEND1 in gliomas were explored using the LinkedOmics database, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted. The interactions between CEND1 and drugs were explored employing the Comparative Toxicogenomics Database and molecular docking technology. Cell experiments were conducted to analyze triptonide's effects on glioma cells through CCK-8, flow cytometry and qRT-PCR. CEND1 was lowly expressed in gliomas, and high CEND1 expression was correlated to better overall survival of glioma patients (HR = 0.65, P = 0.02). Deep deletion was the main type of hereditary change of CEND1 mutation. CEND1 expression was markedly associated with immune infiltration, TMB, MSI, and RNA modification in various tumors (r > 0.3, P < 0.05). CEND1 co-expressed genes in gliomas were markedly correlated with immune responses and cell cycle (FDR < 0.05). Triptonide could bind well to CEND1 (-5.0 kcal/mol), and triptonide could facilitate CEND1 expression in glioma cells and cell apoptosis, and block the cell cycle progression (P < 0.05). CEND1 serves as a potential biomarker for pan-cancer. Particularly in gliomas, CEND1 is a key regulator of cell apoptosis and cell cycle, and a potential target for glioma treatment.
Collapse
Affiliation(s)
- Jinyang Ma
- Department of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
| | - Bojuan Lang
- Department of Pathology, The First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
| | - Lei Wang
- Department of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China.
| | - Youdong Zhou
- Department of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
| | - Changtao Fu
- Department of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
| | - Chunlei Tian
- Department of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
| | - Lixin Xue
- Department of Neurosurgery, Zhijiang Branch of Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
| |
Collapse
|
2
|
Yao J, Gan W, Sun J, Han Z, Li D, Cao L, Zhu L. APOL6 as a potential biomarker of immuno-correlation and therapeutic prediction in cancer immunotherapy. Medicine (Baltimore) 2025; 104:e42406. [PMID: 40355224 PMCID: PMC12073870 DOI: 10.1097/md.0000000000042406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/22/2025] [Indexed: 05/14/2025] Open
Abstract
The emergence of immune checkpoint inhibitors (ICIs) has significantly revolutionized the approach to treating advanced cancers. Despite their remarkable efficacy, not all patients exhibit favorable responses to ICI therapy. Hence, more biomarkers for therapeutic prediction need to be discovered. In this study, we utilized public cohorts to investigate the predictive significance and immunological associations of apolipoprotein L6 (APOL6) in cancers. The expression of APOL6 was found to be enhanced in tumors of patients who exhibited strong immunotherapeutic responses across various types of cancer. Furthermore, APOL6 showed immune correlations in pan-cancer and was confirmed by the tissue microarray cohort and in vitro experiments. Overall, this study highlights that APOL6 serves as a beneficial biomarker for immune checkpoint inhibitors in patients with cancer. Additional research involving larger numbers of patients and the underlying mechanism is necessary to determine its effectiveness as a biomarker for predicting the benefits of ICIs.
Collapse
Affiliation(s)
- Jialin Yao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenyuan Gan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiukang Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhihang Han
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dongqing Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Cao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Oncology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Zhang S, Hu X, Sun M, Chen X, Le S, Wang X, Wang J, Hu Z. Potential role of hypobaric hypoxia environment in treating pan-cancer. Sci Rep 2025; 15:12942. [PMID: 40234469 PMCID: PMC12000279 DOI: 10.1038/s41598-024-84561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/24/2024] [Indexed: 04/17/2025] Open
Abstract
Cancer incidence and mortality are lower among high-altitude residents, suggesting that hypobaric hypoxia (HH) might protect against cancer. Our study aimed to develop a pan-cancer prognosis risk model using ADME genes, which are influenced by low oxygen, to explore HH's impact on overall survival (OS) across various cancers. We constructed and validated the model with gene expression and survival data from 8628 samples, using three gene expression databases. AltitudeOmics confirmed HH's significant effects. We employed single-gene prognostic analysis, weighted gene co-expression network analysis, and stepwise Cox regression to identify biomarkers and refine the model. Drugs interacting with the model were explored using LINCS L1000, AutoDockTools, and STITCH. Eight ADME genes significantly altered by HH were identified, revealing their prognostic value across cancers. The model showed lower risk scores linked to better prognosis in 25 cancers, with reduced overall gene expression and decreased tumor mortality risk. Higher T cell infiltration was observed in the low-risk group. Additionally, three potential drugs to modulate our model were identified. This study presents a novel pan-cancer survival prognosis model based on ADME genes influenced by HH, offering new insights into cancer prevention and treatment.
Collapse
Affiliation(s)
- Shixuan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Xiaoxi Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Mengzhen Sun
- Zhangjiang Fudan International Innovation Centre, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xinrui Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Shiguan Le
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Xilu Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China.
| | - Zixin Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China.
- Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Zhang H, Xu Q, Kan H, Yang Y, Cai Y. Exploration of the clinicopathological and prognostic significance of BRCA1 in gastric cancer. Discov Oncol 2025; 16:381. [PMID: 40126757 PMCID: PMC11933547 DOI: 10.1007/s12672-025-02159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies and is a highly heterogeneous disease; it is also a leading cause of cancer-related death. Owing to the complexity and late-stage diagnosis of GC, the prognosis remains poor. To explore potential biomarkers for GC, GC patient transcriptome data were subjected to a comprehensive approach involving machine learning, binary nomogram prediction model construction, the topological algorithm of CytoHubba, and Kaplan-Meier and Mendelian randomization (MR) analyses. First, gene expression data for normal and GC tissues were assessed via machine learning and the topological algorithm of CytoHubba, and a total of 792 differentially expressed genes (DEGs) and nine core genes were identified. Kaplan-Meier analysis and analysis of a nomogram binary prediction model for the core genes revealed that the expression level of BRCA1 was closely and significantly correlated with the survival time of GC patients, suggesting that BRCA1 may be considered a valuable biomarker for GC diagnosis. Furthermore, MR analysis revealed that BRCA1 promotes the transformation of normal cells into GC cells by regulating NADPH levels, leading to a continuous increase in oxidative stress. This is one of the initial comprehensive analysis involving MR and multidimensional approaches; it revealed the significant role of BRCA1 in GC, providing new ideas on drugs and targets for GC clinical treatment.
Collapse
Affiliation(s)
- Hongrong Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Qi Xu
- School of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Hongxing Kan
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Yunquan Cai
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
5
|
Cao Q, Fan J, Zou J, Wang W. Multi-omics analysis identifies BCAT2 as a potential pan-cancer biomarker for tumor progression and immune microenvironment modulation. Sci Rep 2024; 14:23371. [PMID: 39375392 PMCID: PMC11458862 DOI: 10.1038/s41598-024-74441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Branched-chain amino acid transaminase 2 (BCAT2) encodes a crucial protein involved in the initial catalysis of branched-chain amino acid (BCAA) catabolism, with emerging evidence suggesting its association with tumor progression. This study explores BCAT2 in a pan-cancer multi-omics context and evaluates its prognostic significance. We utilized a multi-database approach, analyzing cBioPortal for genetic alterations, RNA-Seq data from TCGA and GTEx for expression patterns, and RSEM for transcript analysis. Protein expression and interaction networks were assessed using the Human Protein Atlas, UniProt, and STRING. Prognostic value was determined through Cox regression analysis of TCGA clinical survival data, while immune cell infiltration across various cancers was examined using TCGA data and the TIMER2 platform. Our results revealed that BCAT2 alterations are primarily amplifications and is upregulated in various tumors, correlating with poor survival rates in several tumor types, including GBMLGG, LGG, and UVM. Elevated BCAT2 protein levels were common in pan-cancer, interacting with a range of metabolic enzymes. Additionally, BCAT2 expression significantly influenced CD4+ T cells, CD8+ T cells, and Treg cells infiltration, with varied correlations across cancer types. These findings indicate BCAT2 as a potential biomarker for cancer diagnosis and therapy, potentially regulating key metabolic and immune factors to mediate tumor progression and the microenvironment.
Collapse
Affiliation(s)
- Qixuan Cao
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Fan
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jian Zou
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Wang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Chen Y, Wu Z, Yi X. Elucidating the pan-oncologic landscape of S100A9: prognostic and therapeutic corollaries from an integrative bioinformatics and Mendelian randomization analysis. Sci Rep 2024; 14:19071. [PMID: 39154046 PMCID: PMC11330479 DOI: 10.1038/s41598-024-70223-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/14/2024] [Indexed: 08/19/2024] Open
Abstract
The calcium-binding protein S100A9 has emerged as a pivotal biomolecular actor in oncology, implicated in numerous malignancies. This comprehensive bioinformatics study transcends traditional boundaries, investigating the prognostic and therapeutic potential of S100A9 across diverse neoplastic entities. Leveraging a wide array of bioinformatics tools and publicly available cancer genomics databases, such as TCGA, we systematically examined the S100A9 gene. Our approach included differential expression analysis, mutational burden assessment, protein interaction networks, and survival analysis. This robust computational framework provided a high-resolution view of S100A9's role in cancer biology. The study meticulously explored S100A9's oncogenic facets, incorporating comprehensive analyses of its relationship with prognosis, tumor mutational burden (TMB), microsatellite instability (MSI), DNA methylation, and immune cell infiltration across various tumor types. This study presents a panoramic view of S100A9 expression across a spectrum of human cancers, revealing a heterogeneous expression landscape. Elevated S100A9 expression was detected in malignancies such as BLCA (Bladder Urothelial Carcinoma), CESC (Cervical squamous cell carcinoma and endocervical adenocarcinoma), COAD (Colon adenocarcinoma), ESCA (Esophageal carcinoma), and GBM (Glioblastoma multiforme), while reduced expression was noted in BRCA (Breast invasive carcinoma), HNSC (Head and Neck squamous cell carcinoma), and KICH (Kidney Chromophobe). This disparate expression pattern suggests that S100A9's role in cancer biology is multifaceted and context-dependent. Prognostically, S100A9 expression correlates variably with patient outcomes across different cancer types. Furthermore, its expression is intricately associated with TMB and MSI in nine cancer types. Detailed examination of six selected tumors-BRCA, CESC, KIRC (Kidney renal clear cell carcinoma), LUSC (Lung squamous cell carcinoma), SKCM (Skin Cutaneous Melanoma); STAD (Stomach adenocarcinoma)-revealed a negative correlation of S100A9 expression with the infiltration of most immune cells, but a positive correlation with neutrophils, M1 macrophages, and activated NK cells, highlighting the complex interplay between S100A9 and the tumor immune environment. This bioinformatics synthesis posits S100A9 as a significant player in cancer progression, offering valuable prognostic insights. The data underscore the utility of S100A9 as a prognostic biomarker and its potential as a therapeutic target. The therapeutic implications are profound, suggesting that modulation of S100A9 activity could significantly impact cancer management strategies.
Collapse
Affiliation(s)
- Yingying Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Zixuan Wu
- Hunan University of Chinese Medicine, Changsha, 410128, China
| | - Xingxing Yi
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China.
| |
Collapse
|
7
|
Lai F, He L, Lia T, Yang Z, Huang C. Identification and validation of basement membrane-related genes predicting prognosis and immune infiltration associated with bladder cancer. Medicine (Baltimore) 2024; 103:e38858. [PMID: 39029072 PMCID: PMC11398827 DOI: 10.1097/md.0000000000038858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/17/2024] [Indexed: 07/21/2024] Open
Abstract
Bladder cancer (BC) is fatal during muscle invasion and treatment progress is limited. In this study, we aimed to construct and validate basement membrane (BM)-associated gene prognosis to predict BC progression and tumor immune infiltration correlation. We choreographed BM-related genes in the Cancer Genome Atlas (TCGA) database using COX regression and least absolute shrinkage and selection operator (LASSO) analysis, and the predictive value of BM-related genes was further validated by the GSE32548, GSE129845, and immunohistochemistry staining. All analyses were performed with R-version 4.2.2, and its appropriate packages. Three genes were identified to construct a gene signature to predictive of BC prognosis. We divided the TCGA database into 2 groups, and patients in the high-risk group had worse overall survival (OS) than those in the low-risk group. In GSE32548, we confirmed that patients in the high-risk group had a poorer prognosis compared to those in the low-risk group in terms of OS. Immunohistochemical staining of EPEMP1, GPC2, and ITGA3 showed significantly higher expression at the protein level in BC tissues than in normal tissues. The Spearman analysis showed risk score was positively correlated with B cell naïve, Macrophages M2, and Mast cells resting. stromal score, immune score, and ESTIMATE scores were significantly higher in the high-risk group. drugs sensitivity analysis showed IC50 of Cisplatin, Gemcitabine, and Methotrexate in the high-risk group was significantly higher than that in the low-risk group. We identified 3 prognostic genes from a novel perspective of BM genes as effective risk stratification tools for BC patients.
Collapse
Affiliation(s)
- Fie Lai
- Department of Urology Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Lin He
- Department of Pathology, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Thongher Lia
- Department of Urology Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Zhen Yang
- Department of Urology Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Chaoyou Huang
- Department of Urology Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Chen S, Liao J, Li J, Wang S. GPC2 promotes prostate cancer progression via MDK-mediated activation of PI3K/AKT signaling pathway. Funct Integr Genomics 2024; 24:127. [PMID: 39014225 PMCID: PMC11252201 DOI: 10.1007/s10142-024-01406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Prostate cancer is a major medical problem for men worldwide. Advanced prostate cancer is currently incurable. Recently, much attention was paid to the role of GPC2 in the field of oncology. Nevertheless, there have been no investigations of GPC2 and its regulatory mechanism in prostate cancer. Here, we revealed a novel action of GPC2 and a tumor promoting mechanism in prostate cancer. GPC2 was upregulated in prostate cancer tissues and cell lines. Higher expression of GPC2 was correlated with higher Gleason score, lymphatic metastasis, and worse overall survival in prostate cancer patients. Decreased expression of GPC2 inhibited cell proliferation, migration, and invasion in prostate cancer, whereas GPC2 overexpression promoted these properties. Mechanistically, GPC2 promoted the activation of PI3K/AKT signaling pathway through MDK. The rescue assay results in prostate cancer cells demonstrated that overexpression of MDK could attenuate GPC2 knockdown induced inactivation of PI3K/AKT signaling and partly reverse GPC2 knockdown induced inhibition of cell proliferation, migration, and invasion. In all, our study identified GPC2 as an oncogene in prostate cancer. GPC2 promoted prostate cancer cell proliferation, migration, and invasion via MDK-mediated activation of PI3K/AKT signaling pathway. GPC2 might be a promising prognosis predictor and potential therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Sijin Chen
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Jiaxing Liao
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Juhua Li
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Saihui Wang
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China.
| |
Collapse
|
9
|
Yang C, Ni B, Shen L, Li Z, Zhou L, Wu H, Zhang Y, Liu L, Liu J, Tian L, Yan L, Jin X. Systematic pan-cancer analysis insights into ICAM1 as an immunological and prognostic biomarker. FASEB J 2024; 38:e23802. [PMID: 38979944 DOI: 10.1096/fj.202302176r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Intercellular adhesion molecule 1 (ICAM1) is a cell surface adhesion glycoprotein in the immunoglobulin supergene family. It is associated with several epithelial tumorigenesis processes, as well as with inflammation. However, the function of ICAM1 in the prognosis of tumor immunity is still unclear. This study aimed to examine the immune function of ICAM1 in 33 tumor types and to investigate the prognostic value of tumors. Using datasets from the Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Cancer Cell Lines Encyclopedia (CCLE), Human Protein Atlas (HPA), and cBioPortal, we investigated the role of ICAM1 in tumors. We explored the potential correlation between ICAM1 expression and tumor prognosis, gene mutations, microsatellite instability, and tumor immune cell levels in various cancers. We observed that ICAM1 is highly expressed in multiple malignant tumors. Furthermore, ICAM1 is negatively or positively associated with different malignant tumor prognoses. The expression levels of ICAM1 were correlated with the tumor mutation burden (TMB) in 11 tumors and with MSI in eight tumors. ICAM1 is a gene associated with immune infiltrating cells, such as M1 macrophages and CD8+ T cells in gastric and colon cancer. Meanwhile, the expression of ICAM1 is associated with several immune-related functions and immune-regulation-related signaling pathways, such as the chemokine signaling pathway. Our study shows that ICAM1 can be used as a prognostic biomarker in many cancer types because of its function in tumorigenesis and malignant tumor immunity.
Collapse
Affiliation(s)
- Chunjiao Yang
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Bingqiang Ni
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Ling Shen
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Zhenlong Li
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Lu Zhou
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Huayun Wu
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Yuzhe Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Ling Liu
- Benxi Central Hospital, Benxi, China
| | - Jiao Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| | | | - Lirong Yan
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Xin Jin
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| |
Collapse
|
10
|
Park YN, Ryu JK, Ju Y. The Potential MicroRNA Diagnostic Biomarkers in Oral Squamous Cell Carcinoma of the Tongue. Curr Issues Mol Biol 2024; 46:6746-6756. [PMID: 39057044 PMCID: PMC11276561 DOI: 10.3390/cimb46070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) of the tongue is a common type of head and neck malignancy with a poor prognosis, underscoring the urgency for early detection. MicroRNAs (miRNAs) have remarkable stability and are easily measurable. Thus, miRNAs may be a promising biomarker candidate among biomarkers in cancer diagnosis. Biomarkers have the potential to facilitate personalized medicine approaches by guiding treatment decisions and optimizing therapy regimens for individual patients. Utilizing data from The Cancer Genome Atlas, we identified 13 differentially expressed upregulated miRNAs in OSCC of the tongue. Differentially expressed miRNAs were analyzed by enrichment analysis to reveal underlying biological processes, pathways, or functions. Furthermore, we identified miRNAs associated with the progression of OSCC of the tongue, utilizing receiver operating characteristic analysis to evaluate their potential as diagnostic biomarkers. A total of 13 upregulated miRNAs were identified as differentially expressed in OSCC of the tongue. Five of these miRNAs had high diagnostic power. In particular, miR-196b has the potential to serve as one of the most effective diagnostic biomarkers. Then, functional enrichment analysis for the target gene of miR-196b was performed, and a protein-protein interaction network was constructed. This study assessed an effective approach for identifying miRNAs as early diagnostic markers for OSCC of the tongue.
Collapse
Affiliation(s)
- Young-Nam Park
- Department of Dental Hygiene, Gimcheon University, Gimcheon 39528, Republic of Korea;
| | - Jae-Ki Ryu
- Department of Biomedical Laboratory Science, Gimcheon University, Gimcheon 39528, Republic of Korea;
| | - Yeongdon Ju
- Department of Biomedical Laboratory Science, Gimcheon University, Gimcheon 39528, Republic of Korea;
| |
Collapse
|
11
|
Zhang ZW, Zhang KX, Liao X, Quan Y, Zhang HY. Evolutionary screening of precision oncology biomarkers and its applications in prognostic model construction. iScience 2024; 27:109859. [PMID: 38799582 PMCID: PMC11126775 DOI: 10.1016/j.isci.2024.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/15/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024] Open
Abstract
Biomarker screening is critical for precision oncology. However, one of the main challenges in precision oncology is that the screened biomarkers often fail to achieve the expected clinical effects and are rarely approved by regulatory authorities. Considering the close association between cancer pathogenesis and the evolutionary events of organisms, we first explored the evolutionary feature underlying clinically approved biomarkers, and two evolutionary features of approved biomarkers (Ohnologs and specific evolutionary stages of genes) were identified. Subsequently, we utilized evolutionary features for screening potential prognostic biomarkers in four common cancers: head and neck squamous cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, and lung squamous cell carcinoma. Finally, we constructed an evolution-strengthened prognostic model (ESPM) for cancers. These models can predict cancer patients' survival time across different cancer cohorts effectively and perform better than conventional models. In summary, our study highlights the application potentials of evolutionary information in precision oncology biomarker screening.
Collapse
Affiliation(s)
- Zhi-Wen Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ke-Xin Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xuan Liao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
12
|
Li Y, Wang S, Guo M, Yang R, Wei X, Li H, Yan S. MYBL2 is a Novel Independent Prognostic Biomarker and Correlated with TMB in pancreatic cancer. J Cancer 2024; 15:4360-4373. [PMID: 38947375 PMCID: PMC11212096 DOI: 10.7150/jca.96320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Pancreatic cancer continues to pose a significant threat due to its high mortality rate. While MYB family genes have been identified as oncogenes in certain cancer types, their role in pancreatic cancer remains largely unexplored. Methods: The mRNA and protein expression of MYB family genes in pancreatic cancer samples was analyzed using TNMplot, HPA, and TISBID online bioinformatics tools, sourced from the TCGA and GETx databases. The relationship between MYB family gene expression and survival time was assessed through Kaplan-Meier analysis, while the prognostic impact of MYB family gene expression was evaluated using the Cox proportional hazards model. Additionally, Spearman's correlation analysis was employed to investigate the correlation between MYB family genes and TMB/MSI. Results: The integration of data from various databases demonstrated that all MYB family genes exhibited dysregulated expression in pancreatic cancer. However, only the expression of the MYBL2 gene displayed a notable association with the grade and stage of pancreatic cancer. Furthermore, the MYBL2 gene exhibited significant variations in both univariate and multivariate factor analyses.Subsequent functional analyses revealed a significant correlation between MYBL2 expression in pancreatic cancers and various biological processes, such as DNA replication, tumor proliferation, G2M checkpoint regulation, pyrimidine metabolism, and the P53 pathway. Additionally, a notable positive association was observed between MYBL2 expression and tumor mutational burden (TMB), a predictive indicator for response to PD1 antibody treatment. Conclusion: MYBL2 may be a double marker for independent diagnosis and PD1 antibody response prediction of pancreatic cancer patients.
Collapse
Affiliation(s)
- Yanping Li
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Shanshan Wang
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Miao Guo
- College of life science,Shandong First Medical University, Jinan, Shandong 250000, China
| | - Rui Yang
- Biomedical Laboratory, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Xiaonan Wei
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Haibin Li
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Siyuan Yan
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| |
Collapse
|
13
|
Li Y, Zheng Y, Liu T, Liao C, Shen G, He Z. The potential and promise for clinical application of adoptive T cell therapy in cancer. J Transl Med 2024; 22:413. [PMID: 38693513 PMCID: PMC11064426 DOI: 10.1186/s12967-024-05206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Adoptive cell therapy has revolutionized cancer treatment, especially for hematologic malignancies. T cells are the most extensively utilized cells in adoptive cell therapy. Currently, tumor-infiltrating lymphocytes, T cell receptor-transgenic T cells and chimeric antigen receptor T cells are the three main adoptive T cell therapies. Tumor-infiltrating lymphocytes kill tumors by reinfusing enlarged lymphocytes that naturally target tumor-specific antigens into the patient. T cell receptor-transgenic T cells have the ability to specifically destroy tumor cells via the precise recognition of exogenous T cell receptors with major histocompatibility complex. Chimeric antigen receptor T cells transfer genes with specific antigen recognition structural domains and T cell activation signals into T cells, allowing T cells to attack tumors without the assistance of major histocompatibility complex. Many barriers have been demonstrated to affect the clinical efficacy of adoptive T cell therapy, such as tumor heterogeneity and antigen loss, hard trafficking and infiltration, immunosuppressive tumor microenvironment and T cell exhaustion. Several strategies to improve the efficacy of adoptive T cell therapy have been explored, including multispecific chimeric antigen receptor T cell therapy, combination with immune checkpoint blockade, targeting the immunosuppressive tumor microenvironment, etc. In this review, we will summarize the current status and clinical application, followed by major bottlenecks in adoptive T cell therapy. In addition, we will discuss the promising strategies to improve adoptive T cell therapy. Adoptive T cell therapy will result in even more incredible advancements in solid tumors if the aforementioned problems can be handled.
Collapse
Affiliation(s)
- Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yeteng Zheng
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Chuanyun Liao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Yan G, Li G, Gao X, Liu J, Li Y, Li J, Zhou H. GTSE1: A potential prognostic and diagnostic biomarker in various tumors including lung adenocarcinoma. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13757. [PMID: 38715380 PMCID: PMC11077242 DOI: 10.1111/crj.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE This research was aimed to comprehensively investigate the expression levels, diagnostic and prognostic implications, and the relationship with immune infiltration of G2 and S phase-expressed-1 (GTSE1) across 33 tumor types, including lung adenocarcinoma (LUAD), through gene expression profiling. METHODS GTSE1 mRNA expression data together with clinical information were acquired from Xena database of The Cancer Genome Atlas (TCGA), ArrayExpress, and Gene Expression Omnibus (GEO) database for this study. The Wilcoxon rank-sum test was used to detect differences in GTSE1 expression between groups. The ability of GTSE1 to accurately predict cancer status was evaluated by calculating the area under the curve (AUC) value for the receiver operating characteristic curve. Additionally, we investigated the predictive value of GTSE1 in individuals diagnosed with neoplasms using univariate Cox regression analysis as well as Kaplan-Meier curves. Furthermore, the correlation between GTSE1 expression and levels of immune infiltration was assessed by utilizing the Tumor Immune Estimate Resource (TIMER) database to calculate the Spearman rank correlation coefficient. Finally, the pan-cancer analysis findings were validated by examining the association between GTSE1 expression and prognosis among patients with LUAD. RESULTS GTSE1 exhibited significantly increased expression levels in a wide range of tumor tissues in contrast with normal tissues (p < 0.05). The expression of GTSE1 in various tumors was associated with clinical features, overall survival, and disease-specific survival (p < 0.05). In immune infiltration analyses, a strong correlation of the level of immune infiltration with the expression of GTSE1 was observed. Furthermore, GTSE1 demonstrated good discriminative and diagnostic value for most tumors. Additional experiments confirmed the relationship between elevated GTSE1 expression and unfavorable prognosis in individuals diagnosed with LUAD. These findings indicated the crucial role of GTSE1 expression level in influencing the development and immune infiltration of different types of tumors. CONCLUSIONS GTSE1 might be a potential biomarker for the prognosis of pan-cancer. Meanwhile, it represented a promising target for immunotherapy.
Collapse
Affiliation(s)
- Guanqiang Yan
- Department of Cardio‐Thoracic SurgeryFirst Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Guosheng Li
- Department of Cardio‐Thoracic SurgeryFirst Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Xiang Gao
- Department of Cardio‐Thoracic SurgeryFirst Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Jun Liu
- Department of Cardio‐Thoracic SurgeryFirst Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Yue Li
- Department of Cardio‐Thoracic SurgeryFirst Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Jingxiao Li
- Department of Cardio‐Thoracic SurgeryFirst Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Huafu Zhou
- Department of Cardio‐Thoracic SurgeryFirst Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiPeople's Republic of China
| |
Collapse
|
15
|
Jin MH, Feng L, Xiang HY, Sun HN, Han YH, Kwon T. Exploring the role of Prx II in mitigating endoplasmic reticulum stress and mitochondrial dysfunction in neurodegeneration. Cell Commun Signal 2024; 22:231. [PMID: 38637880 PMCID: PMC11025193 DOI: 10.1186/s12964-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Neurodegenerative diseases are increasingly recognized for their association with oxidative stress, which leads to progressive dysfunction and loss of neurons, manifesting in cognitive and motor impairments. This study aimed to elucidate the neuroprotective role of peroxiredoxin II (Prx II) in counteracting oxidative stress-induced mitochondrial damage, a key pathological feature of neurodegeneration. METHODS We investigated the impact of Prx II deficiency on endoplasmic reticulum stress and mitochondrial dysfunction using HT22 cell models with knocked down and overexpressed Prx II. We observed alcohol-treated HT22 cells using transmission electron microscopy and monitored changes in the length of mitochondria-associated endoplasmic reticulum membranes and their contact with endoplasmic reticulum mitochondria contact sites (EMCSs). Additionally, RNA sequencing and bioinformatic analysis were conducted to identify the role of Prx II in regulating mitochondrial transport and the formation of EMCSs. RESULTS Our results indicated that Prx II preserves mitochondrial integrity by facilitating the formation of EMCSs, which are essential for maintaining mitochondrial Ca2+ homeostasis and preventing mitochondria-dependent apoptosis. Further, we identified a novel regulatory axis involving Prx II, the transcription factor ATF3, and miR-181b-5p, which collectively modulate the expression of Armcx3, a protein implicated in mitochondrial transport. Our findings underscore the significance of Prx II in protecting neuronal cells from alcohol-induced oxidative damage and suggest that modulating the Prx II-ATF3-miR-181b-5p pathway may offer a promising therapeutic strategy against neurodegenerative diseases. CONCLUSIONS This study not only expands our understanding of the cytoprotective mechanisms of Prx II but also offers necessary data for developing targeted interventions to bolster mitochondrial resilience in neurodegenerative conditions.
Collapse
Affiliation(s)
- Mei-Hua Jin
- College of Life Science & Biotechnology Technology, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Lin Feng
- College of Life Science & Biotechnology Technology, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Hong-Yi Xiang
- College of Life Science & Biotechnology Technology, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology Technology, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Ying-Hao Han
- College of Life Science & Biotechnology Technology, Heilongjiang Bayi Agricultural University, 163319, Daqing, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33 Neongme-gil, Ibam-myeon, 56216, Jeongeup-si, Jeonbuk, Republic of Korea.
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, National University of Science and Technology (UST), 34113, Daejeon, Republic of Korea.
| |
Collapse
|
16
|
Wang Z, Li S, Cai G, Gao Y, Yang H, Li Y, Liang J, Zhang S, Hu J, Zheng J. Mendelian randomization analysis identifies druggable genes and drugs repurposing for chronic obstructive pulmonary disease. Front Cell Infect Microbiol 2024; 14:1386506. [PMID: 38660492 PMCID: PMC11039854 DOI: 10.3389/fcimb.2024.1386506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a prevalent condition that significantly impacts public health. Unfortunately, there are few effective treatment options available. Mendelian randomization (MR) has been utilized to repurpose existing drugs and identify new therapeutic targets. The objective of this study is to identify novel therapeutic targets for COPD. Methods Cis-expression quantitative trait loci (cis-eQTL) were extracted for 4,317 identified druggable genes from genomics and proteomics data of whole blood (eQTLGen) and lung tissue (GTEx Consortium). Genome-wide association studies (GWAS) data for doctor-diagnosed COPD, spirometry-defined COPD (Forced Expiratory Volume in one second [FEV1]/Forced Vital Capacity [FVC] <0.7), and FEV1 were obtained from the cohort of FinnGen, UK Biobank and SpiroMeta consortium. We employed Summary-data-based Mendelian Randomization (SMR), HEIDI test, and colocalization analysis to assess the causal effects of druggable gene expression on COPD and lung function. The reliability of these druggable genes was confirmed by eQTL two-sample MR and protein quantitative trait loci (pQTL) SMR, respectively. The potential effects of druggable genes were assessed through the phenome-wide association study (PheWAS). Information on drug repurposing for COPD was collected from multiple databases. Results A total of 31 potential druggable genes associated with doctor-diagnosed COPD, spirometry-defined COPD, and FEV1 were identified through SMR, HEIDI test, and colocalization analysis. Among them, 22 genes (e.g., MMP15, PSMA4, ERBB3, and LMCD1) were further confirmed by eQTL two-sample MR and protein SMR analyses. Gene-level PheWAS revealed that ERBB3 expression might reduce inflammation, while GP9 and MRC2 were associated with other traits. The drugs Montelukast (targeting the MMP15 gene) and MARIZOMIB (targeting the PSMA4 gene) may reduce the risk of spirometry-defined COPD. Additionally, an existing small molecule inhibitor of the APH1A gene has the potential to increase FEV1. Conclusions Our findings identified 22 potential drug targets for COPD and lung function. Prioritizing clinical trials that target these identified druggable genes with existing drugs or novel medications will be beneficial for the development of COPD treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jinping Zheng
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Chérouvrier Hansson V, Cheng F, Georgolopoulos G, Mani K. Dichotomous Effects of Glypican-4 on Cancer Progression and Its Crosstalk with Oncogenes. Int J Mol Sci 2024; 25:3945. [PMID: 38612755 PMCID: PMC11012302 DOI: 10.3390/ijms25073945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Glypicans are linked to various aspects of neoplastic behavior, and their therapeutic value has been proposed in different cancers. Here, we have systematically assessed the impact of GPC4 on cancer progression through functional genomics and transcriptomic analyses across a broad range of cancers. Survival analysis using TCGA cancer patient data reveals divergent effects of GPC4 expression across various cancer types, revealing elevated GPC4 expression levels to be associated with both poor and favorable prognoses in a cancer-dependent manner. Detailed investigation of the role of GPC4 in glioblastoma and non-small cell lung adenocarcinoma by genetic perturbation studies displays opposing effects on these cancers, where the knockout of GPC4 with CRISPR/Cas9 attenuated proliferation of glioblastoma and augmented proliferation of lung adenocarcinoma cells and the overexpression of GPC4 exhibited a significant and opposite effect. Further, the overexpression of GPC4 in GPC4-knocked-down glioblastoma cells restored the proliferation, indicating its mitogenic effect in this cancer type. Additionally, a survival analysis of TCGA patient data substantiated these findings, revealing an association between elevated levels of GPC4 and a poor prognosis in glioblastoma, while indicating a favorable outcome in lung carcinoma patients. Finally, through transcriptomic analysis, we attempted to assign mechanisms of action to GPC4, as we find it implicated in cell cycle control and survival core pathways. The analysis revealed upregulation of oncogenes, including FGF5, TGF-β superfamily members, and ITGA-5 in glioblastoma, which were downregulated in lung adenocarcinoma patients. Our findings illuminate the pleiotropic effect of GPC4 in cancer, underscoring its potential as a putative prognostic biomarker and indicating its therapeutic implications in a cancer type dependent manner.
Collapse
Affiliation(s)
- Victor Chérouvrier Hansson
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden; (V.C.H.); (F.C.)
| | - Fang Cheng
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden; (V.C.H.); (F.C.)
| | | | - Katrin Mani
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden; (V.C.H.); (F.C.)
| |
Collapse
|
18
|
Gong X, Gong Y, Wu G, Ke H. Bioinformatics analysis highlights CCNB1 as a potential prognostic biomarker and an anti-kidney renal papillary cell carcinoma drug target. Medicine (Baltimore) 2024; 103:e37609. [PMID: 38518000 PMCID: PMC10956941 DOI: 10.1097/md.0000000000037609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 03/24/2024] Open
Abstract
Kidney renal papillary cell carcinoma (KIRP) is a common urinary tumor that causes lymph node invasion. Once metastatic, the prognosis is poor and there is a lack of effective early diagnostic markers for this tumor. The expression of CCNB1 in KIRP tumor tissues was significantly higher than that in normal tissues in The Cancer Genome Atlas database with or without the genotype-tissue expression database, and a consistent result was obtained in 32 paired tissues. In addition, CCNB1 expression increased remarkably with the progression of the T and M stages. Moreover, using the online HPA database, we verified that the immunohistochemical scores of CCNB1 in KIRP were higher than those in the normal kidney tissues. The higher expression group of CCNB1 showed a worse prognosis in KIRP. Moreover, the receiver operating characteristic curve, univariate and multivariate analyses, and construction of the column diagram further illustrated that CCNB1 was an independent prognostic factor for KIRP. Meanwhile, CCNB1 could better predict the 1- and 3-year survival rates of KIRP. Six genes were significantly and positively co-expressed with CCNB1. We also found that the CCNB1 high-expression group was enriched in the ECM_RECEPTOR_INTERACTION and FOCAL_ADHESION pathways. Finally, drug sensitivity analysis combined with molecular docking identified 5 targeting drugs with the strongest binding activity to CCNB1. CCNB1 is a potential and reliable biomarker for KIRP diagnosis and can be used to predict the survival of patients with KIRP. The 5 selected drugs targeting CCNB1 may provide new hopes for patients with KIRP metastasis.
Collapse
Affiliation(s)
- Xiaoming Gong
- Department of Infectious Disease, Hubei AIDS Clinical Training Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Radiology, Xianning Central Hospital, The First Affiliate Hospital of Hubei University of Science and Technology, Xianning, China
| | - Yahong Gong
- Department of Radiology, Xianning Central Hospital, The First Affiliate Hospital of Hubei University of Science and Technology, Xianning, China
| | - GuiFang Wu
- Department of Infectious Disease, Hubei AIDS Clinical Training Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hengning Ke
- Department of Infectious Disease, Hubei AIDS Clinical Training Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Cancer Research Institute, General Hospital, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
19
|
Zhu M, Wang X, Zhang Q, Xie C, Wang T, Shen K, Zhang L, Zhou X. Integrative analysis confirms TPX2 as a novel biomarker for clinical implication, tumor microenvironment, and immunotherapy response across human solid tumors. Aging (Albany NY) 2024; 16:2563-2590. [PMID: 38315450 PMCID: PMC10911359 DOI: 10.18632/aging.205498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/01/2023] [Indexed: 02/07/2024]
Abstract
Targeting Protein for Xenopus Kinesin Like Protein 2 (TPX2) serves as a microtubule associated protein for the regulation of spindle assembly and tumorigenesis. We aim to investigate the prognostic and immunological role of TPX2 in pan-cancer. TCGA database, Tumor Immune Single-cell Hub (TISCH), and Human Protein Atlas (HPA) were retrieved to evaluate the expression pattern of TPX2 as well as its diagnostic and prognostic value in solid tumors. Genomic alterations of TPX2 were assessed with cBioPortal database. In vitro experiments in lung adenocarcinoma (LUAD) were performed to confirm the potential role of TPX2. Overexpression of TPX2 was found in 22 types of cancers, and was positively related with copy number variations (CNV) and negative with methylation. Up-regulated TPX2 could predict worse outcomes in the majority of cancers. Single-cell analysis revealed that TPX2 was mainly distributed in malignant cells (especially in glioma) and proliferating T cells. Genomic alteration of TPX2 was common in different types of tumors, while with prognostic value in two types of cancers. Additionally, significant correlations were found between TPX2 expression and tumor microenvironment (including stromal cells and immune cells) as well as immune related genes across cancer types. Drug sensitivity analysis revealed that TPX2 could predict response to chemotherapy and immunotherapy. Functional analyses demonstrated close relationship of TPX2 with immune function and malignant phenotypes. Finally, it was confirmed that knockdown of TPX2 could reduce proliferation and migration ability of LUAD cells. In summary, TPX2 could serve as a diagnostic and prognostic biomarker and a potential immunotherapy marker.
Collapse
Affiliation(s)
- Mingxia Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaping Wang
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Qing Zhang
- Department of Neurosurgery, Xinghua People’s Hospital, Xinghua 225700, China
| | - Chen Xie
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tongshan Wang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kai Shen
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lan Zhang
- Department of Radiation Oncology, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
20
|
Zhou L, Du K, Dai Y, Zeng Y, Luo Y, Ren M, Pan W, Liu Y, Zhang L, Zhu R, Feng D, Tian F, Gu C. Metabolic reprogramming based on RNA sequencing of gemcitabine-resistant cells reveals the FASN gene as a therapeutic for bladder cancer. J Transl Med 2024; 22:55. [PMID: 38218866 PMCID: PMC10787972 DOI: 10.1186/s12967-024-04867-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024] Open
Abstract
Bladder cancer (BLCA) is the most frequent malignant tumor of the genitourinary system. Postoperative chemotherapy drug perfusion and chemotherapy are important means for the treatment of BLCA. However, once drug resistance occurs, BLCA develops rapidly after recurrence. BLCA cells rely on unique metabolic rewriting to maintain their growth and proliferation. However, the relationship between the metabolic pattern changes and drug resistance in BLCA is unclear. At present, this problem lacks systematic research. In our research, we identified and analyzed resistance- and metabolism-related differentially expressed genes (RM-DEGs) based on RNA sequencing of a gemcitabine-resistant BLCA cell line and metabolic-related genes (MRGs). Then, we established a drug resistance- and metabolism-related model (RM-RM) through regression analysis to predict the overall survival of BLCA. We also confirmed that RM-RM had a significant correlation with tumor metabolism, gene mutations, tumor microenvironment, and adverse drug reactions. Patients with a high drug resistance- and metabolism-related risk score (RM-RS) showed more active lipid synthesis than those with a low RM-RS. Further in vitro and in vivo studies were implemented using Fatty Acid Synthase (FASN), a representative gene, which promotes gemcitabine resistance, and its inhibitor (TVB-3166) that can reverse this resistance effect.
Collapse
Affiliation(s)
- Lijie Zhou
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kaixuan Du
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiheng Dai
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youmiao Zeng
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongbo Luo
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengda Ren
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenbang Pan
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanhao Liu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lailai Zhang
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ronghui Zhu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dapeng Feng
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengyan Tian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chaohui Gu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
21
|
Miao L, Jing L, Chen B, Zeng T, Chen Y. TPD52 is a Potential Prognostic Biomarker and Correlated with Immune Infiltration: A Pan-cancer Analysis. Curr Mol Med 2024; 24:1413-1425. [PMID: 38178662 DOI: 10.2174/0115665240260252230919054858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Some tumors have a poor prognosis regarding TPD52 (tumor protein D52). This study aims to explore TPD52's role in the cancer process from a pan-cancer perspective. METHODS A pan-cancer analysis was conducted to investigate how TPD52 may be involved in cancer as well as its association with prognosis. RESULTS A variety of human cancers express TPD52 abnormally and correlate with clinical stage. There was a significant association between low expression of TPD52 and poor survival in BRCA, KIRP, LAML, LIHC, UCEC, and UVM. TPD52 alterations were most frequently amplified in pan-cancer. The co-occurrence of 10 genes alterations was found in the TPD52 altered group. There was a significant association between TPD52 expression and MSI in four cancer types and TMB in twelve cancer types. There was a significant correlation between TPD52 expression and immunerelated cell infiltration. A significant correlation was found between TPD52 expression in many tumor types and 8 immune checkpoint genes. There were signaling pathways involved in pan-cancer caused by TPD52, including endocytosis, Fc gamma Rmediated phagocytosis, and so on. TPD52 may be involved in chemotherapy and chemoresistance. CONCLUSION The TPD52 gene may be important for human cancer treatment.
Collapse
Affiliation(s)
- Lu Miao
- Department of Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215026, China
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221009, China
| | - Li Jing
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221009, China
| | - Buze Chen
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221009, China
| | - Tian Zeng
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221009, China
| | - Youguo Chen
- Department of Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215026, China
| |
Collapse
|
22
|
Wang Y, Guan L, Zhao Y, Yang Y, Wang Y, Feng S, Zou A, Li Y, Zhou B, Zhang D, Che W, Liu F. A Comprehensive Pan-cancer Analysis of the Biological Immunomodulatory Function and Clinical Value of CD27. J Cancer 2024; 15:508-525. [PMID: 38169519 PMCID: PMC10758032 DOI: 10.7150/jca.85446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024] Open
Abstract
Background: CD27 is an immunological checkpoint gene, plays a critical function inInhibition or activation of cancer immunity. The CD27/CD27L axis is its pathway of action. Therefore, our goal was to examine the predictive role of CD27 in the clinical prognosis of 33 cancer types and its functions in cancer progression, as well as explore the link between pan-cancer CD27 gene expression and immune infiltration. Methods: By comprehensive use of datasets and methods from TCGA, cBioPortal, GTEx, HPA, KM-plotter, Spearman, CellMinerTM, R packages and RT-qPCR, we delved deeper into the potential impact of the CD27 on cancer development. These include expression differences, immune infiltration, matrix infiltration, gene mutations, DNA methylation, signaling pathways, TMB, MSI, and prognosis. Also, we explored CD27 interactions with different drugs. Results: The results showed that, mutated CD27 was highly expressed in most cancers. The CD27 showed strong diagnostic value in 4 cancers and marked a positive prognosis for CESC, intracervical adenocarcinoma, HNSC, and endometrial cancer, and a poor prognosis for UVM. In addition, CD27 affects multiple immune and inflammatory signaling pathways and is positively correlated with immune cell infiltration, T cell differentiation, macrophage M1 polarization, stromal infiltration, and drug sensitivity. DNA methylation is involved in CD27 expression in cancer. Conclusion: CD27, which is mutated in cancers and appears widely highly expressed and altered tumor immune invasion and stromal invasion by affecting multiple immune-related and inflammation signaling pathways, plays a significant role in CESC, HNSC, UCEC and UVM, and may be used as a therapeutic target for related cancers.
Collapse
Affiliation(s)
- Yongfeng Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu 730000, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Ling Guan
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yanzong Zhao
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yanling Yang
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yitong Wang
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Shengjiao Feng
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Anqi Zou
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yawei Li
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu 730000, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Botao Zhou
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu 730000, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Dongzhi Zhang
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Weiqi Che
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fangyu Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
23
|
Kim HR, Seo CW, Kim J. The value of CDC42 effector protein 2 as a novel prognostic biomarker in liver hepatocellular carcinoma: a comprehensive data analysis. Osong Public Health Res Perspect 2023; 14:451-467. [PMID: 38204425 PMCID: PMC10788419 DOI: 10.24171/j.phrp.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The prognostic significance of CDC42 effector protein 2 (CDC42EP2) and its association with tumor-infiltrating immune cells (TIICs) have not been explored in liver hepatocellular carcinoma (LIHC). This study aims to assess the potential prognostic value of CDC42EP2 by conducting a comprehensive analysis of online databases pertaining to LIHC. METHODS We evaluated the potential of CDC42EP2 as a prognostic biomarker by utilizing online databases such as TIMER, GEPIA2, KM, OSlihc, HPA, and LinkedOmics. RESULTS In LIHC, we observed that the mRNA and protein expression of CDC42EP2 were upregulated compared to normal tissues. Upregulated CDC42EP2 expression was associated with a worse prognosis based on the clinicopathological characteristics of patients with LIHC. Furthermore, CDC42EP2 was positively associated with TIICs. In the co-expression and functional enrichment analyses of CDC42EP2, 11,416 genes showed positive associations with CDC42EP2 while 8,008 genes showed negative associations. CDC42EP2-related co-expression genes were involved in protein localization to the endoplasmic reticulum, translational initiation, and RNA catabolic processes in gene set enrichment analysis-Gene Ontology (GSEAGO), and regulated the ribosome, spliceosome, and primary immune deficiency in the GSEAKyoto Encyclopedia of Genes and Genomes (KEGG) pathway. In a survival map, 23 and 17 genes that exhibited positive associations with CDC42EP2 showed a significant hazard ratio (HR) for overall survival and disease-free survival, respectively. CONCLUSION Our findings demonstrated that CDC42EP2 is a novel prognostic biomarker and a potential tumor immune therapeutic target in patients with LIHC.
Collapse
Affiliation(s)
- Hye-Ran Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Choong Won Seo
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Jongwan Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| |
Collapse
|
24
|
Zhang YX, Bai JY, Pu X, Lv J, Dai EL. An integrated bioinformatics approach to identify key biomarkers in the tubulointerstitium of patients with focal segmental glomerulosclerosis and construction of mRNA-miRNA-lncRNA/circRNA networks. Ren Fail 2023; 45:2284212. [PMID: 38013448 PMCID: PMC11001368 DOI: 10.1080/0886022x.2023.2284212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVE The purpose of this study was to identify potential biomarkers in the tubulointerstitium of focal segmental glomerulosclerosis (FSGS) and comprehensively analyze its mRNA-miRNA-lncRNA/circRNA network. METHODS The expression data (GSE108112 and GSE200818) were downloaded from the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/). Identification and enrichment analysis of differentially expressed genes (DEGs) were performed. the PPI networks of the DEGs were constructed and classified using the Cytoscape molecular complex detection (MCODE) plugin. Weighted gene coexpression network analysis (WGCNA) was used to identify critical gene modules. Least absolute shrinkage and selection operator regression analysis were used to screen for key biomarkers of the tubulointerstitium in FSGS, and the receiver operating characteristic curve was used to determine their diagnostic accuracy. The screening results were verified by quantitative real-time-PCR (qRT-PCR) and Western blot. The transcription factors (TFs) affecting the hub genes were identified by Cytoscape iRegulon. The mRNA-miRNA-lncRNA/circRNA network for identifying potential biomarkers was based on the starBase database. RESULTS A total of 535 DEGs were identified. MCODE obtained eight modules. The green module of WGCNA had the greatest association with the tubulointerstitium in FSGS. PPARG coactivator 1 alpha (PPARGC1A) was screened as a potential tubulointerstitial biomarker for FSGS and verified by qRT-PCR and Western blot. The TFs FOXO4 and FOXO1 had a regulatory effect on PPARGC1A. The ceRNA network yielded 17 miRNAs, 32 lncRNAs, and 50 circRNAs. CONCLUSIONS PPARGC1A may be a potential biomarker in the tubulointerstitium of FSGS. The ceRNA network contributes to the comprehensive elucidation of the mechanisms of tubulointerstitial lesions in FSGS.
Collapse
Affiliation(s)
- Yun Xia Zhang
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Jun Yuan Bai
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - XiaoWei Pu
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Juan Lv
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - En Lai Dai
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
25
|
Tan J, Wang C, Jin Y, Xia Y, Gong B, Zhao Q. Optimal combination of MYCN differential gene and cellular senescence gene predicts adverse outcomes in patients with neuroblastoma. Front Immunol 2023; 14:1309138. [PMID: 38035110 PMCID: PMC10687280 DOI: 10.3389/fimmu.2023.1309138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Neuroblastoma (NB) is a common extracranial tumor in children and is highly heterogeneous. The factors influencing the prognosis of NB are not simple. Methods To investigate the effect of cell senescence on the prognosis of NB and tumor immune microenvironment, 498 samples of NB patients and 307 cellular senescence-related genes were used to construct a prediction signature. Results A signature based on six optimal candidate genes (TP53, IL-7, PDGFRA, S100B, DLL3, and TP63) was successfully constructed and proved to have good prognostic ability. Through verification, the signature had more advantages than the gene expression level alone in evaluating prognosis was found. Further T cell phenotype analysis displayed that exhausted phenotype PD-1 and senescence-related phenotype CD244 were highly expressed in CD8+ T cell in MYCN-amplified group with higher risk-score. Conclusion A signature constructed the six MYCN-amplified differential genes and aging-related genes can be used to predict the prognosis of NB better than using each high-risk gene individually and to evaluate immunosuppressed and aging tumor microenvironment.
Collapse
Affiliation(s)
- Jiaxiong Tan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chaoyu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yan Jin
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yuren Xia
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Baocheng Gong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qiang Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
26
|
Qin Q, Peng B. Prognostic significance of the rho GTPase RHOV and its role in tumor immune cell infiltration: a comprehensive pan-cancer analysis. FEBS Open Bio 2023; 13:2124-2146. [PMID: 37596964 PMCID: PMC10626275 DOI: 10.1002/2211-5463.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023] Open
Abstract
Ras homolog gene family member V (RHOV) is an atypical Rho GTPase that participates in various important cellular processes. Although RHOV has been identified to play an oncogenic role in lung cancer and triple-negative breast cancer, its role in other types of tumors remains unknown. In this study, we investigated the expression of RHOV in pan-cancer analysis using The Cancer Genome Atlas (TCGA) and Gene-Tissue Expression datasets. RHOV mRNA levels were dysregulated in several types of tumors. RHOV expression was identified as an independent prognostic factor in 7 of 33 types of tumors; however, the relationship varied according to tumor type. Higher RHOV expression was associated with a favorable prognosis in kidney renal cell carcinoma and prostate adenocarcinoma, for which RHOV expression was downregulated, whereas RHOV expression was associated with a poor prognosis for patients with adenoid cystic carcinoma, lung adenocarcinoma, pancreatic ductal adenocarcinoma, skin cutaneous melanoma, and uveal melanoma with upregulated RHOV expression. Furthermore, RHOV expression was associated with various clinicopathological parameters in these tumors. RHOV expression showed varied associations with different types of tumor-infiltrating immune cells and demonstrated a potential impact on the response to immunotherapy depending on the cancer type. Additionally, functional enrichment analysis of RHOV-related genes demonstrated a role in a wide range of developmental and immune-related processes. This study provides valuable insights into the role of RHOV in pan-cancer development, indicating its role as a tumor suppressor or oncogene according to the cancer type and tumor microenvironment.
Collapse
Affiliation(s)
- Qin Qin
- Department of OncologyJingzhou Hospital Affiliated to Yangtze UniversityChina
| | - Bing Peng
- Department of OncologyThe Second People's Hospital of JingmenChina
| |
Collapse
|
27
|
Meleshko A, Kushniarova L, Shinkevich V, Mikhaleuskaya T, Valochnik A, Proleskovskaya I. Expression Pattern of Tumor-associated Antigens in Neuroblastoma: Association With Cytogenetic Features and Survival. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:695-705. [PMID: 37927813 PMCID: PMC10619573 DOI: 10.21873/cdp.10274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023]
Abstract
Background/Aim The prognosis of high-risk and relapsed neuroblastoma (NB) patients remains poor. The identification of tumor-associated markers is important for differential diagnosis, prognosis, and the development of targeted therapies. The aim of the study was to determine the expression profile of nine most common NB antigens and assess their association with clinicopathological characteristics and patient survival. Patients and Methods Tumor samples from 86 patients with NB were evaluated for the expression of tumor-associated antigen (TAA) using quantitative PCR. Twenty-one patients with benign tumors and 17 healthy donors were assigned as controls. Results Overexpression of tyrosine hydroxylase (TH), PHOX2B, PRAME, GPC2, B7-H3, and Survivin is the most typical for NB. Positive expression of MAGEA3, MAGEA1, and NY-ESO-1 at low levels was detected in 54%, 48%, and 52%, respectively, and was not NB specific. Higher TH expression was observed in samples without MYCN-amplification, while higher expression of Survivin, PHOX2B, and GPC2 was significantly associated with the presence of 1p.36 deletion. Overexpression of TH, PHOX2B, and MAGEA1 was associated with better event-free (EFS) and overall survival (OS). Survivin overexpression was associated with poor EFS but had no impact on OS. Multivariate analysis confirmed Survivin as independent marker for poor survival, and PHOX2B and MAGEA1 for better survival. Conclusion High expression of TH, PHOX2B, and MAGEA1 genes are favorable prognostic factors for OS and EFS, whereas high expression of Survivin is associated with an increased risk of relapse or progression.
Collapse
Affiliation(s)
- Alexander Meleshko
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Lizaveta Kushniarova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Taisia Mikhaleuskaya
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Alena Valochnik
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Inna Proleskovskaya
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| |
Collapse
|
28
|
Shen Q, Li J, Zhang C, Pan X, Li Y, Zhang X, En G, Pang B. Pan-cancer analysis and experimental validation identify ndc1 as a potential immunological, prognostic and therapeutic biomarker in pancreatic cancer. Aging (Albany NY) 2023; 15:9779-9796. [PMID: 37733696 PMCID: PMC10564436 DOI: 10.18632/aging.205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
NDC1 is a transmembrane nucleoporin that participates in cell mitosis. In the field of oncology, NDC1 has shown its potential as a prognostic marker for multiple tumors. However, pan-cancer analysis of NDC1 to fully explore its role in tumors has not been performed and little is reported on its role in pancreatic cancers. In the present study, a pan-cancer analysis of NDC1 was performed using a bioinformatic approach. Survival analysis was performed by univariate Cox regression analysis and Kaplan-Meier survival analysis. Subsequently, the relationship between NDC1 and immune cell infiltration, TMB/MSI and drug sensitivity was analyzed. Moreover, the mechanism of NDC1 in pancreatic cancer were further analyzed by GSEA, GSVA. Finally, we conducted in vitro experiments including MTT, scratch, EdU, and apoptosis assays to explore the function of NDC1 in pancreatic cancer cells. High expression of NDC1 was demonstrated in 28 cancer types. Univariate Cox regression analysis revealed that NDC1 expression was closely associated with the survival outcome of 15 cancer types, and further Kaplan-Meier survival analysis showed negative associations with the progression-free survival in 14 cancers. In addition, a significant association between the NDC1 expression and immune cell infiltration in tumor microenvironment, immune-related genes, common tumor-regulatory and drug sensitivity was observed. Furthermore, NDC1 is abnormally expressed in pancreatic cancer, and is closely related to the prognosis of pancreatic cancer patients and chemosensitivity. The study reveals that NDC1 could be used as a potential immunological, prognostic and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junchen Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Pan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ge’er En
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Yang L, Wei J, Ma X, Cheng R, Zhang H, Jin T. Pan-Cancer Analysis of the Prognostic and Immunological Role of SMG5: A Biomarker for Cancers. Oncology 2023; 102:168-182. [PMID: 37699361 DOI: 10.1159/000533421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/29/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION SMG5 is involved in tumor cell development and viewed as a potential target for immunotherapy. The purpose of this study was to systematically analyze the expression level, function, and prognostic value of SMG5 in pan-cancers. METHODS Differential expression of SMG5 in normal and tumor tissues was analyzed using The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression Database (GTEx) data. Survival analysis was performed by Kaplan-Meier method and Cox risk regression. The relationship between SMG5 expression and lymphocyte abundance, tumor cell immune infiltration level, molecular and immune subtypes as well as immune checkpoints was analyzed by tumor-immune system interactions database (TISIDB), Tumor Immune Estimation Resource (TIMER), and Sangerbox databases. The correlation between SMG5 and immune scores was studied using the Estimation of Stromal and Immune Cells in Malignant Tumours using Expression (ESTIMATE) data algorithm. Further, drug sensitivity analysis of SMG5 with low-grade glioma (LGG) was conducted using the CellMiner database. RESULTS SMG5 was highly expressed in 23 tumors and only had a significant impact on the prognosis of patients with LGG only. In addition, in tumor microenvironment and tumor immune analysis, we found that the level of immune infiltration, tumor mutational load, microsatellite instability, and immune checkpoints of LGG were significantly correlated with SMG5 expression. Furthermore, SMG5 was significantly associated with immune scores, stromal scores, and sensitivity of some drugs in LGG. CONCLUSION SMG5 is differentially expressed in several cancers and is significantly associated with prognosis, immune microenvironment, and immune checkpoints in LGG patients. Therefore, SMG5 could be a potential pan-cancer biomarker and an immunotherapeutic target for LGG.
Collapse
Affiliation(s)
- Leteng Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Jie Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Xiaoya Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Rui Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Huan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| |
Collapse
|
30
|
Liu B, Li C, Feng C, Wang H, Zhang H, Tu C, He S, Li Z. Integrative profiling analysis reveals prognostic significance, molecular characteristics, and tumor immunity of angiogenesis-related genes in soft tissue sarcoma. Front Immunol 2023; 14:1178436. [PMID: 37377953 PMCID: PMC10291125 DOI: 10.3389/fimmu.2023.1178436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Background Soft tissue sarcoma (STS) is a class of malignant tumors originating from mesenchymal stroma with a poor prognosis. Accumulating evidence has proved that angiogenesis is an essential hallmark of tumors. Nevertheless, there is a paucity of comprehensive research exploring the association of angiogenesis-related genes (ARGs) with STS. Methods The ARGs were extracted from previous literature, and the differentially expressed ARGs were screened for subsequent analysis. Next, the least absolute shrinkage and selection operator (LASSO) and Cox regression analyses were conducted to establish the angiogenesis-related signature (ARSig). The predictive performance of the novel ARSig was confirmed using internal and external validation, subgroup survival, and independent analysis. Additionally, the association of the ARSig with the tumor immune microenvironment, tumor mutational burden (TMB), and therapeutic response in STS were further investigated. Notably, we finally conducted in vitro experiments to verify the findings from the bioinformatics analysis. Results A novel ARSig is successfully constructed and validated. The STS with a lower ARSig risk score in the training cohort has an improved prognosis. Also, consistent results were observed in the internal and external cohorts. The receiver operating characteristic (ROC) curve, subgroup survival, and independent analysis further indicate that the novel ARSig is a promising independent prognostic predictor for STS. Furthermore, it is proved that the novel ARSig is relevant to the immune landscape, TMB, immunotherapy, and chemotherapy sensitivity in STS. Encouragingly, we also validate that the signature ARGs are significantly dysregulated in STS, and ARDB2 and SRPK1 are closely connected with the malignant progress of STS cells. Conclusion In sum, we construct a novel ARSig for STS, which could act as a promising prognostic factor for STS and give a strategy for future clinical decisions, immune landscape, and personalized treatment of STS.
Collapse
Affiliation(s)
- Binfeng Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haixia Zhang
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Cascella M, Tracey MC, Petrucci E, Bignami EG. Exploring Artificial Intelligence in Anesthesia: A Primer on Ethics, and Clinical Applications. SURGERIES 2023; 4:264-274. [DOI: 10.3390/surgeries4020027] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The field of anesthesia has always been at the forefront of innovation and technology, and the integration of Artificial Intelligence (AI) represents the next frontier in anesthesia care. The use of AI and its subtypes, such as machine learning, has the potential to improve efficiency, reduce costs, and ameliorate patient outcomes. AI can assist with decision making, but its primary advantage lies in empowering anesthesiologists to adopt a proactive approach to address clinical issues. The potential uses of AI in anesthesia can be schematically grouped into clinical decision support and pharmacologic and mechanical robotic applications. Tele-anesthesia includes strategies of telemedicine, as well as device networking, for improving logistics in the operating room, and augmented reality approaches for training and assistance. Despite the growing scientific interest, further research and validation are needed to fully understand the benefits and limitations of these applications in clinical practice. Moreover, the ethical implications of AI in anesthesia must also be considered to ensure that patient safety and privacy are not compromised. This paper aims to provide a comprehensive overview of AI in anesthesia, including its current and potential applications, and the ethical considerations that must be considered to ensure the safe and effective use of the technology.
Collapse
Affiliation(s)
- Marco Cascella
- Pain Unit and Research, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80100 Napoli, Italy
| | - Maura C. Tracey
- Rehabilitation Medicine Unit, Strategic Health Services Department, Istituto Nazionale Tumori-IRCCS-Fondazione Pascale, 80100 Naples, Italy
| | - Emiliano Petrucci
- Department of Anesthesia and Intensive Care Unit, San Salvatore Academic Hospital of L’Aquila, 67100 L’Aquila, Italy
| | - Elena Giovanna Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
32
|
Cao S, Xiao S, Zhang J, Li S. Identification of the cell cycle characteristics of non-small cell lung cancer and its relationship with tumor immune microenvironment, cell death pathways, and metabolic reprogramming. Front Endocrinol (Lausanne) 2023; 14:1147366. [PMID: 37091844 PMCID: PMC10117961 DOI: 10.3389/fendo.2023.1147366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/08/2023] [Indexed: 04/09/2023] Open
Abstract
BackgroundThe genes related to the cell cycle progression could be considered the key factors in human cancers. However, the genes involved in cell cycle regulation in non-small cell lung cancer (NSCLC) have not yet been reported. Therefore, it is necessary to evaluate the genes related to the cell cycle in all types of cancers, especially NSCLC.MethodsThis study constituted the first pan-cancer landscape of cell cycle signaling. Cluster analysis based on cell cycle signaling was conducted to identify the potential molecular heterogeneity of NSCLC. Further, the discrepancies in the tumor immune microenvironment, metabolic remodeling, and cell death among the three clusters were investigated. Immunohistochemistry was performed to validate the protein levels of the ZWINT gene and examine its relationship with the clinical characteristics. Bioinformatics analyses and experimental validation of the ZWINT gene were also conducted.ResultsFirst, pan-cancer analysis provided an overview of cell cycle signaling and highlighted its crucial role in cancer. A majority of cell cycle regulators play risk roles in lung adenocarcinoma (LUAD); however, some cell cycle genes play protective roles in lung squamous cell carcinoma (LUSC). Cluster analysis revealed three potential subtypes for patients with NSCLC. LUAD patients with high cell cycle activities were associated with worse prognosis; while, LUSC patients with high cell cycle activities were associated with a longer survival time. Moreover, the above three subtypes of NSCLC exhibited distinct immune microenvironments, metabolic remodeling, and cell death pathways. ZWINT, a member of the cell signaling pathway, was observed to be significantly associated with the prognosis of LUAD patients. A series of experiments verified the higher expression levels of ZWINT in NSCLC compared to those in paracancerous tissues. The activation of epithelial-mesenchymal transition (EMT) induced by ZWINT might be responsible for tumor progression.ConclusionThis study revealed the regulatory function of the cell cycle genes in NSCLC, and the molecular classification based on cell cycle-associated genes could evaluate the different prognoses of patients with NSCLC. ZWINT expression was found to be significantly upregulated in NSCLC tissues, which might promote tumor progression via activation of the EMT pathway.
Collapse
Affiliation(s)
- Shengji Cao
- Department of Clinical Laboratory Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Sitong Xiao
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Yuhang District, Hangzhou, China
| | - Jingyang Zhang
- Department of Clinical Laboratory Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shijun Li
- Department of Clinical Laboratory Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Shijun Li,
| |
Collapse
|
33
|
Cheng F, Hansson VC, Georgolopoulos G, Mani K. Attenuation of cancer proliferation by suppression of glypican-1 and its pleiotropic effects in neoplastic behavior. Oncotarget 2023; 14:219-235. [PMID: 36944188 PMCID: PMC10030152 DOI: 10.18632/oncotarget.28388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Glypicans (GPC1-6) are associated with tumorigenic processes and their involvement in neoplastic behavior has been discussed in different cancer types. Here, a cancer-wide GPC expression study, using clinical cancer patient data in The Cancer Genome Atlas, reveals net upregulation of GPC1 and GPC2 in primary solid tumors, whereas GPC3, GPC5 and GPC6 display lowered expression pattern compared to normal tissues. Focusing on GPC1, survival analyses of the clinical cancer patient data reveal statistically significant correlation between high expression of GPC1 and poor prognosis in 10 particular cancer types i.e., bladder urothelial carcinoma, brain lower grade glioma, liver hepatocellular carcinoma, colon adenocarcinoma, kidney renal clear cell carcinoma, lung adenocarcinoma, mesothelioma, ovarian serous cystadenocarcinoma, uterine corpus endometrial carcinoma and uveal melanoma. In vitro studies targeting GPC1 expression by CRISPR/Cas9 or siRNA or treatment with an anti-GPC1 antibody resulted in attenuation of proliferation of cancer cells from bladder carcinoma, glioma and hepatocellular carcinoma patients (T24, U87 and HepG2 cells). Further, overexpression of GPC1 exhibited a significant and negative correlation between GPC1 expression and proliferation of T24 cells. Attempt to reveal the mechanism through which downregulation of GPC1 leads to attenuation of tumor growth using systematic Ingenuity Pathway Analysis indicate that suppression of GPC1 results in ECM-mediated inhibition of specific pro-cancer signaling pathways involving TGF-β and p38 MAPK. Identified differential expression and pleiotropic effects of GPCs in specific cancer types emphasize their potential of as novel diagnostic tools and prognostic factors and open doors for future GPC targeted therapy.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, Lund, Sweden
| | - Victor Chérouvrier Hansson
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, Lund, Sweden
| | | | - Katrin Mani
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, Lund, Sweden
| |
Collapse
|
34
|
Brito-Rocha T, Constâncio V, Henrique R, Jerónimo C. Shifting the Cancer Screening Paradigm: The Rising Potential of Blood-Based Multi-Cancer Early Detection Tests. Cells 2023; 12:cells12060935. [PMID: 36980276 PMCID: PMC10047029 DOI: 10.3390/cells12060935] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer remains a leading cause of death worldwide, partly owing to late detection which entails limited and often ineffective therapeutic options. Most cancers lack validated screening procedures, and the ones available disclose several drawbacks, leading to low patient compliance and unnecessary workups, adding up the costs to healthcare systems. Hence, there is a great need for innovative, accurate, and minimally invasive tools for early cancer detection. In recent years, multi-cancer early detection (MCED) tests emerged as a promising screening tool, combining molecular analysis of tumor-related markers present in body fluids with artificial intelligence to simultaneously detect a variety of cancers and further discriminate the underlying cancer type. Herein, we aim to provide a highlight of the variety of strategies currently under development concerning MCED, as well as the major factors which are preventing clinical implementation. Although MCED tests depict great potential for clinical application, large-scale clinical validation studies are still lacking.
Collapse
Affiliation(s)
- Tiago Brito-Rocha
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Master Program in Oncology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Doctoral Program in Biomedical Sciences, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
35
|
Li M, Zhang X, Liu J, Zhou C, Miao L, He J, Wu H, Zhang R. Association between GPC2 polymorphisms and neuroblastoma risk in Chinese children. J Clin Lab Anal 2023; 37:e24866. [PMID: 36920409 PMCID: PMC10098060 DOI: 10.1002/jcla.24866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/28/2023] [Accepted: 03/04/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The cell surface glycoprotein glypican 2 (GPC2) has been shown to increase susceptibility to neuroblastoma, which is the most common malignancy in children. However, associations between single nucleotide polymorphism(s) of GPC2 and neuroblastoma risk remain unclarified. METHODS We conducted a case-control study to investigate two GPC2 polymorphisms (rs1918353 G>A and rs7799441 C>T) in 473 healthy controls and 402 pediatric patients with neuroblastoma. Single nucleotide polymorphism (SNP) genotyping was conducted on the samples by the TaqMan technique, and the data were subsequently analyzed by the t test, chi-squared test, and logistic regression model. In addition, we further performed stratification analysis by age, sex, tumor site of origin, or clinical stage to control confounding factors. RESULTS According to the data of dominant models (GA/AA vs. GG: adjusted OR = 0.99, 95% CI = 0.76-1.29, p = 0.943; CT/TT vs. CC: adjusted OR = 0.91, 95% CI = 0.70-1.19, p = 0.498) or other comparisons, as well as the conjoint analysis (adjusted OR = 1.22, 95% CI = 0.93-1.59, p = 0.152), we unfortunately proved that the analysis of single or multiple loci did not support any significant association of GPC2 polymorphisms with susceptibility to neuroblastoma. CONCLUSION GPC2 polymorphisms (rs1918353 G>A and rs7799441 C>T) are unable to statistically affect neuroblastoma risk in Chinese children. Therefore, more samples, especially from patients of various ethnic backgrounds, are required to increase the sample size and verify the effect of GPC2 polymorphisms on neuroblastoma risk in the presence of ethnic factor.
Collapse
Affiliation(s)
- Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xinxin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Haiyan Wu
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
36
|
Lin K, Xu D, Wang X, Shi J, Gao W. Development of a basement membrane gene signature and identification of the potential candidate therapeutic targets for pancreatic cancer. Gland Surg 2023; 12:263-281. [PMID: 36915817 PMCID: PMC10005979 DOI: 10.21037/gs-23-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
Background Pancreatic cancer is a deadly cancer with a poor prognosis. In light of mounting evidence that basement membrane genes (BMGs) play a role in the development of cancer, we sought to examine the prognostic importance and role of BMGs in pancreatic ductal adenocarcinoma (PDAC) patients. Methods BMGs were obtained from previous top research studies. The clinical and messenger ribonucleic acid expression data were retrieved from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data sets, respectively. Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were used for the PDAC risk modeling and gene identification. The Kaplan-Meier method was used to compare outcomes between the low- and high-risk groups. Finally, we analyzed small-molecule drugs that could be used to target BMGs for treatment using the Enrichr data set and validated the function of the tubulointerstitial nephritis antigen (TINAG) in pancreatic cancer. Results We successfully constructed and validated a 7 BMG-based model to predict PDAC patient outcomes. Additionally, we discovered that 7 BMG-based model was an independent predictive factor for PDAC. According to our functional analysis, the majority of the signaling pathways enriched in BMGs were those connected to malignancy. Immune cell infiltration and immunological checkpoints were also linked to the BMG-based model. Further, we identified 5 small-molecule drugs that may be useful in treating PDAC patients. We also found that TINAG promoted cell proliferation in pancreatic cancer. Conclusions Our study extended understandings of how BMGs work in PDAC. We identified a credible predictive biomarker for PDAC patients' survival.
Collapse
Affiliation(s)
- Kai Lin
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong Xu
- Department of General Surgery, Gaochun People’s Hospital, Nanjing, China
| | - Xiaoxiao Wang
- Department of GCP Research Center, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Shi
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wentao Gao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
In Silico Analysis of Ferroptosis-Related Genes and Its Implication in Drug Prediction against Fluorosis. Int J Mol Sci 2023; 24:ijms24044221. [PMID: 36835629 PMCID: PMC9961266 DOI: 10.3390/ijms24044221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Fluorosis is a serious global public health problem. Interestingly, so far, there is no specific drug treatment for the treatment of fluorosis. In this paper, the potential mechanisms of 35 ferroptosis-related genes in U87 glial cells exposed to fluoride were explored by bioinformatics methods. Significantly, these genes are involved in oxidative stress, ferroptosis, and decanoate CoA ligase activity. Ten pivotal genes were found by the Maximal Clique Centrality (MCC) algorithm. Furthermore, according to the Connectivity Map (CMap) and the Comparative Toxicogenomics Database (CTD), 10 possible drugs for fluorosis were predicted and screened, and a drug target ferroptosis-related gene network was constructed. Molecular docking was used to study the interaction between small molecule compounds and target proteins. Molecular dynamics (MD) simulation results show that the structure of the Celestrol-HMOX1 composite is stable and the docking effect is the best. In general, Celastrol and LDN-193189 may target ferroptosis-related genes to alleviate the symptoms of fluorosis, which may be effective candidate drugs for the treatment of fluorosis.
Collapse
|
38
|
Luo M, Luo S, Xue Y, Chang Q, Yang H, Dong W, Zhang T, Cao S. Aerobic exercise inhibits renal EMT by promoting irisin expression in SHR. iScience 2023; 26:105990. [PMID: 36798442 PMCID: PMC9926087 DOI: 10.1016/j.isci.2023.105990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/03/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
To determine the effect of aerobic exercise in different intensities on renal injury and epithelial-mesenchymal transformation (EMT) in the kidney of spontaneously hypertensive rats (SHR) and explore possible mechanisms, we subjected SHR to different levels of 14-week aerobic treadmill training. We tested the effects of aerobic exercise on irisin level, renal function, and EMT modulators in the kidney. We also treated angiotensin II-induced HK-2 cells with irisin and tested the changes in EMT levels. The data showed low and moderate aerobic exercise improved renal function and inhibited EMT through promoting irisin expression in SHR. However, high-intensity exercise training had no effect on renal injury and EMT in SHR but did significantly activate STAT3 phosphorylation in the kidney. These results clarify the mechanisms of exercise in improving hypertension-related renal injury and suggest that irisin might be a therapeutic target for patients with kidney injury.
Collapse
Affiliation(s)
- Minghao Luo
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhou Xue
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Chang
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, China
| | - Hui Yang
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyu Dong
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Zhang
- The Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Shuyuan Cao
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- The Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong, China
- Corresponding author
| |
Collapse
|
39
|
Yin Z, Zhao Y, Zhou W, You C, Bai Y, You B, Lu D, Liao S, Zheng L, Sun Y, Wu Y. A 20-Gene Signature Predicting Survival in Patients with Clear Cell Renal Cell Carcinoma Based on Basement Membrane. JOURNAL OF ONCOLOGY 2023; 2023:1302278. [PMID: 37089260 PMCID: PMC10118896 DOI: 10.1155/2023/1302278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/07/2022] [Indexed: 04/25/2023]
Abstract
Objectives The most common subtype of renal cell carcinoma, clear cell renal cell carcinoma (ccRCC), has a high heterogeneity and aggressive nature. The basement membrane (BM) is known to play a vital role in tumor metastasis. BM-related genes remain untested in ccRCC, however, in terms of their prognostic significance. Methods BM-related genes were gleaned from the most recent cutting-edge research. The RNA-seq and clinical data of the ccRCC were obtained from TCGA and GEO databases, respectively. The multigene signature was constructed using the univariate Cox regression and the LASSO regression algorithm. Then, clinical features and prognostic signatures were combined to form a nomogram to predict individual survival probabilities. Using functional enrichment analysis and immune-correlation analysis, we investigated potential enrichment pathways and immunological characteristics associated with BM-related-gene signature. Results In this study, we built a model of 20 BM-related genes and classified them as high-risk or low-risk, with each having its anticipated risk profile. Patients in the high-risk group showed significantly reduced OS compared with patients in the low-risk group in the TCGA cohort, as was confirmed by the testing dataset. Functional analysis showed that the BM-based model was linked to cell-substrate adhesion and tumor-related signaling pathways. Comparative analysis of immune cell infiltration degrees and immune checkpoints reveals a central role for BM-related genes in controlling the interplay between the immune interaction and the tumor microenvironment of ccRCC. Conclusions We combined clinical characteristics known to predict the prognosis of ccRCC patients to create a gene signature associated with BM. Our findings may also be useful for forecasting how well immunotherapies would work against ccRCC. Targeting BM may be a therapeutic alternative for ccRCC, but the underlying mechanism still needs further exploration.
Collapse
Affiliation(s)
- Zhenjie Yin
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian 365001, China
| | - Yu Zhao
- Department of Medical and Radiation Oncology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian 365001, China
| | - Weiwen Zhou
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian 365001, China
| | - Chengcheng You
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yuanyuan Bai
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian 365001, China
| | - Bingyong You
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian 365001, China
| | - Dongming Lu
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian 365001, China
| | - Shangfan Liao
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian 365001, China
| | - Luoping Zheng
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian 365001, China
| | - Yingming Sun
- Department of Medical and Radiation Oncology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian 365001, China
| | - Yongyang Wu
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian 365001, China
| |
Collapse
|