1
|
Stukas S, Goshua G, Conway EM, Lee AYY, Hoiland RL, Sekhon MS, Y. C. Chen L. ABO blood group and COVID-19 severity: Associations with endothelial and adipocyte activation in critically ill patients. PLoS One 2025; 20:e0320251. [PMID: 40173171 PMCID: PMC11964209 DOI: 10.1371/journal.pone.0320251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/14/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND ABO blood group has been implicated both in susceptibility to, and severity of, SARS-CoV-2 infection. The aim of this study was to explore a potential association between ABO blood group and severity of COVID-19 infection in critically ill patients and the following biological mechanisms: inflammatory cytokines, endothelial injury, and adipokines. METHODS We conducted a retrospective study of 128 critically ill COVID-19 patients admitted to Vancouver General Hospital from March 2020-March 2021. Outcomes including 28-day mortality, need for mechanical ventilation and length of intensive care unit (ICU) stay were compared between patients with A & AB blood type vs. B & O blood type. Likewise, serum inflammatory markers, markers of endothelial activation, and adipokines were compared. RESULTS The association between ABO and severity of disease was confirmed. Patients with A&AB blood group had more frequent ventilation requirements compared to patients with blood group B&O (N(%): 35 (71%) vs 41 (52%), p = 0.041), higher total ICU mortality (14 (29%) vs 9 (11%), p = 0.018), longer median ICU stay (days, median [interquartile range]: 10 [6-19], vs 7 [3-14], p = 0.016) and longer median hospital stay (26 [14-36] vs. 17 [10-30] p = 0.034). No association was found between ABO blood group and serum inflammatory cytokines or their receptors [IL-6, IL-1b, IL-10, TNF, sIL-6R, sgp130] measured within the first 10 days of ICU stay. No association was found between ABO and plasma markers of endothelial injury [Thrombomodulin, ADAMTS13, sP-Selectin, Factor IX, Protein C, Protein S, vWF]. Among the plasma adipokines, there were no differences between lipocalin-2, PAI-1 or resistin. Notably, however, median adipsin was higher in patients with A&AB blood group compared to O&B (16.3 [4.2-38.5] x106 pg/mL vs. 9.61 [3.0-20.8] x 106 pg/mL, p = 0.048). CONCLUSIONS This retrospective single-center study confirms an association between A and AB blood type with more severe COVID-19. While an underlying mechanism was not identified, the finding of higher adipsin levels in patients with type A/AB blood warrants further investigation in larger prospective studies.
Collapse
Affiliation(s)
- Sophie Stukas
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - George Goshua
- Department of Internal Medicine, Section of Medical Oncology & Hematology, Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, United States of America
- Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, Connecticut, United States of America
| | - Edward M. Conway
- Department of Medicine, Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Agnes Y. Y. Lee
- Division of Hematology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan L. Hoiland
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, British Columbia, Canada
| | - Mypinder S. Sekhon
- Division of Critical Care, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke Y. C. Chen
- Division of Hematology, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Hematology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Rubio-Casillas A, Redwan EM, Uversky VN. More antibodies are not always better: Fc effector functions play a critical role in SARS-CoV-2 infection and protection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:413-447. [PMID: 40246351 DOI: 10.1016/bs.pmbts.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Traditional vaccinology has primarily focused on neutralizing antibody titers as the main correlate of vaccine efficacy, often overlooking the multifaceted roles of antibody Fc effector functions in orchestrating protective immune responses. Fc-mediated immune responses play a pivotal role in immune modulation and pathogen clearance. Emerging evidence from natural infections and vaccine studies highlights the critical contribution of Fc effector functions in determining the quality and durability of immunity. This work explores the limitations of current vaccine evaluation paradigms that prioritize neutralization over Fc effector mechanisms. It also describes findings from a study showing an unexpected role for SARS-CoV-2 anti-spike antibodies: both convalescent plasma and patient-derived monoclonal antibodies (mAbs) lead to maximum phagocytic capacity by monocytes at low concentrations, whereas at higher concentrations the phagocytic capacity was reduced. Given that the severity of COVID-19 disease and antibody titers are strongly positively correlated, this work challenges the paradigm that high antibodies offer better protection against severe disease. It is proposed that humoral and cellular responses elicited by vaccination should never be higher than those produced by natural infection. By integrating antibody Fc effector functions into vaccine development, a paradigm shift is proposed that emphasizes synergic antibody responses. Such an approach could transform vaccine efficacy assessment, enhance protection against dangerous pathogens, and drive innovation in vaccine design.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
3
|
Lokau J, Garbers Y, Vicente MM, Dittrich A, Meltendorf S, Lingel H, Münster-Kühnel AK, Brunner-Weinzierl M, Garbers C. Long-term increase in soluble interleukin-6 receptor levels in convalescents after mild COVID-19 infection. Front Immunol 2025; 15:1488745. [PMID: 39835136 PMCID: PMC11743636 DOI: 10.3389/fimmu.2024.1488745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Serum levels of interleukin-6 (IL-6) are increased in COVID-19 patients. IL-6 is an effective therapeutic target in inflammatory diseases and tocilizumab, a monoclonal antibody that blocks signaling via the IL-6 receptor (IL-6R), is used to treat patients with severe COVID-19. However, the IL-6R exists in membrane-bound and soluble forms (sIL-6R), and the sIL-6R in combination with soluble glycoprotein 130 (sgp130) forms an IL-6-neutralizing buffer system capable of neutralizing small amounts of IL-6. Methods In this study, we analyzed serum levels of IL-6, sIL-6R and sgp130 in the serum of COVID-19 convalescent individuals with a history of mild COVID-19 disease and in acute severely ill COVID-19 patients compared to uninfected control subjects. Furthermore, we used single cell RNA sequencing data in order to determine which immune cell types are sources and targets of the individual cytokines and whether their expression is altered in severe COVID-19 patients. Results We find that sIL-6R levels are not only increased in acute severely ill patients, but also in convalescents after a mild COVID-19 infection. We show that this increase in sIL-6R results in an enhanced capacity of the sIL-6R/sgp130 buffer system, but that significantly enhanced free IL-6 is still present due to an overload of the buffer. Further, we identify IL-6 serum levels, age and the number of known pre-existing medical conditions as crucial determinants of disease outcome for the patients. We also show that IL-11 has no major systemic role in COVID-19 patients and that sCD25 is only increased in acute severely ill COVID-19 patients, but not in mild convalescent individuals. Discussion In conclusion, our study shows long-lasting alterations of the IL-6 system after COVID-19 disease, which might be relevant when applying anti-IL-6 or anti-IL-6R therapy.
Collapse
Affiliation(s)
- Juliane Lokau
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Yvonne Garbers
- Faculty of Management, Culture and Technology (Lingen campus), Osnabrück University of Applied Sciences, Lingen, Germany
| | - Manuel M. Vicente
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Anna Dittrich
- Department of Systems Biology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Stefan Meltendorf
- Department of Experimental Pediatrics, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Holger Lingel
- Department of Experimental Pediatrics, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - Monika Brunner-Weinzierl
- Department of Experimental Pediatrics, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| |
Collapse
|
4
|
Ahmed IA, Kharboush TG, Al-Amodi HS, Kamel HFM, Darwish E, Mosbeh A, Galbt HA, Abdel-Kareim AM, Abdelsattar S. Interleukin-1 Beta rs16944 and rs1143634 and Interleukin-6 Receptor rs12083537 Single Nucleotide Polymorphisms as Potential Predictors of COVID-19 Severity. Pathogens 2024; 13:915. [PMID: 39452786 PMCID: PMC11510688 DOI: 10.3390/pathogens13100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Host genetic variation has been recognized as a key predictor of diverse clinical sequelae among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients. Insights into the link between the Interleukin-6 receptor (IL-6R) and Interleukin-1 beta (IL-1β) genetic variation and severe coronavirus disease 2019 (COVID-19) are crucial for developing new predictors and therapeutic targets. We aimed to investigate the association of IL-6R rs12083537, IL-1β rs16944, and IL-1β rs1143634 SNPs with the severity of COVID-19. Our study was conducted on 300 COVID-19-negative individuals (control group) and 299 COVID-19-positive cases, classified into mild, moderate, and severe subgroups. Analyses of IL-1β (rs16944, rs1143634) and IL-6R (rs12083537) SNPs' genotypes were performed using qPCR genotyping assays. The IL-1β (rs16944) CC genotype and IL-6R (rs12083537) GG genotype were substantially related to COVID-19 severity, which was also associated with comorbidities and some laboratory parameters (p < 0.001). The IL-1β (rs1143634) TT genotype was found to be protective. Likewise, the IL-1β (rs16944) CC genotype was associated with increased mortality. IL-1β rs16944 and IL-6R rs12083537 SNPs are promising potential predictors of SARS-CoV-2 disease severity. Meanwhile, the rs1143634 SNP T allele was protective against severity and mortality risk.
Collapse
Affiliation(s)
- Inas A. Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt
- Central Laboratory for Research, Faculty of Medicine, Benha University, Benha 13518, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha National University, El-Obour 11828, Egypt
| | - Taghrid G. Kharboush
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Hiba S. Al-Amodi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; (H.S.A.-A.); (H.F.M.K.)
| | - Hala F. M. Kamel
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; (H.S.A.-A.); (H.F.M.K.)
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Ehab Darwish
- Department of Tropical Medicine, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt;
- Department of Internal Medicine, Faculty of Medicine, King Faisal University, AI-Ahsa 31982, Saudi Arabia
| | - Asmaa Mosbeh
- Department of Pathology, National Liver Institute, Menoufia University, Menoufia 32511, Egypt;
| | - Hossam A. Galbt
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Menoufia 32511, Egypt;
| | - Amal M. Abdel-Kareim
- Department of Zoology, Faculty of Science, Benha University, Benha 13518, Egypt;
| | - Shimaa Abdelsattar
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Menoufia 32511, Egypt;
| |
Collapse
|
5
|
Wang P, Liu S, Yang J. Physiologically Based Pharmacokinetic Modeling to Investigate the Disease-Drug-Drug Interactions between Voriconazole and Nirmatrelvir/Ritonavir in COVID-19 Patients with CYP2C19 Phenotypes. Clin Pharmacol Ther 2024; 116:363-371. [PMID: 38429919 DOI: 10.1002/cpt.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis superinfection with cytokine storm is associated with increased mortality. This study aimed to establish a physiologically-based pharmacokinetic (PK) model to investigate the disease-drug-drug interactions between voriconazole and nirmatrelvir/ritonavir in patients with COVID-19 with elevated interleukin-6 (IL-6) levels carrying various CYP2C19 phenotypes. The model was constructed and validated using PK data on voriconazole, ritonavir, and IL-6, and was subsequently verified against clinical data from 78 patients with COVID-19. As a result, the model predicted voriconazole, ritonavir, and IL-6 PK parameters and drug-drug interaction-related fold changes in healthy subjects and patients with COVID-19 with acceptable prediction error, demonstrating its predictive capability. Simulations indicated ritonavir could increase voriconazole exposure to CYP2C19 intermediate and poor metabolizers rather than decrease it, in contrast to what is indicated in the drug package insert. However, the predicted ritonavir exposures were comparable across subjects. In patients with COVID-19, both ritonavir and IL-6 increased voriconazole trough concentrations, which may lead to CYP2C19 phenotype-dependent overexposure. In conclusion, COVID-19-induced IL-6 elevation and ritonavir increased voriconazole exposure, and the magnitude of interactions was influenced by CYP2C19 phenotype. Thus, caution is warranted when prescribing voriconazole concomitantly with Paxlovid in patients with COVID-19.
Collapse
Affiliation(s)
- Peile Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shuaibing Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Zhang J. Immune responses in COVID-19 patients: Insights into cytokine storms and adaptive immunity kinetics. Heliyon 2024; 10:e34577. [PMID: 39149061 PMCID: PMC11325674 DOI: 10.1016/j.heliyon.2024.e34577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
SARS-CoV-2 infection can trigger cytokine storm in some patients, which characterized by an excessive production of cytokines and chemical mediators. This hyperactive immune response may cause significant tissue damage and multiple organ failure (MOF). The severity of COVID-19 correlates with the intensity of cytokine storm, involving elements such as IFN, NF-κB, IL-6, HMGB1, etc. It is imperative to rapidly engage adaptive immunity to effectively control the disease progression. CD4+ T cells facilitate an immune response by improving B cells in the production of neutralizing antibodies and activating CD8+ T cells, which are instrumental in eradicating virus-infected cells. Meanwhile, antibodies from B cells can neutralize virus, obstructing further infection of host cells. In individuals who have recovered from the disease, virus-specific antibodies and memory T cells were observed, which could confer a level of protection, reducing the likelihood of re-infection or attenuating severity. This paper discussed the roles of macrophages, IFN, IL-6 and HMGB1 in cytokine release syndrome (CRS), the intricacies of adaptive immunity, and the persistence of immune memory, all of which are critical for the prevention and therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Junguo Zhang
- Pulmonology Department, Fengdu General Hospital, Chongqing, 408200, China
| |
Collapse
|
7
|
Wang S, Chen X, Li Q, Zhang Y, Rong Y, Feng Y, Liu H, Xu J, Yang R, Li W. Comparative Study on the Mechanism of Macrophage Activation Induced by Polysaccharides from Fresh and Dried Longan. Nutrients 2024; 16:1654. [PMID: 38892587 PMCID: PMC11174042 DOI: 10.3390/nu16111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Longan (Dimcarpus longan Lour.) is a kind of traditional fruit used as a medicine and a food. Fresh longan is primarily consumed as a fruit, whereas dried longan is commonly employed for medicinal purposes. The differences in the immunomodulatory activities and mechanisms of polysaccharides between dried and fresh longan remain unclear. The present study comparatively analyzed the mechanisms of macrophage activation induced by polysaccharides from dried (LPG) and fresh longan (LPX). The results revealed that LPG and LPX differentially promoted macrophage phagocytosis and the secretion of NO, TNF-α, and IL-6. RNA-seq analysis revealed that LPG and LPX differentially affected gene expression in macrophages. The LPG treatment identified Tnf and chemokine-related genes as core genes, while myd88 and interferon-related genes were the core genes affected by LPX. A comprehensive analysis of the differentially expressed genes showed that LPG initiated macrophage activation primarily through the TLR2/4-mediated TRAM/TRAF6 and CLR-mediated Src/Raf1 NF-κB signaling pathways. LPX initiated macrophage activation predominantly via the CLR-mediated Bcl10/MALT1 and NLR-mediated Rip2/TAK1 MAPK and NF-κB signaling pathways. Interestingly, the non-classical NF-κB signaling pathway was activated by polysaccharides in both dried and fresh longan to elicit a slow, mild immune response. LPG tends to promote immune cell migration to engage in the immune response, while LPX facilitates antigen presentation to promote T cell activation. These findings contribute insights into the mechanisms underlying the differences in bioactivity between dried and fresh longan and their potential applications in immune-enhancing strategies and functional-food development.
Collapse
Affiliation(s)
- Shengwei Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaoyan Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Qianxin Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yinghui Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yu Rong
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanxian Feng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Hui Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jucai Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Ruili Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wu Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Rodríguez-Hernández MÁ, Baena-Bustos M, Carneros D, Zurita-Palomo C, Muñoz-Pinillos P, Millán J, Padillo FJ, Smerdou C, von Kobbe C, Rose-John S, Bustos M. Targeting IL-6 trans-signalling by sgp130Fc attenuates severity in SARS-CoV-2 -infected mice and reduces endotheliopathy. EBioMedicine 2024; 103:105132. [PMID: 38677182 PMCID: PMC11061249 DOI: 10.1016/j.ebiom.2024.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND SARS-CoV-2 infection is considered as a relapsing inflammatory process with a dysregulation of IL-6 signalling. Classic IL-6 signalling is thought to represent a defence mechanism against pathogens. In contrast, IL-6 trans-signalling has pro-inflammatory effects. In severe COVID-19, therapeutic strategies have focused on global inhibition of IL-6, with controversial results. We hypothesized that specific blockade of IL-6 trans-signalling could inhibit inflammatory response preserving the host defence activity inherent to IL-6 classic signalling. METHODS To test the role of the specific IL-6 trans-signalling inhibition by sgp130Fc in short- and long-term consequences of COVID-19, we used the established K18-hACE2 transgenic mouse model. Histological as well as immunohistochemical analysis, and pro-inflammatory marker profiling were performed. To investigate IL-6 trans-signalling in human cells we used primary lung microvascular endothelial cells and fibroblasts in the presence/absence of sgp130Fc. FINDINGS We report that targeting IL-6 trans-signalling by sgp130Fc attenuated SARS-CoV-2-related clinical symptoms and mortality. In surviving mice, the treatment caused a significant decrease in lung damage. In vitro, IL-6 trans-signalling induced strong and persisting JAK1/STAT3 activation in endothelial cells and lung fibroblasts with proinflammatory effects, which were attenuated by sgp130Fc. Our data also suggest that in those cells with scant amounts of IL-6R, the induction of gp130 and IL-6 by IL-6:sIL-6R complex sustains IL-6 trans-signalling. INTERPRETATION IL-6 trans-signalling fosters progression of COVID-19, and suggests that specific blockade of this signalling mode could offer a promising alternative to mitigate both short- and long-term consequences without affecting the beneficial effects of IL-6 classic signalling. These results have implications for the development of new therapies of lung injury and endotheliopathy in COVID-19. FUNDING The project was supported by ISCIII, Spain (COV-20/00792 to MB, PI23/01351 to MARH) and the European Commission-Next generation EU (European Union) (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global, SGL2103029 to MB). PID2019-110587RB-I00 (MB) supported by MICIN/AEI/10.13039/501100011033/and PID2022-143034OB-I00 (MB) by MICIN/AEI/10.13039/501100011033/FEDER. MAR-H acknowledges support from ISCIII, Spain and the European Commission-Next generation EU (European Union), through CSIC's Global Health PTI.
Collapse
Affiliation(s)
- María Ángeles Rodríguez-Hernández
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain.
| | - Mercedes Baena-Bustos
- Pneumology Unit, Institute of Biomedicine of Seville (IBiS), Virgen Macarena University Hospital (HUVM), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - David Carneros
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - Carola Zurita-Palomo
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - Pablo Muñoz-Pinillos
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Francisco Javier Padillo
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - Cristian Smerdou
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain
| | - Cayetano von Kobbe
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Cantoblanco, Madrid, Spain
| | | | - Matilde Bustos
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain.
| |
Collapse
|
9
|
Swaroop AK, Negi P, Kar A, Mariappan E, Natarajan J, Namboori P K K, Selvaraj J. Navigating IL-6: From molecular mechanisms to therapeutic breakthroughs. Cytokine Growth Factor Rev 2024; 76:48-76. [PMID: 38220583 DOI: 10.1016/j.cytogfr.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
This concise review navigates the intricate realm of Interleukin-6 (IL-6), an important member of the cytokine family. Beginning with an introduction to cytokines, this narrative review unfolds with the historical journey of IL-6, illuminating its evolving significance. A crucial section unravels the three distinct signaling modes employed by IL-6, providing a foundational understanding of its versatile interactions within cellular landscapes. Moving deeper, the review meticulously dissects IL-6's signaling mechanisms, unraveling the complexities of its pleiotropic effects in both physiological responses and pathological conditions. A significant focus is dedicated to the essential role IL-6 plays in inflammatory diseases, offering insights into its associations and implications for various health conditions. The review also takes a therapeutic turn by exploring the emergence of anti-IL-6 monoclonal inhibitors, marking a profound stride in treatment modalities. Diving into the molecular realm, the review explores small molecules as agents for IL-6 inhibition, providing a nuanced perspective on diverse intervention strategies. As the review embarks on the final chapters, it contemplates future aspects, offering glimpses into potential research trajectories and the evolving landscape of IL-6-related studies.
Collapse
Affiliation(s)
- Akey Krishna Swaroop
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Preeya Negi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Ayushi Kar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Esakkimuthukumar Mariappan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Jawahar Natarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Krishnan Namboori P K
- Amrita Molecular Modeling and Synthesis (AMMAS) Research lab, Amrita Vishwavidyapeetham, Amrita Nagar, Ettimadai, Coimbatore, Tamil Nadu, India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India.
| |
Collapse
|
10
|
Korotaeva AA, Samoilova EV, Pogosova NV, Kuchiev DT, Gomyranova NV, Paleev FN. Factors of Interleukin-6 Signaling in COVID-19 Patients with Lung Damage of Varying Degrees: A Pilot Study. Bull Exp Biol Med 2024; 176:772-775. [PMID: 38890212 DOI: 10.1007/s10517-024-06106-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 06/20/2024]
Abstract
Specific features of IL-6 signal transduction were studied in 89 patients with lung damage of varying degrees during the first COVID-19 pandemic wave. The levels of IL-6 signaling components (IL-6, sIL-6R, and sgp130) and highly sensitive C-reactive protein (hsCRP) were examined in patients with intact lungs (CT-0), mild (CT-1), moderate (CT-2), moderate to severe (CT-3), and severe (CT-4) lung damage. Seventy patients were re-examined 3-7 months after discharge from the hospital. The IL-6 and hsCRP levels increased several times with severing lung damage severity. In patients with CT-3, sIL6-R increased statistically significantly and remained high in CT-4 patients. sgp130 levels were lower in CT-1 and CT-2 patients and higher in CT-3 and CT-4 patients compared to CT-0 patients. We revealed a positive correlation between IL-6 and hsCRP levels in CT-1, CT-2, and CT-3 patients. In CT-3 patients, sIL-6R levels positively correlated with IL-6 concentration. The studied parameters decreased considerably in all patients 3-7 months after discharge. It can be suggested that IL-6 classic-signaling is predominant in CT-1 and CT-2, while trans-signaling prevails in CT-3. Disorders in regulatory mechanisms of IL-6 signaling occur in CT-4, which prevents physiological elimination of IL-6 hyperactivity. The results obtained are preliminary and require a broader study.
Collapse
Affiliation(s)
- A A Korotaeva
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E V Samoilova
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - N V Pogosova
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - D T Kuchiev
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N V Gomyranova
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - F N Paleev
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
11
|
Nakahara Y, Kouro T, Motoyama S, Miura M, Fujita K, Igarashi Y, Higashijima N, Matsuo N, Himuro H, Wei F, Horaguchi S, Tsuji K, Mano Y, Komahashi M, Saito H, Azuma K, Sasada T. Circulating IL-6 and not its circulating signaling components sIL-6R and sgp130 demonstrate clinical significance in NSCLC patients treated with immune checkpoint inhibitors. Front Cell Dev Biol 2024; 11:1324898. [PMID: 38469154 PMCID: PMC10926441 DOI: 10.3389/fcell.2023.1324898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 03/13/2024] Open
Abstract
Introduction: Clinical roles of plasma IL-6 levels have been reported in patients with various cancers, including non-small cell lung cancer (NSCLC), treated with immune checkpoint inhibitors (ICIs). However, the roles of other IL-6 signaling components, soluble IL-6 receptor (sIL-6R) and soluble gp130 (sgp130), in the plasma have not been elucidated. Methods: Blood was collected from 106 patients with NSCLC before initiation of ICI treatment (anti-PD-1 or anti-PD-L1 antibody). Plasma levels of IL-6, sIL-6R, sgp130, and their complexes were assessed by Cox regression hazard model to evaluate their clinical significance. The clinical role of IL-6 or IL-6R genetic polymorphisms was also analyzed. Results: Cox regression analysis showed that higher plasma IL-6 levels significantly predicted unfavorable overall survival (OS; hazard ratio [HR] 1.34, 95% confidence interval [CI] 1.05-1.68, p = 0.012) in NSCLC patients treated with ICIs. However, plasma sIL-6R and sgp130 levels showed no prognostic significance (p = 0.882 and p = 0.934, respectively). In addition, the estimated concentrations of binary IL-6:sIL-6R and ternary IL-6:sIL-6R:sgp130 complexes and their ratios (binary/ternary complex) were not significantly associated with OS (p = 0.647, p = 0.727, and p = 0.273, respectively). Furthermore, the genetic polymorphisms of IL-6 (-634G>C) and IL-6R (48892A>C) showed no clinical role by Kaplan-Meier survival analysis (p = 0.908 and p = 0.639, respectively). Discussion: These findings demonstrated the clinical significance of plasma levels of IL-6, but not of other IL-6 signaling components, sIL-6R and sgp130, suggesting that classical IL-6 signaling, but not trans-signaling, may be related to anti-tumor immune responses in cancer patients treated with ICIs.
Collapse
Affiliation(s)
- Yoshiro Nakahara
- Department of Respiratory Medicine, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Taku Kouro
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Satoru Motoyama
- Department of Comprehensive Cancer Control, Akita University Graduate School of Medicine, Akita, Japan
- Division of Esophageal Surgery, Akita University Hospital, Akita, Japan
- Department of Gastroenterological Surgery, Japanese Red Cross Akita Hospital, Akita, Japan
| | - Masatomo Miura
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | - Kazuma Fujita
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | - Yuka Igarashi
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Naoko Higashijima
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Norikazu Matsuo
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hidetomo Himuro
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Feifei Wei
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Shun Horaguchi
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kayoko Tsuji
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Yasunobu Mano
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Mitsuru Komahashi
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Haruhiro Saito
- Department of Respiratory Medicine, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tetsuro Sasada
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| |
Collapse
|
12
|
Jia S, Yu Z, Bai L. Exerkines and osteoarthritis. Front Physiol 2023; 14:1302769. [PMID: 38107476 PMCID: PMC10722202 DOI: 10.3389/fphys.2023.1302769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic joint disease, with physical exercise being a widely endorsed strategy in its management guidelines. Exerkines, defined as cytokines secreted in response to acute and chronic exercise, function through endocrine, paracrine, and/or autocrine pathways. Various tissue-specific exerkines, encompassing exercise-induced myokines (muscle), cardiokines (heart), and adipokines (adipose tissue), have been linked to exercise therapy in OA. Exerkines are derived from these kines, but unlike them, only kines regulated by exercise can be called exerkines. Some of these exerkines serve a therapeutic role in OA, such as irisin, metrnl, lactate, secreted frizzled-related protein (SFRP), neuregulin, and adiponectin. While others may exacerbate the condition, such as IL-6, IL-7, IL-15, IL-33, myostatin, fractalkine, follistatin-like 1 (FSTL1), visfatin, activin A, migration inhibitory factor (MIF), apelin and growth differentiation factor (GDF)-15. They exerts anti-/pro-apoptosis/pyroptosis/inflammation, chondrogenic differentiation and cell senescence effect in chondrocyte, synoviocyte and mesenchymal stem cell. The modulation of adipokine effects on diverse cell types within the intra-articular joint emerges as a promising avenue for future OA interventions. This paper reviews recent findings that underscore the significant role of tissue-specific exerkines in OA, delving into the underlying cellular and molecular mechanisms involved.
Collapse
Affiliation(s)
- Shuangshuo Jia
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyao Yu
- Imaging Department, Dalian Medical University, Dalian, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Colás-Algora N, Muñoz-Pinillos P, Cacho-Navas C, Avendaño-Ortiz J, de Rivas G, Barroso S, López-Collazo E, Millán J. Simultaneous Targeting of IL-1-Signaling and IL-6-Trans-Signaling Preserves Human Pulmonary Endothelial Barrier Function During a Cytokine Storm-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:2213-2222. [PMID: 37732482 DOI: 10.1161/atvbaha.123.319695] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Systemic inflammatory diseases, such as sepsis and severe COVID-19, provoke acute respiratory distress syndrome in which the pathological hyperpermeability of the microvasculature, induced by uncontrolled inflammatory stimulation, causes pulmonary edema. Identifying the inflammatory mediators that induce human lung microvascular endothelial cell barrier dysfunction is essential to find the best anti-inflammatory treatments for critically ill acute respiratory distress syndrome patients. METHODS We have compared the responses of primary human lung microvascular endothelial cells to the main inflammatory mediators involved in cytokine storms induced by sepsis and SARS-CoV2 pulmonary infection and to sera from healthy donors and severely ill patients with sepsis. Endothelial barrier function was measured by electric cell-substrate impedance sensing, quantitative confocal microscopy, and Western blot. RESULTS The human lung microvascular endothelial cell barrier was completely disrupted by IL (interleukin)-6 conjugated with soluble IL-6R (IL-6 receptor) and by IL-1β (interleukin-1beta), moderately affected by TNF (tumor necrosis factor)-α and IFN (interferon)-γ and unaffected by other cytokines and chemokines, such as IL-6, IL-8, MCP (monocyte chemoattractant protein)-1 and MCP-3. The inhibition of IL-1 and IL-6R simultaneously, but not separately, significantly reduced endothelial hyperpermeability on exposing human lung microvascular endothelial cells to a cytokine storm consisting of 8 inflammatory mediators or to sera from patients with sepsis. Simultaneous inhibition of IL-1 and JAK (Janus kinase)-STAT (signal transducer and activator of transcription protein), a signaling node downstream IL-6 and IFN-γ, also prevented septic serum-induced endothelial barrier disruption. CONCLUSIONS These findings strongly suggest a major role for both IL-6 trans-signaling and IL-1β signaling in the pathological increase in permeability of the human lung microvasculature and reveal combinatorial strategies that enable the gradual control of pulmonary endothelial barrier function in response to a cytokine storm.
Collapse
Affiliation(s)
- Natalia Colás-Algora
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| | - Pablo Muñoz-Pinillos
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| | - Cristina Cacho-Navas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| | - José Avendaño-Ortiz
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain (J.A.O., E.L.-C.)
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain (J.A.O., E.L.-C.)
| | - Gema de Rivas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| | - Susana Barroso
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| | - Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain (J.A.O., E.L.-C.)
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain (J.A.O., E.L.-C.)
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| |
Collapse
|
14
|
Yanar KE, Eren E, Aktaş MS, Eroğlu MS, Kandemir Ö, Aydın G. Prognostic potential of inflammatory markers, oxidative status, thrombocyte indices, and renal biochemical markers in neonatal calf diarrhoea-induced systemic inflammatory response syndrome. Vet Immunol Immunopathol 2023; 265:110680. [PMID: 37980800 DOI: 10.1016/j.vetimm.2023.110680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
The study aimed to assess the prognostic value of inflammatory markers, indicators of oxidative stress, thrombocyte indices, and renal biochemical markers in neonatal calf diarrhoea (NCD) induced by systemic inflammatory response syndrome (SIRS) upon admission. A prospective, observational, and case-control study was conducted on 56 calves diagnosed with NCD. Mean concentrations of interleukin-6 (IL-6), malondialdehyde (MDA), glutathione (GSH), mean platelet volume (MPV), platelet distribution width (PDW), blood urea nitrogen (BUN), and creatinine (Crea) were measured. Furthermore, the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were also calculated for SIRS survivors [SIRS (survivor)] and non-survivors [SIRS (non-survivor)] induced by NCD. A prognostic cut-off value for predicting the prognosis of the SIRS's induced by NCD was obtained via receiver operating characteristic (ROC) curve analysis. Upon admission, the SIRS (non-survivor) calves had significantly higher (P < .001) average levels of IL-6, MDA, BUN, Crea, MPV, and PDW compared to the SIRS (survivor) calves and significantly lower (P < .001) average levels of GSH. Despite an apparent increase in the NLR and PLR values of calves diagnosed with SIRS, no significant difference was found between the survival and non-survivor SIRS cases. Positive predictive values (PPVs) for survival were determined as 100 %, 100 %, 80 %, 100 %, 80 %, and 80 %, respectively, using cut-off values of IL-6 (≤259.67 ng/L), MDA (≤2.87 nmol/mL), MPV (≤12.5 fL), PDW (≤34.25 %), BUN (≤168.3 mg/dL), and Crea (≤2.11 mg/dL). The determined threshold values are those obtained upon admission to the hospital. Based on the sensitivity, specificity, and PPVs derived from the ROC analysis, it has been concluded that IL-6, MDA, MPV, PDW, BUN, and Crea are the most relevant biomarkers used for predicting the prognosis of NCD-induced SIRS in calves. Furthermore, it is also noteworthy that IL-6 exhibited the highest effectiveness among all biomarkers.
Collapse
Affiliation(s)
- Kerim Emre Yanar
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Emre Eren
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Mustafa Sinan Aktaş
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Muhammed Sertaç Eroğlu
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Özge Kandemir
- Aksaray Technical Sciences Vocatinal School, Aksaray University, Aksaray, Turkey
| | | |
Collapse
|
15
|
Salvioli S, Basile MS, Bencivenga L, Carrino S, Conte M, Damanti S, De Lorenzo R, Fiorenzato E, Gialluisi A, Ingannato A, Antonini A, Baldini N, Capri M, Cenci S, Iacoviello L, Nacmias B, Olivieri F, Rengo G, Querini PR, Lattanzio F. Biomarkers of aging in frailty and age-associated disorders: State of the art and future perspective. Ageing Res Rev 2023; 91:102044. [PMID: 37647997 DOI: 10.1016/j.arr.2023.102044] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
According to the Geroscience concept that organismal aging and age-associated diseases share the same basic molecular mechanisms, the identification of biomarkers of age that can efficiently classify people as biologically older (or younger) than their chronological (i.e. calendar) age is becoming of paramount importance. These people will be in fact at higher (or lower) risk for many different age-associated diseases, including cardiovascular diseases, neurodegeneration, cancer, etc. In turn, patients suffering from these diseases are biologically older than healthy age-matched individuals. Many biomarkers that correlate with age have been described so far. The aim of the present review is to discuss the usefulness of some of these biomarkers (especially soluble, circulating ones) in order to identify frail patients, possibly before the appearance of clinical symptoms, as well as patients at risk for age-associated diseases. An overview of selected biomarkers will be discussed in this regard, in particular we will focus on biomarkers related to metabolic stress response, inflammation, and cell death (in particular in neurodegeneration), all phenomena connected to inflammaging (chronic, low-grade, age-associated inflammation). In the second part of the review, next-generation markers such as extracellular vesicles and their cargos, epigenetic markers and gut microbiota composition, will be discussed. Since recent progresses in omics techniques have allowed an exponential increase in the production of laboratory data also in the field of biomarkers of age, making it difficult to extract biological meaning from the huge mass of available data, Artificial Intelligence (AI) approaches will be discussed as an increasingly important strategy for extracting knowledge from raw data and providing practitioners with actionable information to treat patients.
Collapse
Affiliation(s)
- Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | | | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy
| | - Sara Carrino
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Eleonora Fiorenzato
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Angelo Antonini
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), Department of Neurosciences, University of Padova, Padova, Italy
| | - Nicola Baldini
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Scientific Institute of Telese Terme, Telese Terme, Italy
| | | | | |
Collapse
|
16
|
Rose-John S, Jenkins BJ, Garbers C, Moll JM, Scheller J. Targeting IL-6 trans-signalling: past, present and future prospects. Nat Rev Immunol 2023; 23:666-681. [PMID: 37069261 PMCID: PMC10108826 DOI: 10.1038/s41577-023-00856-y] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/19/2023]
Abstract
Interleukin-6 (IL-6) is a key immunomodulatory cytokine that affects the pathogenesis of diverse diseases, including autoimmune diseases, chronic inflammatory conditions and cancer. Classical IL-6 signalling involves the binding of IL-6 to the membrane-bound IL-6 receptor α-subunit (hereafter termed 'mIL-6R') and glycoprotein 130 (gp130) signal-transducing subunit. By contrast, in IL-6 trans-signalling, complexes of IL-6 and the soluble form of IL-6 receptor (sIL-6R) signal via membrane-bound gp130. A third mode of IL-6 signalling - known as cluster signalling - involves preformed complexes of membrane-bound IL-6-mIL-6R on one cell activating gp130 subunits on target cells. Antibodies and small molecules have been developed that block all three forms of IL-6 signalling, but in the past decade, IL-6 trans-signalling has emerged as the predominant pathway by which IL-6 promotes disease pathogenesis. The first selective inhibitor of IL-6 trans-signalling, sgp130, has shown therapeutic potential in various preclinical models of disease and olamkicept, a sgp130Fc variant, had promising results in phase II clinical studies for inflammatory bowel disease. Technological developments have already led to next-generation sgp130 variants with increased affinity and selectivity towards IL-6 trans-signalling, along with indirect strategies to block IL-6 trans-signalling. Here, we summarize our current understanding of the biological outcomes of IL-6-mediated signalling and the potential for targeting this pathway in the clinic.
Collapse
Affiliation(s)
- Stefan Rose-John
- Biochemical Institute, Medical Faculty, Christian-Albrechts-University, Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC:I3), Otto-von-Guericke-University, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
17
|
Ren J, Wang XQ, Nakao T, Libby P, Shi GP. Differential Roles of Interleukin-6 in Severe Acute Respiratory Syndrome-Coronavirus-2 Infection and Cardiometabolic Diseases. CARDIOLOGY DISCOVERY 2023; 3:166-182. [PMID: 38152628 PMCID: PMC10750760 DOI: 10.1097/cd9.0000000000000096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can lead to a cytokine storm, unleashed in part by pyroptosis of virus-infected macrophages and monocytes. Interleukin-6 (IL-6) has emerged as a key participant in this ominous complication of COVID-19. IL-6 antagonists have improved outcomes in patients with COVID-19 in some, but not all, studies. IL-6 signaling involves at least 3 distinct pathways, including classic-signaling, trans-signaling, and trans-presentation depending on the localization of IL-6 receptor and its binding partner glycoprotein gp130. IL-6 has become a therapeutic target in COVID-19, cardiovascular diseases, and other inflammatory conditions. However, the efficacy of inhibition of IL-6 signaling in metabolic diseases, such as obesity and diabetes, may depend in part on cell type-dependent actions of IL-6 in controlling lipid metabolism, glucose uptake, and insulin sensitivity owing to complexities that remain to be elucidated. The present review sought to summarize and discuss the current understanding of how and whether targeting IL-6 signaling ameliorates outcomes following SARS-CoV-2 infection and associated clinical complications, focusing predominantly on metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Jingjing Ren
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Xiao-Qi Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Tetsushi Nakao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
18
|
Tabikhanova LE, Osipova LP, Churkina TV, Kovalev SS, Filipenko ML, Voronina EN. Increased Frequencies of the ‒174G and ‒572C IL6 Alleles in Populations of Indigenous Peoples of Siberia Compared to Russians. Mol Biol 2023; 57:329-337. [PMID: 37128211 PMCID: PMC10131552 DOI: 10.1134/s002689332302019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 05/03/2023]
Abstract
Abstract-The study of immune response and inflammation gene polymorphisms in a genogeographic context is relevant in the study of human populations. Here, in the indigenous populations of Siberia the frequencies of polymorphic variants ‒174G/C (rs1800795) and ‒572C/G (rs1800796) of the IL6 gene encoding the proinflammatory cytokine IL-6 were determined. For the first time, it was shown that the frequencies of the ‒174G and ‒572C alleles, which determine increased inflammatory response and are also associated with several diseases were statistically significantly higher in ethnic groups of Buryats, Teleuts, Yakuts, Dolgans and Tuvinians than in Russians living in Siberia. These values were in the intermediate position between those in the European and East-Asian groups. We hypothesize an adaptive role of these IL6 genetic variants in human settlement from Africa to the Eurasian continent. However, due to the departure from the traditional way of life and the increasing anthropogenic environmental pollution, the risk of diseases whose pathogenesis is based on inflammation in indigenous Siberian populations is likely increased.
Collapse
Affiliation(s)
- L. E. Tabikhanova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - L. P. Osipova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - T. V. Churkina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - S. S. Kovalev
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - M. L. Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - E. N. Voronina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|