1
|
Tiniakou E. An update on the pathogenesis of idiopathic inflammatory myopathies. Curr Opin Rheumatol 2025; 37:192-198. [PMID: 39943886 DOI: 10.1097/bor.0000000000001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
PURPOSE OF REVIEW As the question of the pathogenesis of inflammatory myopathies remains unanswered, there has been a significant effort in recent years to investigate various components of the innate and adaptive immune systems, with evidence pointing that they work together to initiate and propagate the autoimmune response. This review aims to explore recent advancements in understanding the mechanisms underlying myopathies. RECENT FINDINGS Recent research has concentrated on uncovering potential triggers, examining the role of immune cells, both lymphocytes and myeloids, and investigating the contribution of inflammatory mediators to the autoimmune response in inflammatory myopathies. Unsuccessful clinical trials helped reshape established hypotheses about pathogenesis, while genetic mutations offered clues to the disease's root causes. The pathogenic role of autoantibodies is being reconsidered based on transcriptional data. Repurposing existing medications to combat muscle fiber dysfunction is also emerging as a potential therapeutic approach. SUMMARY Our understanding of inflammatory myopathies has evolved significantly as our understanding of the disease has grown. Even though breakthroughs have been documented on the underlying mechanisms of myopathies, important questions remain unanswered.
Collapse
Affiliation(s)
- Eleni Tiniakou
- Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Zhao J, Fang Z. Single-cell RNA sequencing reveals the dysfunctional characteristics of PBMCs in patients with type 2 diabetes mellitus. Front Immunol 2025; 15:1501660. [PMID: 39916961 PMCID: PMC11798774 DOI: 10.3389/fimmu.2024.1501660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/11/2024] [Indexed: 02/09/2025] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a disease that involves autoimmunity. However, how immune cells function in the peripheral blood remains unclear. Exploring T2DM biomarkers via single-cell RNA sequencing (scRNA-seq) could provide new insights into the underlying molecular mechanisms. Methods The clinical trial registration number is ChiCTR2100049613. In this study, we included three healthy participants and three T2DM patients. The observed clinical indicators included weight and fasting blood glucose (FBG), glycosylated haemoglobin A1c (HbA1c) and fasting insulin levels. Direct separation and purification of peripheral blood mononuclear cells (PBMCs) were performed via the Ficoll density gradient centrifugation method. Immune cell types were identified via scRNA-seq. The differentially expressed genes, biological functions, cell cycle dynamics, and correlations between blood glucose indicators and genes in different cell types were analysed. Results There were differences between the healthy and T2DM groups in terms of FBG and HbA1c (p<0.05 or p<0.01). We profiled 13,591 cells and 3188 marker genes from PBMCs. B cells, T cells, monocytes, and NK cells were grouped into 4 subclusters from PBMCs. CD4+ T cells are mainly in the memory activation stage, and CD8+ T cells are effectors. Monocytes include mainly CD14+ monocytes and FCGR3A+ monocytes. There were 119 differentially expressed genes in T cells and 175 differentially expressed genes in monocytes. Gene set enrichment analysis revealed that the marker genes were enriched in HALLMARK_ INTERFERON_GAMMA_RESPONSE and HALLMARK_TNFA_SIGNALING_VIA_ NFKB. Moreover, TNFRSF1A was identified as the core gene involved in network interactions in T cells. Discussion Our study provides a transcriptional map of immune cells from PBMCs and provides a framework for understanding the immune status and potential immune mechanisms of T2DM patients via scRNA-seq. Clinical trial registration http://www.chictr.org.cn, identifier ChiCTR2100049613.
Collapse
Affiliation(s)
- Jindong Zhao
- Department of Endocrinology Two, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Diabetes Institute, Anhui Academy Chinese Medicine, Hefei, China
| | - Zhaohui Fang
- Department of Endocrinology Two, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Diabetes Institute, Anhui Academy Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Kim H. Juvenile Dermatomyositis: Updates in Pathogenesis and Biomarkers, Current Treatment, and Emerging Targeted Therapies. Paediatr Drugs 2025; 27:57-72. [PMID: 39425894 PMCID: PMC11774970 DOI: 10.1007/s40272-024-00658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Juvenile dermatomyositis is a rare systemic inflammatory autoimmune disease involving muscle, skin, and vessels. Most patients do not fully respond to initial therapy, instead having a chronic refractory or polycyclic disease course. Pathogenesis is not completely understood, but immune cell dysregulation, particularly of B cells, mitochondrial dysfunction, changes in neutrophils and neutrophil extracellular traps (NETs), and increased type I and type II interferon (IFN) signaling have been described. There are limited randomized controlled trials of drugs in juvenile dermatomyositis (JDM), and treatment is largely based on lower-quality data such as case series, retrospective studies, and open-label prospective studies. These data have been compiled into expert recommendations or consensus treatment plans, which help guide therapy. While initial therapy is more standard with most including corticosteroids (high-dose oral and/or pulse intravenous methylprednisolone) and methotrexate, for refractory patients, guidelines are more varied with multiple options or combinations, including biologic therapies. There is a clear need for more efficacious and personalized therapy in JDM. Emerging treatment options worthy of further study in JDM include targeting IFN-signaling (JAK, IFNAR1, IFN beta), B-cells (CD20, CD19, BAFF, TACI, CD38, BCMA) including Chimeric Antigen Receptor (CAR)-T cell therapy, mitochondrial dysfunction, and NETs.
Collapse
Affiliation(s)
- Hanna Kim
- National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Harrison AG, Yang D, Cahoon JG, Geng T, Cao Z, Karginov TA, Hu Y, Li X, Chiari CC, Qyang Y, Vella AT, Fan Z, Vanaja SK, Rathinam VA, Witczak CA, Bogan JS, Wang P. UBXN9 governs GLUT4-mediated spatial confinement of RIG-I-like receptors and signaling. Nat Immunol 2024; 25:2234-2246. [PMID: 39567760 PMCID: PMC12067455 DOI: 10.1038/s41590-024-02004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/04/2024] [Indexed: 11/22/2024]
Abstract
The cytoplasmic RIG-I-like receptors (RLRs) recognize viral RNA and initiate innate antiviral immunity. RLR signaling also triggers glycolytic reprogramming through glucose transporters (GLUTs), whose role in antiviral immunity is elusive. Here, we unveil that insulin-responsive GLUT4 inhibits RLR signaling independently of glucose uptake in adipose and muscle tissues. At steady state, GLUT4 is trapped at the Golgi matrix by ubiquitin regulatory X domain 9 (UBXN9, TUG). Following RNA virus infection, GLUT4 is released and translocated to the cell surface where it spatially segregates a significant pool of cytosolic RLRs, preventing them from activating IFN-β responses. UBXN9 deletion prompts constitutive GLUT4 translocation, sequestration of RLRs and attenuation of antiviral immunity, whereas GLUT4 deletion heightens RLR signaling. Notably, reduced GLUT4 expression is uniquely associated with human inflammatory myopathies characterized by hyperactive interferon responses. Overall, our results demonstrate a noncanonical UBXN9-GLUT4 axis that controls antiviral immunity via plasma membrane tethering of cytosolic RLRs.
Collapse
Affiliation(s)
- Andrew G Harrison
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Duomeng Yang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA.
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Jason G Cahoon
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Tingting Geng
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Ziming Cao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Timofey A Karginov
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, and Department of Cell Biology, and Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, USA
| | - Xin Li
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Conner C Chiari
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Yibing Qyang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Sivapriya Kailasan Vanaja
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Carol A Witczak
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan S Bogan
- Section of Endocrinology, Department of Internal Medicine, and Department of Cell Biology, and Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
5
|
Zhang H, Zhang Z, Fan K, Chen H, Guo Y, Mo X. Decoding the genetic landscape of juvenile dermatomyositis: insights from phosphorylation-associated single nucleotide polymorphisms. Immunogenetics 2024; 76:291-304. [PMID: 39085621 DOI: 10.1007/s00251-024-01350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Genome-wide association studies (GWASs) have identified genetic susceptibility loci associated with juvenile dermatomyositis (JDM). Single nucleotide polymorphisms related to phosphorylation (phosSNPs) are critical nonsynonymous mutations exerting substantial influence on gene expression regulation. The aim of this study was to identify JDM susceptibility genes in the GWAS loci by the use of phosSNPs. We explored quantitative trait loci (QTLs) among the phosSNPs associated with JDM using data from eQTL (bulk tissues and single-cell) and pQTL studies. For gene expression and protein levels significantly influenced by JDM-associated phosSNPs, we assessed their associations with JDM through MR analyses. Additionally, we conducted differential expression gene analyses, incorporating single-cell transcriptomic profiling of 6 JDM cases and 11 juvenile controls (99,396 cells). We identified 31 phosSNPs situated in the 6p21 locus that were associated with JDM. Half of these phosSNPs showed effects on gene expression in various cells and circulating protein levels. In MR analyses, we established associations between the expression levels of pivotal JDM-associated genes, including MICB, C4A, HLA-DRB1, HLA-DRB5, and PSMB9, in skin, muscle, or blood cells and circulating levels of C4A, with JDM. Utilizing single-cell eQTL data, we identified a total of 276 association signals across 14 distinct immune cell types for 28 phosSNPs. Further insights were gained through single-cell differential expression analysis, revealing differential expression of PSMB9, HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQA1, HLA-DQB1, and HLA-DRB1 in immune cells. The present study pinpointed phosSNPs within susceptibility genes for JDM and unraveled the intricate relationships among these SNPs, gene expression levels, and JDM.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhentao Zhang
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Kedi Fan
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Hongru Chen
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Yufan Guo
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215000, People's Republic of China.
| | - Xingbo Mo
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
- Center for Genetic Epidemiology and Genomics, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
6
|
Zhang H, Fan K, Zhang Z, Guo Y, Mo X. Genome-wide identification of cell type-specific susceptibility genes for Juvenile dermatomyositis through the analysis of N 6-methyladenosine-associated SNPs. Autoimmunity 2024; 57:2419117. [PMID: 39447013 DOI: 10.1080/08916934.2024.2419117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Genome-wide association studies (GWASs) have pinpointed genetic loci associated with juvenile dermatomyositis (JDM). Functional genes within the GWAS loci may be cell type-specific, but their identity remains largely unknown. N6-methyladenosine (m6A) plays a pivotal role in regulating various cellular processes and is linked to autoimmune diseases. This study aimed to underscore the potential functional genes within the GWAS loci through the analysis of m6A-associated SNPs (m6A-SNPs), specifically within relevant cell types. JDM-associated m6A-SNPs were identified from the GWAS summary dataset. The correlation between m6A-SNPs and gene expression was assessed through bulk tissue and single-cell eQTL analyses. To further investigate the relationship between gene expression and JDM, Mendelian randomization analysis was employed. Additionally, differential expression analyses were conducted on bulk tissues, as well as single-cell transcriptomic data comprising 6 JDM patients and 11 juvenile controls (99,396 cells). Seven m6A-SNPs associated with JDM were identified. Bulk tissue analysis revealed differential expression of HLA-DPA1, HLA-DPB1, MICB, HLA-A, HLA-F, HLA-DQB2, HLA-DRB5, TAP2, PSMB9, MICA, AIF1, and DDX39B influenced by m6A-SNPs, all showing associations with JDM in both differential expression and Mendelian randomization analyses. In single-cell analysis, the six m6A-SNPs within the HLA locus acted as cell-type-specific eQTLs, correlating with the expression of HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQA1, HLA-DQB1 and HLA-DRB1 in myeloid, T or B cells. Notably, these genes displayed abnormal expression in T, B, and myeloid cells of JDM patients. The present study identified m6A-SNPs within JDM susceptibility genes, shedding light on the intricate interplay between m6A-SNPs, gene expression, and JDM.
Collapse
Affiliation(s)
- Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, China
| | - Kedi Fan
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, China
| | - Zhentao Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, China
| | - Yufan Guo
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, China
| |
Collapse
|
7
|
Veldkamp SR, van Wijk F, van Royen-Kerkhof A, Jansen MH. Personalised medicine in juvenile dermatomyositis: From novel insights in disease mechanisms to changes in clinical practice. Best Pract Res Clin Rheumatol 2024; 38:101976. [PMID: 39174374 DOI: 10.1016/j.berh.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
Juvenile dermatomyositis is characterized by childhood-onset chronic inflammation of the muscles and skin, with potential involvement of other organs. Patients are at risk for long-term morbidity due to insufficient disease control and steroid-related toxicity. Personalised treatment is challenged by a lack of validated tools that can reliably predict treatment response and monitor ongoing (subclinical) inflammation, and by a lack of evidence regarding the best choice of medication for individual patients. A better understanding of the involved disease mechanisms could reveal potential biomarkers and novel therapeutic targets. In this review, we highlight the most relevant immune and non-immune mechanisms, elucidating the effects of interferon overexpression on tissue alongside the interplay between the interferon signature, mitochondrial function, and immune cells. We review mechanism-based biomarkers that are promising for clinical implementation, and the latest advances in targeted therapy development. Finally, we discuss key steps needed for translating these discoveries into clinical practice.
Collapse
Affiliation(s)
- Saskia R Veldkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Annet van Royen-Kerkhof
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc Ha Jansen
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Wang P, Harrison A, Yang D, Cahoon J, Geng T, Cao Z, Karginov T, Chiari C, Li X, Qyang Y, Vella A, Fan Z, Vanaja SK, Rathinam V, Witczak C, Bogan J. UBXN9 governs GLUT4-mediated spatial confinement of RIG-I-like receptors and signaling. RESEARCH SQUARE 2024:rs.3.rs-3373803. [PMID: 38883790 PMCID: PMC11177981 DOI: 10.21203/rs.3.rs-3373803/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The cytoplasmic RIG-I-like receptors (RLRs) recognize viral RNA and initiate innate antiviral immunity. RLR signaling also triggers glycolytic reprogramming through glucose transporters (GLUTs), whose role in antiviral immunity is elusive. Here, we unveil that insulin-responsive GLUT4 inhibits RLR signaling independently of glucose uptake in adipose and muscle tissues. At steady state, GLUT4 is docked at the Golgi matrix by ubiquitin regulatory X domain 9 (UBXN9, TUG). Following RNA virus infection, GLUT4 is released and translocated to the cell surface where it spatially segregates a significant pool of cytosolic RLRs, preventing them from activating IFN-β responses. UBXN9 deletion prompts constitutive GLUT4 trafficking, sequestration of RLRs, and attenuation of antiviral immunity, whereas GLUT4 deletion heightens RLR signaling. Notably, reduced GLUT4 expression is uniquely associated with human inflammatory myopathies characterized by hyperactive interferon responses. Overall, our results demonstrate a noncanonical UBXN9-GLUT4 axis that controls antiviral immunity via plasma membrane tethering of cytosolic RLRs.
Collapse
|
9
|
Khojah A, Schutt M, Morgan G, Bukhari A, Bensen N, Khanolkar A, Pachman LM. Increased percentage of HLA-DR T cells in untreated juvenile dermatomyositis. CLINICAL IMMUNOLOGY COMMUNICATIONS 2024; 5:20-25. [PMID: 38962376 PMCID: PMC11221785 DOI: 10.1016/j.clicom.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
This study investigates HLA-DR expression on activated T cells and serum neopterin levels in Juvenile Dermatomyositis (JDM) children pre- and post-treatment. Sixty-nine JDM children (less than 18 years) were included. Elevated HLA-DR+ T cells (>7 %) were observed in 19 % of untreated cases. Post-treatment, mean HLA-DR+ T cells decreased from 5.1 to 2.9 (P < 0.001), and serum neopterin levels declined from 19.3 to 9.1 nmol/L (P < 0.0001). A positive correlation between serum neopterin and HLA-DR T cell percentage was observed (r = 0.39, P = 0.01). Intravenous steroid treatment exhibited a 47.4 % improvement in HLA-DR+ T cells and a 50.5 % reduction in serum neopterin levels, in contrast to 14.8 % and 34.1 % in the oral steroid group. In conclusion, treatment, particularly with IV steroids, significantly improved HLA-DR+ T cells percentage and neopterin levels. A correlation between HLA-DR+ T cells percentage and serum neopterin was noted in untreated JDM patients.
Collapse
Affiliation(s)
- Amer Khojah
- Department of Pediatrics, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Madeline Schutt
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gabrielle Morgan
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | | | - Nicolas Bensen
- Diagnostic Immunology and Flow Cytometry Laboratory, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Aaruni Khanolkar
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Diagnostic Immunology and Flow Cytometry Laboratory, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Lauren M. Pachman
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Huang B, Li H, Jiang Q, Li Y, Jiang Z, Cao H, Wang S, Wang X, Li J, Li G. Elevated type I IFN signalling directly affects CD8 + T-cell distribution and autoantigen recognition of the skeletal muscles in active JDM patients. J Autoimmun 2024; 146:103232. [PMID: 38692172 DOI: 10.1016/j.jaut.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
The link between type I IFN and adaptive immunity, especially T-cell immunity, in JDM still remained largely unclear. This study aimed to understand the effect of elevated type I IFN signaling on CD8+ T cell-associated muscle damage in juvenile dermatomyositis (JDM). This study used flow cytometry (FC) and RT‒PCR were used to examine the circulating cell ratio and type I IFN response. And scRNA-seq was used to examine peripheral immunity in 6 active JDM patients, 3 stable JDM patients, 3 juvenile IMNM patients and 3 age-matched healthy children. In vivo validation experiments were conducted using a mouse model induced by STING agonists and an experimental autoimmune myositis model (EAM). In vitro experiments were conducted using isolated CD8+ T-cells from JDM patients and mice. We found that active JDM patients showed an extensive type I IFN response and a decreased CD8+ T-cell ratio in the periphery (P < 0.05), which was correlated with muscle involvement (P < 0.05). Both new active JDM patients and all active JDM patients showed decreased CD8+ TCM cell ratios compared with age and gender matched stable JDM patients (P < 0.05). Compared with new pediatirc systemic lupus erythematosus (SLE) patients, new active JDM patients displayed decreased CD8+ T-cell and CD8+ TCM cell ratios (P < 0.05). Active JDM patient skeletal muscle biopsies displayed an elevated type I IFN response, upregulated MHC-I expression and CD8+ T-cell infiltration, which was validated in EAM mice. sc-RNAseq demonstrated that type I IFN signalling is the kinetic factor of abnormal differentiation and enhances the cytotoxicity of peripheral CD8+ T cells in active JDM patients, which was confirmed by in vivo and in vitro validation experiments. In summary, the elevated type I IFN signalling affected the differentiation and function of CD8+ T cells in active JDM patients. Skeletal muscle-infiltrating CD8+ T cells might migrate from the periphery under the drive of type I IFN and increased MHC I signals. Therapies targeting autoantigen-specific CD8+ T cells may represent a potential new treatment direction.
Collapse
Affiliation(s)
- Baozhen Huang
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China; The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Huiyu Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China; Research Unit of Minimally Invasive Pediatric Surgery on Diagnosis and Treatment, Chinese Academy of Medical Sciences, Beijing, China
| | - Yucong Li
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China; The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Zhaowei Jiang
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China; The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Huijuan Cao
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Xinluan Wang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Jianguo Li
- Department of Rheumatology and Immunology, Children's Hospital Affiliated to Capital Institute of Pediatrics, China.
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China; The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
11
|
Tang X, Zhang Y, Zhang H, Zhang N, Dai Z, Cheng Q, Li Y. Single-Cell Sequencing: High-Resolution Analysis of Cellular Heterogeneity in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:376-400. [PMID: 39186216 DOI: 10.1007/s12016-024-09001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
Autoimmune diseases (AIDs) are complex in etiology and diverse in classification but clinically show similar symptoms such as joint pain and skin problems. As a result, the diagnosis is challenging, and usually, only broad treatments can be available. Consequently, the clinical responses in patients with different types of AIDs are unsatisfactory. Therefore, it is necessary to conduct more research to figure out the pathogenesis and therapeutic targets of AIDs. This requires research technologies with strong extraction and prediction capabilities. Single-cell sequencing technology analyses the genomic, epigenomic, or transcriptomic information at the single-cell level. It can define different cell types and states in greater detail, further revealing the molecular mechanisms that drive disease progression. These advantages enable cell biology research to achieve an unprecedented resolution and scale, bringing a whole new vision to life science research. In recent years, single-cell technology especially single-cell RNA sequencing (scRNA-seq) has been widely used in various disease research. In this paper, we present the innovations and applications of single-cell sequencing in the medical field and focus on the application contributing to the differential diagnosis and precise treatment of AIDs. Despite some limitations, single-cell sequencing has a wide range of applications in AIDs. We finally present a prospect for the development of single-cell sequencing. These ideas may provide some inspiration for subsequent research.
Collapse
Affiliation(s)
- Xuening Tang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
12
|
Rabadam G, Wibrand C, Flynn E, Hartoularos GC, Sun Y, Madubata C, Fragiadakis GK, Ye CJ, Kim S, Gartner ZJ, Sirota M, Neely J. Coordinated immune dysregulation in juvenile dermatomyositis revealed by single-cell genomics. JCI Insight 2024; 9:e176963. [PMID: 38743491 PMCID: PMC11383589 DOI: 10.1172/jci.insight.176963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Juvenile dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I IFN response and autoantibodies. Treatment options are limited due to an incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of patients with JDM at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment toward an immature naive state as a hallmark of JDM at diagnosis. Furthermore, we find that these changes in B cells are paralleled by T cell signatures suggestive of Th2-mediated inflammation that persist despite disease quiescence. We applied network analysis to reveal that hyperactivation of the type I IFN response in all immune populations is coordinated with previously masked cell states including dysfunctional protein processing in CD4+ T cells and regulation of cell death programming in NK cells, CD8+ T cells, and γδ T cells. Together, these findings unveil the coordinated immune dysregulation underpinning JDM and provide insight into strategies for restoring balance in immune function.
Collapse
Affiliation(s)
- Gabrielle Rabadam
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, and
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
| | - Camilla Wibrand
- Aarhus University, Aarhus, Denmark
- Division of Pediatric Rheumatology, Department of Pediatrics
| | | | - George C Hartoularos
- Graduate Program in Biological and Medical Informatics
- Division of Rheumatology, Department of Medicine
- Institute for Human Genetics
| | - Yang Sun
- Division of Rheumatology, Department of Medicine
| | - Chioma Madubata
- Division of Pediatric Rheumatology, Department of Pediatrics
- CoLabs
| | | | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine
- Institute for Human Genetics
- Department of Epidemiology and Biostatistics, and
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Susan Kim
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jessica Neely
- Division of Pediatric Rheumatology, Department of Pediatrics
| |
Collapse
|
13
|
Zhang Y, Maskan Bermudez N, Sa B, Maderal AD, Jimenez JJ. Epigenetic mechanisms driving the pathogenesis of systemic lupus erythematosus, systemic sclerosis and dermatomyositis. Exp Dermatol 2024; 33:e14986. [PMID: 38059632 DOI: 10.1111/exd.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Autoimmune connective tissue disorders, including systemic lupus erythematosus, systemic sclerosis (SSc) and dermatomyositis (DM), often manifest with debilitating cutaneous lesions and can result in systemic organ damage that may be life-threatening. Despite recent therapeutic advancements, many patients still experience low rates of sustained remission and significant treatment toxicity. While genetic predisposition plays a role in these connective tissue disorders, the relatively low concordance rates among monozygotic twins (ranging from approximately 4% for SSc to about 11%-50% for SLE) have prompted increased scrutiny of the epigenetic factors contributing to these diseases. In this review, we explore some seminal studies and key findings to provide a comprehensive understanding of how dysregulated epigenetic mechanisms can contribute to the development of SLE, SSc and DM.
Collapse
Affiliation(s)
- Yusheng Zhang
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Narges Maskan Bermudez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Brianna Sa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrea D Maderal
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
14
|
Rabadam G, Wibrand C, Flynn E, Hartoularos GC, Sun Y, Ye CJ, Kim S, Gartner Z, Sirota M, Neely J. Coordinated immune dysregulation in Juvenile Dermatomyositis revealed by single-cell genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566033. [PMID: 37986917 PMCID: PMC10659396 DOI: 10.1101/2023.11.07.566033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Juvenile Dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I interferon response and autoantibodies. Treatment options are limited due to incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of JDM patients at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment towards an immature naive state as a hallmark of JDM. Furthermore, we find that these changes in B cells are paralleled by signatures of Th2-mediated inflammation. Additionally, our work identified SIGLEC-1 expression in monocytes as a composite measure of heterogeneous type I interferon activity in disease. We applied network analysis to reveal that hyperactivation of the type I interferon response in all immune populations is coordinated with dysfunctional protein processing and regulation of cell death programming. This analysis separated the ubiquitously expressed type I interferon response into a central hub and revealed previously masked cell states. Together, these findings reveal the coordinated immune dysregulation underpinning JDM and provide novel insight into strategies for restoring balance in immune function.
Collapse
Affiliation(s)
- Gabrielle Rabadam
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, UCSF, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
| | - Camilla Wibrand
- Aarhus University, Aarhus, Denmark
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Emily Flynn
- CoLabs, UCSF, San Francisco, California, USA
| | - George C. Hartoularos
- Graduate Program in Biological and Medical Informatics, UCSF, San Francisco, California, USA
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
- Institute for Human Genetics, UCSF, San Francisco, California, USA
| | - Yang Sun
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Susan Kim
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Zev Gartner
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jessica Neely
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| |
Collapse
|
15
|
Sato H, Inoue Y, Kawashima Y, Konno R, Ohara O, Kuwana M, Kobayashi N, Takezaki S, Akioka S. In-depth proteomic analysis of juvenile dermatomyositis serum reveals protein expression associated with muscle-specific autoantibodies. Rheumatology (Oxford) 2023; 62:3501-3506. [PMID: 37052527 DOI: 10.1093/rheumatology/kead165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/28/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVES The clinical symptoms and complications of JDM differ depending on the type of muscle-specific autoantibodies (MSAs) present. We aimed to identify protein expression profiles specific for MSAs that characterize various clinical features by comprehensively analyzing the proteins present in the serum of patients with JDM. METHODS We analysed sera from patients with JDM that were positive for anti-melanoma differentiation-associated protein 5 (MDA5) antibodies (n = 5), anti-nuclear matrix protein 2 (NXP2) antibodies (n = 5) and anti-transcriptional intermediary factor 1 alpha or gamma subunit (TIF1-γ) antibodies (n = 5), and evaluated healthy controls (n = 5) via single-shot liquid chromatography-tandem mass spectrometry (MS) in data-independent acquisition mode, which is superior for comparative quantitative analysis. We identified different protein groups based on MSAs and performed pathway analysis to understand their characteristics. RESULTS We detected 2413 proteins from serum MS analysis; 508 proteins were commonly altered in MSAs, including many myogenic enzymes and IFN-regulated proteins. Pathway analysis using the top 50 proteins that were upregulated in each MSA group revealed that the type I IFN and proteasome pathways were significantly upregulated in the anti-MDA5 antibody group alone. CONCLUSION Although JDM serum contains many proteins commonly altered in MSAs, the pathways associated with clinical features of MSAs differ based on protein accumulation. In-depth serum protein profiles associated with MSAs may be useful for developing therapeutic target molecules and biomarkers.
Collapse
Affiliation(s)
- Hironori Sato
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuzaburo Inoue
- Department of General Medical Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Norimoto Kobayashi
- First Department of Pediatrics and Department of Allergy, Nagano Red Cross Hospital, Nagano, Japan
| | - Shunichiro Takezaki
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Shinji Akioka
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
16
|
Chen X, Lian D, Zeng H. Single-cell profiling of peripheral blood and muscle cells reveals inflammatory features of juvenile dermatomyositis. Front Cell Dev Biol 2023; 11:1166017. [PMID: 37152289 PMCID: PMC10157079 DOI: 10.3389/fcell.2023.1166017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction: Juvenile dermatomyositis (JDM) is a rare yet serious childhood systemic autoimmune condition that primarily causes skin rashes and inflammatory myopathy of the proximal muscles. Although the associated immune response involves the innate and adaptive arms, a detailed analysis of the pertinent immune cells remains to be performed. This study aims to investigate the dynamic changes of cell type, cell composition and transcriptional profiles in peripheral blood and muscle tissues, and in order to clarify the involvement of immune cells in the pathogenesis of JDM and provide a theoretical reference for JDM. Methods: Single-cell RNA sequencing combined with bioinformatic analyses were used to investigate the dynamic changes in cell composition and transcriptional profiles. Results: Analysis of 45,859 cells revealed nine and seven distinct cell subsets in the peripheral blood and muscle tissues respectively. IFITM2+ and CYP4F3+ monocytes were largely produced, and CD74+ smooth muscle cells (SMCs) and CCL19+ fibroblasts were identified as inflammatory-related cell subtypes in JDM patients, exhibiting patient-specific cell population heterogeneity.The dynamic gene expression patterns presented an enhanced type I interferon response in peripheral blood monocytes and T-cells, and SMCs and fibroblasts in muscle of untreated JDM patients. EGR1 and IRF7 may play central roles in the inflammation in both CD74+ SMCs and CCL19+ fibroblasts. Moreover, inflammatory-related monocytes could regulate T-cells, and the interaction between immune cells and SMCs or fibroblasts in muscle was enhanced under the inflammatory state. Conclusions: Immune dysregulation is one of the key pathogenic factors of JDM, and type I interferon responses are significantly enhanced in peripheral blood Monos and T cells as well as SMCs and fibroblasts. EGR1 and IRF7 may play central roles in the inflammation and are considered as potential therapeutic targets for JDM.
Collapse
Affiliation(s)
- Xiangyuan Chen
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Dongsheng Lian
- Department Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Huasong Zeng
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Huasong Zeng,
| |
Collapse
|