1
|
Diez-Martin E, Hernandez-Suarez L, Astigarraga E, Ramirez-Garcia A, Barreda-Gómez G. Mycobiota and Antifungal Antibodies as Emerging Targets for the Diagnosis and Prognosis of Human Diseases. J Fungi (Basel) 2025; 11:296. [PMID: 40278117 DOI: 10.3390/jof11040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025] Open
Abstract
The human body is colonized by diverse microorganisms, with bacteria being the most extensively studied. However, fungi, collectively known as "the mycobiota," are increasingly recognized as integral components of the microbiota, inhabiting nearly all mucosal surfaces. Commensal fungi influence host immunity similarly to bacteria and contribute to other essential functions, including metabolism. This emerging understanding positions fungi as potential biomarkers for the diagnosis and prognosis of various diseases. In this review, we explore the dual roles of fungi as both commensals and pathogens, and the potential of antifungal antibodies to serve as diagnostic and prognostic tools, especially in chronic immune-inflammatory non-communicable diseases, including inflammatory bowel disease, rheumatoid arthritis, multiple sclerosis, and neurodegenerative disorders. Finally, we address current challenges and outline future perspectives for leveraging fungal biomarkers in clinical practice.
Collapse
Affiliation(s)
- Eguzkiñe Diez-Martin
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Leidi Hernandez-Suarez
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Egoitz Astigarraga
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | | |
Collapse
|
2
|
Ueno K, Nagamori A, Honkyu NO, Kwon-Chung KJ, Miyazaki Y. Lung-resident memory Th2 cells regulate pulmonary cryptococcosis by inducing type-II granuloma formation. Mucosal Immunol 2025:S1933-0219(25)00022-4. [PMID: 39984054 DOI: 10.1016/j.mucimm.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Lung-resident memory T cells (lung TRMs) settle in the lung and respond rapidly to external antigens, and are therefore considered to have great potential for development of respiratory vaccines. Here, we demonstrate that lung-resident memory Th2 cells (lung TRM2) protect against pulmonary mycosis caused by Cryptococcus gattii. We developed novel whole-cell intranasal vaccines using a heat-inactivated C.gattii capsule-deficient strain cap59Δ, which induced ST-2+ Gata-3+ lung TRM2 specifically responding to C.gattii whole-cell antigen. Lung fungal burden and survival rate were significantly improved in immunized mice after infection challenge. The immunosuppressive agent FTY720 did not impact vaccine effectiveness, and adoptive transfer of lung TRMs into Rag-1-deficient mice decreased the lung fungal burden. In IL-4/IL-13 double-knockout (DKO) mice, immunization did not efficiently induce eosinophil recruitment and granuloma formation, and the fungal burden was not decreased after infection challenge. Co-culture of lung TRM2 with myeloid lineages induced multinucleated giant cells (MGCs) in the presence of antigen, which phagocytosed live C.gattii cells without opsonization, whereas lung TRM2 from DKO mice did not induce MGCs. These findings provide a new model in which lung TRM2 suppress C.gattii infection via granuloma induction.
Collapse
Affiliation(s)
- Keigo Ueno
- Department of Fungal Infection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Akiko Nagamori
- Department of Fungal Infection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Nahoko Oniyama Honkyu
- Department of Fungal Infection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive, Building 10, Bethesda, MD 20892, United States
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
3
|
Agbadamashi DJ, Price CL. Novel Strategies for Preventing Fungal Infections-Outline. Pathogens 2025; 14:126. [PMID: 40005503 PMCID: PMC11858109 DOI: 10.3390/pathogens14020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Fungal infections are a significant global health challenge, causing approximately 3.8 million deaths annually, with immunocompromised populations particularly at risk. Traditional antifungal therapies, including azoles, echinocandins, and polyenes, face limitations due to rising antifungal resistance, toxicity, and inadequate treatment options. This review explores innovative strategies for preventing and managing fungal infections, such as vaccines, antifungal peptides, nanotechnology, probiotics, and immunotherapy. Vaccines offer promising avenues for long-term protection, despite difficulties in their development due to fungal complexity and immune evasion mechanisms. Antifungal peptides provide a novel class of agents with broad-spectrum activity and reduced resistance risk, whilst nanotechnology enables targeted, effective drug delivery systems. Probiotics show potential in preventing fungal infections, particularly vulvovaginal candidiasis, by maintaining microbial balance. Immunotherapy leverages immune system modulation to enhance antifungal defenses, and omics technologies deliver comprehensive insights into fungal biology, paving the way for novel therapeutic and vaccine targets. While these approaches hold immense promise, challenges such as cost, accessibility, and translational barriers remain. A coordinated effort among researchers, clinicians, and policymakers is critical to advancing these strategies and addressing the global burden of fungal infections effectively.
Collapse
Affiliation(s)
| | - Claire L. Price
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK
| |
Collapse
|
4
|
Whitehead AJ, Woodring T, Klein BS. Immunity to fungi and vaccine considerations. Cell Host Microbe 2024; 32:1681-1690. [PMID: 39389032 PMCID: PMC11980782 DOI: 10.1016/j.chom.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Fungal disease poses a growing threat to public health that our current antifungal therapies are not well equipped to meet. As the population of immunocompromised hosts expands, and ecological changes favor the emergence of fungal pathogens, the development of new antifungal agents, including vaccines, becomes a global priority. Here, we summarize recent advancements in the understanding of fungal pathogenesis, key features of the host antifungal immune response, and how these findings could be leveraged to design novel approaches to deadly fungal disease.
Collapse
Affiliation(s)
- Alexander J Whitehead
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Therese Woodring
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bruce S Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
5
|
Khapuinamai A, Rudraprasad D, Pandey S, Mishra DK, Joseph J. Unveiling the Innate and Adaptive Immunity Interplay: Global Transcriptomic Profiling of the Host Immune Response in Candida albicans Endophthalmitis in a Murine Model. ACS OMEGA 2024; 9:41491-41503. [PMID: 39398165 PMCID: PMC11466307 DOI: 10.1021/acsomega.4c05081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Intraocular fungal infection poses a significant clinical challenge characterized by chronic inflammation along with vision impairment. Understanding the host defense pathways involved in fungal endophthalmitis will play a pivotal role in identifying adjuvant immunotherapy. Clinical isolates of Candida albicans (15,000 CFU/μL) were intravitreally injected in C57BL/6 mice followed by enucleation at 24 and 72 h postinfection. Histopathological analysis was performed to evaluate the retinal changes and the disease severity. RNA-seq analysis was conducted on homogenized eyeballs to assess the relevant gene profiles and their differentially expressed genes (DEGs). Pathway enrichment analysis was performed to further annotate the functions of the DEGs. Histopathological analysis demonstrated a higher disease severity with increased inflammatory cells at 72 hpi and transcriptome analysis revealed 27,717 DEGs, of which 1493 were significant (adj p value ≤0.05, FC ≥ 1.5). Among these, 924 were upregulated, and 569 were downregulated. Majority of the upregulated genes were associated with the inflammatory/host immune response and signal transduction and enriched in the T-cell signaling pathway, natural killer cell-mediated cytotoxicity, C-type receptor signaling pathway, and NOD-like receptor signaling pathway. Furthermore, inflammation-associated genes such as T-cell surface glycoprotein CD3, cathelicidin antimicrobial peptide, and lymphocyte cell-specific protein tyrosine kinase were enriched, while pathways such as MAPK, cAMP, and metabolic pathways were downregulated. Regulating the T-cell influx could be a potential strategy to modulate excessive inflammation in the retina and could potentially aid in better vision recovery in fungal endophthalmitis.
Collapse
Affiliation(s)
- Agimanailiu Khapuinamai
- Jhaveri
Microbiology Centre, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, Telangana, India
- Center
for Doctoral Studies, Manipal Academy of
Higher Education, Karnataka 576104, India
| | - Dhanwini Rudraprasad
- Jhaveri
Microbiology Centre, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, Telangana, India
- Center
for Doctoral Studies, Manipal Academy of
Higher Education, Karnataka 576104, India
| | - Suchita Pandey
- Jhaveri
Microbiology Centre, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Dilip Kumar Mishra
- Ocular
Pathology Services, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Joveeta Joseph
- Jhaveri
Microbiology Centre, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, Telangana, India
| |
Collapse
|
6
|
Huang WC, Eberle K, Colon JR, Lovell JF, Xin H. Liposomal Fba and Met6 peptide vaccination protects mice from disseminated candidiasis. mSphere 2024; 9:e0018924. [PMID: 38904363 PMCID: PMC11287991 DOI: 10.1128/msphere.00189-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Epitopes from the Candida cell surface proteins Fba and Met6 are putative vaccine targets for invasive candidiasis. Here, we describe a Candida vaccine approach in which short peptides derived from Fba and Met6 are used in spontaneous nanoliposome antigen particle (SNAP) format. SNAP was enabled by the interaction of cobalt porphyrin phospholipid in liposomes with three histidine residues on the N-terminus of synthetic short peptide immunogens from Fba (F-SNAP), Met6 (M-SNAP), or bivalent Fba and Met6 (FM-SNAP). Liposomes were adjuvanted with synthetic monophosphoryl lipid and QS-21. In mice, immunization with F-SNAP, M-SNAP, or FM-SNAP induced antigen-specific IgG responses and mixed Th1/Th2 immunity. The duplex FM-SNAP vaccine elicited stronger antibody responses against each peptide, even at order-of-magnitude lower peptide dosing than a comparable adjuvanted, conjugate vaccine. Enzyme-linked immunosorbent spot analysis revealed the induction of antigen-specific, cytokine-producing T cells. Compared to F-SNAP or M-SNAP, higher production of TNFα, IL-2, and IFNγ was observed with re-stimulation of splenocytes from bivalent FM-SNAP-immunized mice. When vaccinated BALB/c mice were challenged with Candida auris, analysis of the fungal burden in the kidneys showed that SNAP vaccination protected from disseminated candidiasis. In a lethal fungal exposure model in A/J mice, F-SNAP, M-SNAP, and FM-SNAP vaccination protected mice from candidiasis challenge. Together, these results show that further investigation into the SNAP adjuvant platform is warranted using Fba and Met6 epitopes for a pan-Candida peptide vaccine that provides multifaceted protective immune responses. IMPORTANCE This study introduces a promising vaccine strategy against invasive candidiasis, a severe fungal infection, by targeting specific peptides on the surface of Candida. Using a novel approach called spontaneous nanoliposome antigen particle (SNAP), we combined peptides from two key Candida proteins, Fba and Met6, into a vaccine. This vaccine induced robust immune responses in mice, including the production of protective antibodies and the activation of immune cells. Importantly, mice vaccinated with SNAP were shielded from disseminated candidiasis in experiments. These findings highlight a potential avenue for developing a broad-spectrum vaccine against Candida infections, which could significantly improve outcomes for patients at risk of these often deadly fungal diseases.
Collapse
Affiliation(s)
- Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York, USA
| | - Karen Eberle
- Department of Microbiology, Immunology & Parasitology, LSU Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| | - Jonothan Rosario Colon
- Department of Microbiology, Immunology & Parasitology, LSU Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York, USA
| | - Hong Xin
- Department of Microbiology, Immunology & Parasitology, LSU Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
7
|
Khapuinamai A, Rudraprasad D, Pandey S, Gandhi J, Mishra DK, Joseph J. Global Transcriptomic Profiling of Innate and Adaptive Immunity During Aspergillus flavus Endophthalmitis in a Murine Model. Invest Ophthalmol Vis Sci 2024; 65:44. [PMID: 38687493 PMCID: PMC11067548 DOI: 10.1167/iovs.65.4.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Purpose Fungal endophthalmitis is characterized by chronic inflammation leading to the partial or complete vision loss. Herein, we analyzed the transcriptomic landscape of Aspergillus flavus (A. flavus) endophthalmitis in C57BL/6 mice to understand the host-pathogen interactions. Methods Endophthalmitis was induced by intravitreal injection of A. flavus spores in C57BL/6 mice and monitored for disease progression up to 72 hours. The enucleated eyeballs were subjected to histopathological analysis and mRNA sequencing using the Illumina Nextseq 2000. Pathway enrichment analysis was performed to further annotate the functions of differentially expressed genes (DEGs) and validation of cytokines was performed in vitreous of patients with fungal endophthalmitis using multiplex ELISA. Results Transcriptomic landscape of A. flavus endophthalmitis revealed upregulated T-cell receptor signaling, PI3K-AKT, MAPK, NF-κB, JAK-STAT, and NOD like receptor signaling pathways. We observed significant increase in the T-cells during infection especially at 72 hours infection along with elevated expression levels of IL-6, IL-10, IL-12, IL-18, IL-19, IL-23, CCR3, and CCR7. Furthermore, host-immune response associated genes, such as T-cell interacting activating receptor, TNF receptor-associated factor 1, TLR1, TLR9, and bradykinin receptor beta 1, were enriched. Histopathological assessment validated the significant increase in inflammatory cells, especially T-cells at 72 hours post-infection along with increased disruption in the retinal architecture. Additionally, IL-6, IL-8, IL-17, TNF-α, and IL-1β were also significantly elevated, whereas IL-10 was downregulated in vitreous of patients with Aspergillus endophthalmitis. Conclusions Regulating T-cell influx could be a potential strategy to modulate the excessive inflammation in the retina and potentially aid in better vision recovery in fungal endophthalmitis.
Collapse
Affiliation(s)
- Agimanailiu Khapuinamai
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Center for Doctoral Studies, Manipal Academy of Higher Education, Karnataka, India
| | - Dhanwini Rudraprasad
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Center for Doctoral Studies, Manipal Academy of Higher Education, Karnataka, India
| | - Suchita Pandey
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Jaishree Gandhi
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | | | - Joveeta Joseph
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Puumala E, Fallah S, Robbins N, Cowen LE. Advancements and challenges in antifungal therapeutic development. Clin Microbiol Rev 2024; 37:e0014223. [PMID: 38294218 PMCID: PMC10938895 DOI: 10.1128/cmr.00142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Cavallone IN, Belda W, de Carvalho CHC, Laurenti MD, Passero LFD. New Immunological Markers in Chromoblastomycosis-The Importance of PD-1 and PD-L1 Molecules in Human Infection. J Fungi (Basel) 2023; 9:1172. [PMID: 38132773 PMCID: PMC10744586 DOI: 10.3390/jof9121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The pathogenesis of chromoblastomycosis (CBM) is associated with Th2 and/or T regulatory immune responses, while resistance is associated with a Th1 response. However, even in the presence of IFN-γ, fungi persist in the lesions, and the reason for this persistence is unknown. To clarify the factors associated with pathogenesis, this study aimed to determine the polarization of the cellular immune response and the densities of cells that express markers of exhaustion in the skin of CBM patients. In the skin of patients with CBM, a moderate inflammatory infiltrate was observed, characterized primarily by the occurrence of histiocytes. Analysis of fungal density allowed us to divide patients into groups that exhibited low and high fungal densities; however, the intensity of the inflammatory response was not related to mycotic loads. Furthermore, patients with CBM exhibited a significant increase in the number of CD4+ and CD8+ cells associated with a high density of IL-10-, IL-17-, and IFN-γ-producing cells, indicating the presence of a chronic and mixed cellular immune response, which was also independent of fungal load. A significant increase in the number of PD-1+ and PD-L1+ cells was observed, which may be associated with the maintenance of the fungus in the skin and the progression of the disease.
Collapse
Affiliation(s)
- Italo N. Cavallone
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, Brazil;
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School, São Paulo University, São Paulo 01246-903, Brazil
| | - Walter Belda
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Caroline Heleno C. de Carvalho
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Marcia D. Laurenti
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Luiz Felipe D. Passero
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, Brazil;
- Institute for Advanced Studies of Ocean (IEAMAR), São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178, São Vicente 11350-011, Brazil
| |
Collapse
|
10
|
Elalouf A, Elalouf H, Rosenfeld A. Modulatory immune responses in fungal infection associated with organ transplant - advancements, management, and challenges. Front Immunol 2023; 14:1292625. [PMID: 38143753 PMCID: PMC10748506 DOI: 10.3389/fimmu.2023.1292625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Organ transplantation stands as a pivotal achievement in modern medicine, offering hope to individuals with end-stage organ diseases. Advancements in immunology led to improved organ transplant survival through the development of immunosuppressants, but this heightened susceptibility to fungal infections with nonspecific symptoms in recipients. This review aims to establish an intricate balance between immune responses and fungal infections in organ transplant recipients. It explores the fundamental immune mechanisms, recent advances in immune response dynamics, and strategies for immune modulation, encompassing responses to fungal infections, immunomodulatory approaches, diagnostics, treatment challenges, and management. Early diagnosis of fungal infections in transplant patients is emphasized with the understanding that innate immune responses could potentially reduce immunosuppression and promise efficient and safe immuno-modulating treatments. Advances in fungal research and genetic influences on immune-fungal interactions are underscored, as well as the potential of single-cell technologies integrated with machine learning for biomarker discovery. This review provides a snapshot of the complex interplay between immune responses and fungal infections in organ transplantation and underscores key research directions.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, Ramat Gan, Israel
| | - Hadas Elalouf
- Information Science Department, Bar-Ilan University, Ramat Gan, Israel
| | - Ariel Rosenfeld
- Information Science Department, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
11
|
Kaur G, Chawla S, Kumar P, Singh R. Advancing Vaccine Strategies against Candida Infections: Exploring New Frontiers. Vaccines (Basel) 2023; 11:1658. [PMID: 38005990 PMCID: PMC10674196 DOI: 10.3390/vaccines11111658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Candida albicans, along with several non-albicans Candida species, comprise a prominent fungal pathogen in humans, leading to candidiasis in various organs. The global impact of candidiasis in terms of disease burden, suffering, and fatalities is alarmingly high, making it a pressing global healthcare concern. Current treatment options rely on antifungal drugs such as azoles, polyenes, and echinocandins but are delimited due to the emergence of drug-resistant strains and associated adverse effects. The current review highlights the striking absence of a licensed antifungal vaccine for human use and the urgent need to shift our focus toward developing an anti-Candida vaccine. A number of factors affect the development of vaccines against fungal infections, including the host, intraspecies and interspecies antigenic variations, and hence, a lack of commercial interest. In addition, individuals with a high risk of fungal infection tend to be immunocompromised, so they are less likely to respond to inactivated or subunit whole organisms. Therefore, it is pertinent to discover newer and novel alternative strategies to develop safe and effective vaccines against fungal infections. This review article provides an overview of current vaccination strategies (live attenuated, whole-cell killed, subunit, conjugate, and oral vaccine), including their preclinical and clinical data on efficacy and safety. We also discuss the mechanisms of immune protection against candidiasis, including the role of innate and adaptive immunity and potential biomarkers of protection. Challenges, solutions, and future directions in vaccine development, namely, exploring novel adjuvants, harnessing the trained immunity, and utilizing immunoinformatics approaches for vaccine design and development, are also discussed. This review concludes with a summary of key findings, their implications for clinical practice and public health, and a call to action for continued investment in candidiasis vaccine research.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Chandigarh College of Technology (CCT), Chandigarh Group of Colleges (CGC), Landran, Mohali 140307, India
| | - Sonam Chawla
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Piyush Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Ritu Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| |
Collapse
|