1
|
Lu C, Liu S, Gao M, Rubio J, Chatham WW, Hsu HC, Mountz JD. IL-4 alters TLR7-induced B cell developmental program in lupus. Clin Immunol 2025; 275:110472. [PMID: 40068727 PMCID: PMC12065647 DOI: 10.1016/j.clim.2025.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
TLR7 stimulation of T-bet+CD11c+IgD-CD27- double-negative 2 (DN2) B cells is crucial for autoantibody formation in systemic lupus erythematosus (SLE). Here, we show that administration of IL-4 for five weeks significantly reduced autoantibodies and T-bet+CD11c+ IgD- B cells in autoimmune BXD2 mice treated with R848, a TLR7 agonist. Single-cell transcriptomics analysis indicates that following two doses of in vivo administration, IL-4 redirected development toward follicular, CD23+ germinal center (GC), and DN4-like memory B cells compared to treatment with R848 alone. While IL-4 enhanced genes related to antigen processing and presentation, it also suppressed R848-induced Ki67+ GC B cells in vivo. In vitro stimulation of SLE patient B cells with a DN2 polarizing cocktail revealed that IL-4 reduced the expression of interferon response and DN2 signature genes, promoting a population of CD23+T-bet- DN4 B population. These findings suggest that developmental reprogramming by IL-4 counteracts TLR7-promoted DN2 and GC B cells in SLE.
Collapse
Affiliation(s)
- Changming Lu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shanrun Liu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Min Gao
- Clinical Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jose Rubio
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - W Winn Chatham
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Hui-Chen Hsu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Medicine Service, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA.
| | - John D Mountz
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Medicine Service, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA.
| |
Collapse
|
2
|
Yan M, Man S, Ma L, Guo L, Huang L, Gao W. Immunological mechanisms in steatotic liver diseases: An overview and clinical perspectives. Clin Mol Hepatol 2024; 30:620-648. [PMID: 38988278 PMCID: PMC11540396 DOI: 10.3350/cmh.2024.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
Steatotic liver diseases (SLD) are the principal worldwide cause of cirrhosis and end-stage liver cancer, affecting nearly a quarter of the global population. SLD includes metabolic dysfunction-associated alcoholic liver disease (MetALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), resulting in asymptomatic liver steatosis, fibrosis, cirrhosis and associated complications. The immune processes include gut dysbiosis, adiposeliver organ crosstalk, hepatocyte death and immune cell-mediated inflammatory processes. Notably, various immune cells such as B cells, plasma cells, dendritic cells, conventional CD4+ and CD8+ T cells, innate-like T cells, platelets, neutrophils and macrophages play vital roles in the development of MetALD and MASLD. Immunological modulations targeting hepatocyte death, inflammatory reactions and gut microbiome include N-acetylcysteine, selonsertib, F-652, prednisone, pentoxifylline, anakinra, JKB-121, HA35, obeticholic acid, probiotics, prebiotics, antibiotics and fecal microbiota transplantation. Understanding the immunological mechanisms underlying SLD is crucial for advancing clinical therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, China
| |
Collapse
|
3
|
Tang J, Lu H, Xie Z, Jia X, Su T, Lin B. Identification of potential biomarkers for sepsis based on neutrophil extracellular trap-related genes. Diagn Microbiol Infect Dis 2024; 110:116380. [PMID: 38852219 DOI: 10.1016/j.diagmicrobio.2024.116380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Sepsis is a highly lethal disease that poses a serious threat to human health. Increasing evidence indicates that neutrophil extracellular traps (NETs) are key factors in the pathological progression of sepsis. This study aims to screen potential biomarkers for sepsis and delve into their regulatory function in the pathogenesis. We downloaded 6 microarray datasets from the Gene Expression Omnibus (GEO) database, with 4 as the training sets and 2 as the validation sets. NETs-related genes (NRGs) were obtained from relevant literature. Differential expression analysis was performed on four training sets separately. We intersected differentially expressed genes (DEGs) from the four training sets and NRGs, finally resulting in 19 NETs-related sepsis genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) unearthed that NETs-related sepsis genes were majorly abundant in functions and pathways such as defense response to bacterium and Neutrophil extracellular trap formation. Using the PPI network, the MCC algorithm, and the MCODE algorithm in the CytoHubba plugin, 7 sepsis hub genes (ELANE, TLR4, MPO, PADI4, CTSG, MMP9, S100A12) were identified. ROC curve for each Hub gene in the training and validation sets were plotted, which revealed that the Area Under Curve (AUC) values are all greater than 0.6, indicating good classification ability. A total of 349 miRNAs targeting Hub genes were predicted in the mirDIP database, and 620 lncRNAs targeting miRNAs were predicted in the ENCORI database. The ceRNA regulatory network was constructed using Cytoscape software. Finally, we employed the cMAP database to predict small molecular complexes as potentially effective drugs for the treatment of sepsis, such as chloroquine, harpagoside, and PD-123319. In conclusion, this project successfully identified 7 core genes, which may serve as promising candidates for novel sepsis biomarkers. Meanwhile, we constructed a related ceRNA network and predicted potential targeted drugs, providing potential therapeutic targets and treatment strategies for sepsis patients.
Collapse
Affiliation(s)
- Jiping Tang
- Department of ICU, The Second Nanning People's Hospital, Nanning City 530021, China
| | - Haijuan Lu
- Department of Clinical Nutrition, Guangxi Medical University Cancer Hospital, Nanning City 530000, China
| | - Zuohua Xie
- Department of ICU, The Second Nanning People's Hospital, Nanning City 530021, China
| | - Xinju Jia
- Department of ICU, The Second Nanning People's Hospital, Nanning City 530021, China
| | - Ting Su
- Department of ICU, The Second Nanning People's Hospital, Nanning City 530021, China
| | - Bing Lin
- Department of ICU, The Second Nanning People's Hospital, Nanning City 530021, China.
| |
Collapse
|
4
|
Yang Y, Chen X, Pan J, Ning H, Zhang Y, Bo Y, Ren X, Li J, Qin S, Wang D, Chen MM, Zhang Z. Pan-cancer single-cell dissection reveals phenotypically distinct B cell subtypes. Cell 2024; 187:4790-4811.e22. [PMID: 39047727 DOI: 10.1016/j.cell.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Characterizing the compositional and phenotypic characteristics of tumor-infiltrating B cells (TIBs) is important for advancing our understanding of their role in cancer development. Here, we establish a comprehensive resource of human B cells by integrating single-cell RNA sequencing data of B cells from 649 patients across 19 major cancer types. We demonstrate substantial heterogeneity in their total abundance and subtype composition and observe immunoglobulin G (IgG)-skewness of antibody-secreting cell isotypes. Moreover, we identify stress-response memory B cells and tumor-associated atypical B cells (TAABs), two tumor-enriched subpopulations with prognostic potential, shared in a pan-cancer manner. In particular, TAABs, characterized by a high clonal expansion level and proliferative capacity as well as by close interactions with activated CD4 T cells in tumors, are predictive of immunotherapy response. Our integrative resource depicts distinct clinically relevant TIB subsets, laying a foundation for further exploration of functional commonality and diversity of B cells in cancer.
Collapse
Affiliation(s)
- Yu Yang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueyan Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jieying Pan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Huiheng Ning
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yufei Bo
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianwen Ren
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiesheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Shishang Qin
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongfang Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| | - Min-Min Chen
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Aguilar-Bretones M, den Hartog Y, van Dijk LLA, Malahe SRK, Dieterich M, Mora HT, Mueller YM, Koopmans MPG, Reinders MEJ, Baan CC, van Nierop GP, de Vries RD. SARS-CoV-2-specific immune responses converge in kidney disease patients and controls with hybrid immunity. NPJ Vaccines 2024; 9:93. [PMID: 38806532 PMCID: PMC11133345 DOI: 10.1038/s41541-024-00886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Healthy individuals with hybrid immunity, due to a SARS-CoV-2 infection prior to first vaccination, have stronger immune responses compared to those who were exclusively vaccinated. However, little is known about the characteristics of antibody, B- and T-cell responses in kidney disease patients with hybrid immunity. Here, we explored differences between kidney disease patients and controls with hybrid immunity after asymptomatic or mild coronavirus disease-2019 (COVID-19). We studied the kinetics, magnitude, breadth and phenotype of SARS-CoV-2-specific immune responses against primary mRNA-1273 vaccination in patients with chronic kidney disease or on dialysis, kidney transplant recipients, and controls with hybrid immunity. Although vaccination alone is less immunogenic in kidney disease patients, mRNA-1273 induced a robust immune response in patients with prior SARS-CoV-2 infection. In contrast, kidney disease patients with hybrid immunity develop SARS-CoV-2 antibody, B- and T-cell responses that are equally strong or stronger than controls. Phenotypic analysis showed that Spike (S)-specific B-cells varied between groups in lymph node-homing and memory phenotypes, yet S-specific T-cell responses were phenotypically consistent across groups. The heterogeneity amongst immune responses in hybrid immune kidney patients warrants further studies in larger cohorts to unravel markers of long-term protection that can be used for the design of targeted vaccine regimens.
Collapse
Affiliation(s)
| | - Yvette den Hartog
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | - Laura L A van Dijk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - S Reshwan K Malahe
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | - Héctor Tejeda Mora
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | | | - Rory D de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Zhang W, Tao W, Wang J, Nie P, Duan L, Yan L. A study on the role of serum uric acid in differentiating acute inflammatory demyelinating polyneuropathy from acute-onset chronic inflammatory demyelinating polyneuropathy. Eur J Neurol 2024; 31:e16222. [PMID: 38356316 PMCID: PMC11235685 DOI: 10.1111/ene.16222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND AND PURPOSE Clinical symptoms and laboratory indices for acute inflammatory demyelinating polyneuropathy (AIDP), a variant of Guillain-Barré syndrome, and acute-onset chronic inflammatory demyelinating polyneuropathy (A-CIDP) were analyzed to identify factors that could contribute to early differential diagnosis. METHODS A retrospective chart review was performed on 44 AIDP and 44 A-CIDP patients looking for any demographic characteristics, clinical manifestations or laboratory parameters that might differentiate AIDP from acutely presenting CIDP. RESULTS In Guillain-Barré syndrome patients (N = 63), 69.84% (N = 44) were classified as having AIDP, 19.05% (N = 12) were found to have acute motor axonal neuropathy, 6.35% (N = 4) were found to have acute motor and sensory axonal neuropathy, and 4.76% (N = 3) were found to have Miller Fisher syndrome. Serum uric acid (UA) was higher in A-CIDP patients (329.55 ± 72.23 μmol/L) than in AIDP patients (221.08 ± 71.32 μmol/L) (p = 0.000). Receiver operating characteristic analyses indicated that the optimal UA cutoff was 283.50 μmol/L. Above this level, patients were more likely to present A-CIDP than AIDP (specificity 81.80%, sensitivity 81.80%). During the follow-up process, serum samples were effectively collected from 19 AIDP patients during the rehabilitation phase and 28 A-CIDP patients during the remission stage, and it was found that UA levels were significantly increased in A-CIDP (remission) (298.9 ± 90.39 μmol/L) compared with AIDP (rehabilitation) (220.1 ± 108.2 μmol/L, p = 0.009). CONCLUSION These results suggest that serum UA level can help to differentiate AIDP from A-CIDP with high specificity and sensitivity, which is helpful for early diagnosis and guidance of treatment.
Collapse
Affiliation(s)
- Weiyun Zhang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Wen Tao
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jun Wang
- Key Lab of Modern Toxicology, Ministry of Education, and Department of Toxicology, School of Public HealthNanjing Medical UniversityNanjingJiangsuChina
| | - Ping Nie
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Lihui Duan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Lanyun Yan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
7
|
Li J, Liu S, Dong Q, Fu Y, Sun Y, Luo R, Tian X, Guo L, Liu W, Qiu Y, Lu Q, Ye C, Zong B, Fu S. PD-1/PD-L1 axis induced host immunosuppression via PI3K/Akt/mTOR signalling pathway in piglets infected by Glaesserella Parasuis. BMC Vet Res 2024; 20:141. [PMID: 38582846 PMCID: PMC10998357 DOI: 10.1186/s12917-024-03993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
Glaesserella parasuis, an important respiratory bacterial pathogen, causes Glässer's disease in piglets, with potential immunosuppression. We established a piglet infection model and explored the immunosuppression mechanism to improve our understanding of the host immune response to G. parasuis. Twenty piglets were randomly divided into two groups (n = 10). The infection group was intraperitoneally challenged with 2 × 108 CFU of G. parasuis in 2 mL TSB. The control group was intraperitoneally injected with equivalent TSB. After 72 h, the piglets were sacrificed, and spleen tissue was collected. PD-1/PD-L1 expression was determined. The splenocytes were isolated to detect CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+cell differentiation. Via data-independent acquisition (DIA), we compared the proteomics of healthy and infected spleen tissues. Glaesserella parasuis modified CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+ cell differentiation and PD-1/PD-L1 expression in the spleen. The infection group had 596 proteins with significant differences in expression, of which 301 were significantly upregulated and 295 downregulated. Differentially expressed proteins (DEPs) were mainly related to immune responses. This is the first study on PD-1/PD-L1 expression in the spleen associated with immunosuppression in a piglet model to explore the protein changes related to immune responses via DIA.
Collapse
Affiliation(s)
- Jingyang Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Siyu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Qiaoli Dong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Yunjian Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Yamin Sun
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Ronghui Luo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Xinyue Tian
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Wei Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Bingbing Zong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, PR China.
| |
Collapse
|
8
|
Zhang Y, Peng Y, Wang Y, Xu J, Yan H. Novel underlying genetic markers for asthenozoospermia due to abnormal spermatogenesis and reproductive organ inflammation. Exp Ther Med 2024; 27:146. [PMID: 38476923 PMCID: PMC10928817 DOI: 10.3892/etm.2024.12434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Asthenozoospermia, a male fertility disorder, has a complex and multifactorial etiology. Moreover, the effectiveness of different treatments for asthenozoospermia remains uncertain. Hence, by using bioinformatics techniques, the present study aimed to determine the underlying genetic markers and pathogenetic mechanisms associated with asthenozoospermia due to abnormal spermatogenesis and inflammation of the reproductive tract. GSE160749 dataset was downloaded from the Gene Expression Omnibus database, and the data were filtered to obtain 1336 differentially expressed genes (DEGs) associated with asthenozoospermia. These DEGs were intersected with the epithelial mesenchymal transition datasets to yield 61 candidate DEGs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed, and the results revealed that these candidate DEGs were significantly enriched in the enzyme-linked receptor pathway and the thyroid hormone pathway. A protein-protein interaction network was constructed to identify the key genes of asthenozoospermia. A total of five key genes were identified, among which SOX9 was significantly upregulated, while HSPA4, SMAD2, HIF1A and GSK3B were significantly downregulated. These findings were validated by conducting reverse transcription-quantitative PCR for clinical semen samples. To determine the underlying molecular mechanisms, a regulatory network of transcription factors and miRNA-mRNA interactions was predicted. The expression levels of HSPA4, SMAD2 and GSK3B were positively associated with several related etiological genes of asthenozoospermia. In total, five key genes were closely associated with the level and type of immune cells; higher levels of activated B cells and CD8 T cells were observed in asthenozoospermia. Thus, the findings of the present study may provide clues to determine the underlying novel diagnostic genetic markers and treatment strategies for asthenozoospermia.
Collapse
Affiliation(s)
- Yaodong Zhang
- Reproductive Medicine Center, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, P.R. China
- Department of Clinical Laboratory, The 971st Hospital of Chinese People's Liberation Army, Qindao, Shandong 266071, P.R. China
| | - Yun Peng
- Reproductive Medicine Center, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, P.R. China
| | - Yao Wang
- Reproductive Medicine Center, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, P.R. China
| | - Jian Xu
- Reproductive Medicine Center, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, P.R. China
| | - Hongli Yan
- Reproductive Medicine Center, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
9
|
Tong X, Shen Q. Identification of immune-related regulatory networks and diagnostic biomarkers in thyroid eye disease. Int Ophthalmol 2024; 44:38. [PMID: 38332455 DOI: 10.1007/s10792-024-03017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Thyroid eye disease (TED) is an orbit-associated autoimmune inflammatory disorder intricately linked to immune dysregulation. Complete pathogenesis of TED remains elusive. This work aimed to mine pathogenesis of TED from immunological perspective and identify diagnostic genes. METHODS Gene expression microarray data for TED patients were downloaded from Gene Expression Omnibus, immune-related genes (IRGs) were from ImmPort database, and TED-related transcription factors (TFs) were from Cirtrome Cancer database. Differential analysis, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. Regulatory networks of TFs and IRGs were constructed with Cytoscape. Diagnostic biomarkers in TED were identified through LASSO. Immune cell infiltration analysis was performed using CIBERSORT. RESULTS Twenty-three immune-related DEmRNAs were revealed and were primarily enriched in humoral immune response, positive regulation of inflammatory response, IL-17, and TNF pathways. Co-expression regulatory network included four TFs and 16 immune-related DEmRNAs. Seven diagnostic genes were identified, with Area Under the Curve (AUC) of 0.993 for training set and AUC value of 0.836 for validation set. TED patients exhibited elevated infiltration levels by macrophages M2, mast cells, and CD8 T cells among 22 immune cell types, whereas macrophages M2 and mast cells resting were significantly lower than normal group. CONCLUSIONS The seven feature genes had high diagnostic value for TED patients. Our work explored regulatory network and diagnostic biomarkers, laying theoretical basis for TED diagnosis and treatment.
Collapse
Affiliation(s)
- Xiangmei Tong
- The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310002, China
- Department of General Surgery, The First People's Hospital of Tonglu County, Tonglu, 311500, China
| | - Qianyun Shen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310002, China.
| |
Collapse
|
10
|
Olivieri G, Cotugno N, Palma P. Emerging insights into atypical B cells in pediatric chronic infectious diseases and immune system disorders: T(o)-bet on control of B-cell immune activation. J Allergy Clin Immunol 2024; 153:12-27. [PMID: 37890706 PMCID: PMC10842362 DOI: 10.1016/j.jaci.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Repetitive or persistent cellular stimulation in vivo has been associated with the development of a heterogeneous B-cell population that exhibits a distinctive phenotype and, in addition to classical B-cell markers, often expresses the transcription factor T-bet and myeloid marker CD11c. Research suggests that this atypical population consists of B cells with distinct B-cell receptor specificities capable of binding the antigens responsible for their development. The expansion of this population occurs in the presence of chronic inflammatory conditions and autoimmune diseases where different nomenclatures have been used to describe them. However, as a result of the diverse contexts in which they have been investigated, these cells have remained largely enigmatic, with much ambiguity remaining regarding their phenotype and function in humoral immune response as well as their role in autoimmunity. Atypical B cells have garnered considerable interest because of their ability to produce specific antibodies and/or autoantibodies and because of their association with key disease manifestations. Although they have been widely described in the context of adults, little information is present for children. Therefore, the aim of this narrative review is to describe the characteristics of this population, suggest their function in pediatric immune-related diseases and chronic infections, and explore their potential therapeutic avenues.
Collapse
Affiliation(s)
- Giulio Olivieri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
11
|
Mousavian Z, Källenius G, Sundling C. From simple to complex: Protein-based biomarker discovery in tuberculosis. Eur J Immunol 2023; 53:e2350485. [PMID: 37740950 DOI: 10.1002/eji.202350485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 09/22/2023] [Indexed: 09/25/2023]
Abstract
Tuberculosis (TB) is a deadly infectious disease that affects millions of people globally. TB proteomics signature discovery has been a rapidly growing area of research that aims to identify protein biomarkers for the early detection, diagnosis, and treatment monitoring of TB. In this review, we have highlighted recent advances in this field and how it is moving from the study of single proteins to high-throughput profiling and from only using proteomics to include additional types of data in multi-omics studies. We have further covered the different sample types and experimental technologies used in TB proteomics signature discovery, focusing on studies of HIV-negative adults. The published signatures were defined as either coming from hypothesis-based protein targeting or from unbiased discovery approaches. The methodological approaches influenced the type of proteins identified and were associated with the circulating protein abundance. However, both approaches largely identified proteins involved in similar biological pathways, including acute-phase responses and T-helper type 1 and type 17 responses. By analysing the frequency of proteins in the different signatures, we could also highlight potential robust biomarker candidates. Finally, we discuss the potential value of integration of multi-omics data and the importance of control cohorts and signature validation.
Collapse
Affiliation(s)
- Zaynab Mousavian
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Steuten J, Bos AV, Kuijper LH, Claireaux M, Olijhoek W, Elias G, Duurland MC, Jorritsma T, Marsman C, Paul AGA, Garcia Vallejo JJ, van Gils MJ, Wieske L, Kuijpers TW, Eftimov F, van Ham SM, Ten Brinke A. Distinct dynamics of antigen-specific induction and differentiation of different CD11c +Tbet + B-cell subsets. J Allergy Clin Immunol 2023; 152:689-699.e6. [PMID: 36858158 DOI: 10.1016/j.jaci.2023.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND CD11c+Tbet+ B cells are enriched in autoimmunity and chronic infections and also expand on immune challenge in healthy individuals. CD11c+Tbet+ B cells remain an enigmatic B-cell population because of their intrinsic heterogeneity. OBJECTIVES We investigated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen-specific development and differentiation properties of 3 separate CD11c+ B-cell subsets-age-associated B cells (ABCs), double-negative 2 (DN2) B cells, and activated naive B cells-and compared them to their canonical CD11c- counterparts. METHODS Dynamics of the response of the 3 CD11c+ B-cell subsets were assessed at SARS-CoV-2 vaccination in healthy donors by spectral flow cytometry. Distinct CD11c+ B-cell subsets were functionally characterized by optimized in vitro cultures. RESULTS In contrast to a durable expansion of antigen-specific CD11c- memory B cells over time, both ABCs and DN2 cells were strongly expanded shortly after second vaccination and subsequently contracted. Functional characterization of antibody-secreting cell differentiation dynamics revealed that CD11c+Tbet+ B cells were primed for antibody-secreting cell differentiation compared to relevant canonical CD11c- counterparts. CONCLUSION Overall, CD11c+Tbet+ B cells encompass heterogeneous subpopulations, of which primarily ABCs as well as DN2 B cells respond early to immune challenge and display a pre-antibody-secreting cell phenotype.
Collapse
Affiliation(s)
- Juulke Steuten
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Amélie V Bos
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisan H Kuijper
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter Olijhoek
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - George Elias
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariel C Duurland
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Casper Marsman
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Juan J Garcia Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University of Amsterdam, Amsterdam, The Netherlands
| | - Marit J van Gils
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Neurophysiology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Lopes de Assis F, Hoehn KB, Zhang X, Kardava L, Smith CD, El Merhebi O, Buckner CM, Trihemasava K, Wang W, Seamon CA, Chen V, Schaughency P, Cheung F, Martins AJ, Chiang CI, Li Y, Tsang JS, Chun TW, Kleinstein SH, Moir S. Tracking B cell responses to the SARS-CoV-2 mRNA-1273 vaccine. Cell Rep 2023; 42:112780. [PMID: 37440409 PMCID: PMC10529190 DOI: 10.1016/j.celrep.2023.112780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Protective immunity following vaccination is sustained by long-lived antibody-secreting cells and resting memory B cells (MBCs). Responses to two-dose SARS-CoV-2 mRNA-1273 vaccination are evaluated longitudinally by multimodal single-cell analysis in three infection-naïve individuals. Integrated surface protein, transcriptomics, and B cell receptor (BCR) repertoire analysis of sorted plasmablasts and spike+ (S-2P+) and S-2P- B cells reveal clonal expansion and accumulating mutations among S-2P+ cells. These cells are enriched in a cluster of immunoglobulin G-expressing MBCs and evolve along a bifurcated trajectory rooted in CXCR3+ MBCs. One branch leads to CD11c+ atypical MBCs while the other develops from CD71+ activated precursors to resting MBCs, the dominant population at month 6. Among 12 evolving S-2P+ clones, several are populated with plasmablasts at early timepoints as well as CD71+ activated and resting MBCs at later timepoints, and display intra- and/or inter-cohort BCR convergence. These relationships suggest a coordinated and predictable evolution of SARS-CoV-2 vaccine-generated MBCs.
Collapse
Affiliation(s)
- Felipe Lopes de Assis
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaozhen Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Connor D Smith
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Omar El Merhebi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clarisa M Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krittin Trihemasava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Wang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine A Seamon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vicky Chen
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Schaughency
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Foo Cheung
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Chi-I Chiang
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Microbiology and Immunology and Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - John S Tsang
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD 20892, USA; Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
B cell response after SARS-CoV-2 mRNA vaccination in people living with HIV. COMMUNICATIONS MEDICINE 2023; 3:13. [PMID: 36717688 PMCID: PMC9886211 DOI: 10.1038/s43856-023-00245-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Limited longitudinal data are available on immune response to mRNA SARS-CoV-2 vaccination in people living with HIV (PLWHIV); therefore, new evidence on induction and persistence of spike-specific antibodies and B cells is needed. METHODS In this pilot study we investigated the spike-specific humoral and B cell responses up to six months after vaccination with two doses of mRNA vaccines in 84 PLWHIV under antiretroviral therapy compared to 79 healthy controls (HCs). RESULTS Spike-specific IgG persisted six months in PLWHIV with no significant differences compared to HCs, even though a significantly lower IgG response was observed in patients with CD4+ T cells < 350/mmc. The frequency of subjects with antibodies capable of inhibiting ACE2/RBD binding was comparable between PLWHIV and HCs a month after the second vaccine dose, then a higher drop was observed in PLWHIV. A comparable percentage of spike-specific memory B cells was observed at month six in PLWHIV and HCs. However, PLWHIV showed a higher frequency of spike-specific IgD- CD27- double-negative memory B cells and a significantly lower rate of IgD- CD27+ Ig-switched memory B cells compared to HCs, suggesting a reduced functionality of the antigen-specific memory B population. CONCLUSIONS The mRNA vaccination against SARS-CoV-2 elicits humoral and B cell responses quantitatively similar between PLWHIV and HCs, but there are important differences in terms of antibody functionality and phenotypes of memory B cells, reinforcing the notion that tailored vaccination policies should be considered for these patients.
Collapse
|
15
|
McCombe PA, Hardy TA, Nona RJ, Greer JM. Sex differences in Guillain Barré syndrome, chronic inflammatory demyelinating polyradiculoneuropathy and experimental autoimmune neuritis. Front Immunol 2022; 13:1038411. [PMID: 36569912 PMCID: PMC9780466 DOI: 10.3389/fimmu.2022.1038411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Guillain Barré syndrome (GBS) and its variants, and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP and its variants, are regarded as immune mediated neuropathies. Unlike in many autoimmune disorders, GBS and CIDP are more common in males than females. Sex is not a clear predictor of outcome. Experimental autoimmune neuritis (EAN) is an animal model of these diseases, but there are no studies of the effects of sex in EAN. The pathogenesis of GBS and CIDP involves immune response to non-protein antigens, antigen presentation through non-conventional T cells and, in CIDP with nodopathy, IgG4 antibody responses to antigens. There are some reported sex differences in some of these elements of the immune system and we speculate that these sex differences could contribute to the male predominance of these diseases, and suggest that sex differences in peripheral nerves is a topic worthy of further study.
Collapse
Affiliation(s)
- Pamela A. McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Todd A. Hardy
- Department of Neurology, Concord Hospital, University of Sydney, Sydney, NSW, Australia
- Brain & Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Robert J. Nona
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Judith M. Greer
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Kugler‐Umana O, Zhang W, Kuang Y, Liang J, Castonguay CH, Tonkonogy SL, Marshak‐Rothstein A, Devarajan P, Swain SL. IgD + age-associated B cells are the progenitors of the main T-independent B cell response to infection that generates protective Ab and can be induced by an inactivated vaccine in the aged. Aging Cell 2022; 21:e13705. [PMID: 36056604 PMCID: PMC9577953 DOI: 10.1111/acel.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/18/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
Age-associated B cells (ABC) accumulate with age and are associated with autoimmunity and chronic infection. However, their contributions to acute infection in the aged and their developmental pathways are unclear. We find that the response against influenza A virus infection in aged mice is dominated by a Fas+ GL7- effector B cell population we call infection-induced ABC (iABC). Most iABC express IgM and include antibody-secreting cells in the spleen, lung, and bone marrow. We find that in response to influenza, IgD+ CD21- CD23- ABC are the precursors of iABC and become memory B cells. These IgD+ ABC develop in germ-free mice, so are independent of foreign antigen recognition. The response of ABC to influenza infection, resulting in iABC, is T cell independent and requires both extrinsic TLR7 and TLR9 signals. In response to influenza infection, IgD+ ABC can induce a faster recovery of weight and higher total anti-influenza IgG and IgM titers that can neutralize virus. Immunization with whole inactivated virus also generates iABC in aged mice. Thus, in unimmunized aged mice, whose other B and T cell responses have waned, IgD+ ABC are likely the naive B cells with the potential to become Ab-secreting cells and to provide protection from infection in the aged.
Collapse
Affiliation(s)
- Olivia Kugler‐Umana
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Wenliang Zhang
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Yi Kuang
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Jialing Liang
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Catherine H. Castonguay
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Susan L. Tonkonogy
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ann Marshak‐Rothstein
- Department of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Susan L. Swain
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|