1
|
Alshahrani M, Parikh V, Foley B, Verkhivker G. Exploring Diverse Binding Mechanisms of Broadly Neutralizing Antibodies S309, S304, CYFN-1006 and VIR-7229 Targeting SARS-CoV-2 Spike Omicron Variants: Integrative Computational Modeling Reveals Balance of Evolutionary and Dynamic Adaptability in Shaping Molecular Determinants of Immune Escape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.15.649027. [PMID: 40376091 PMCID: PMC12080943 DOI: 10.1101/2025.04.15.649027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Evolution of SARS-CoV-2 has led to the emergence of variants with increased immune evasion capabilities, posing significant challenges to antibody-based therapeutics and vaccines. The cross-neutralization activity of antibodies against Omicron variants is governed by a complex and delicate interplay of multiple energetic factors and interaction contributions. In this study, we conducted a comprehensive analysis of the interactions between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and four neutralizing antibodies S309, S304, CYFN1006, and VIR-7229. Using integrative computational modeling that combined all-atom molecular dynamics (MD) simulations, mutational scanning, and MM-GBSA binding free energy calculations, we elucidated the structural, energetic, and dynamic determinants of antibody binding. Our findings reveal distinct dynamic binding mechanisms and evolutionary adaptation driving broad neutralization effect of these antibodies. We show that S309 targets conserved residues near the ACE2 interface, leveraging synergistic van der Waals and electrostatic interactions, while S304 focuses on fewer but sensitive residues, making it more susceptible to escape mutations. The analysis of CYFN-1006.1 and CYFN-1006.2 antibody binding highlights broad epitope coverage with critical anchors at T345, K440, and T346, enhancing its efficacy against variants carrying the K356T mutation which caused escape from S309 binding. Our analysis of broadly potent VIR-7229 antibody binding to XBB.1.5 and EG.5 Omicron variants emphasized a large and structurally complex epitope, demonstrating certain adaptability and compensatory effects to F456L and L455S mutations. Mutational profiling identified key residues crucial for antibody binding, including T345, P337, and R346 for S309, and T385 and K386 for S304, underscoring their roles as evolutionary "weak spots" that balance viral fitness and immune evasion. The results of this energetic analysis demonstrate a good agreement between the predicted binding hotspots and critical mutations with respect to the latest experiments on average antibody escape scores. The results of this study dissect distinct energetic mechanisms of binding and importance of targeting conserved residues and diverse epitopes to counteract viral resistance. Broad-spectrum antibodies CYFN1006 and VIR-7229 maintain efficacy across multiple variants and achieve neutralization by targeting convergent evolution hotspots while enabling tolerance to mutations in these positions through structural adaptability and compensatory interactions at the binding interface. The results of this study underscore the diversity of binding mechanisms employed by different antibodies and molecular basis for high affinity and excellent neutralization activity of the latest generation of antibodies.
Collapse
|
2
|
Liu J, Wu Y, Gao GF. A Structural Voyage Toward the Landscape of Humoral and Cellular Immune Escapes of SARS-CoV-2. Immunol Rev 2025; 330:e70000. [PMID: 39907512 DOI: 10.1111/imr.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
The genome-based surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the past nearly 5 years since its emergence has refreshed our understanding of virus evolution, especially on convergent co-evolution with the host. SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations that affect the functional properties of the virus by altering its infectivity, virulence, transmissibility, and interactions with host immunity. This poses a huge challenge to global prevention and control measures based on drug treatment and vaccine application. As one of the key evasion strategies in response to the immune profile of the human population, there are overwhelming amounts of evidence for the reduced antibody neutralization of SARS-CoV-2 variants. Additionally, data also suggest that the levels of CD4+ and CD8+ T-cell responses against variants or sub-variants decrease in the populations, although non-negligible cross-T-cell responses are maintained. Herein, from the perspectives of structural immunology, we outline the characteristics and mechanisms of the T cell and antibody responses to SARS-CoV and its variants/sub-variants. The molecular bases for the impact of the immune escaping variants on the interaction of the epitopes with the key receptors in adaptive immunity, that is, major histocompatibility complex (MHC), T-cell receptor (TCR), and antibody are summarized and discussed, the knowledge of which will widen our understanding of this pandemic-threatening virus and assist the preparedness for Pathogen X in the future.
Collapse
Affiliation(s)
- Jun Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- The D. H. Chen School of Universal Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Harris C, Kapingidza AB, San JE, Christopher J, Gavitt T, Rhodes B, Janowska K, O'Donnell C, Lindenberger J, Huang X, Sammour S, Berry M, Barr M, Parks R, Newman A, Overton M, Oguin T, Acharya P, Haynes BF, Saunders KO, Wiehe K, Azoitei ML. Design of SARS-CoV-2 RBD Immunogens to Focus Immune Responses Towards Conserved Coronavirus Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632180. [PMID: 39829739 PMCID: PMC11741430 DOI: 10.1101/2025.01.09.632180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
SARS-CoV-2 continues to evolve, with new variants emerging that evade pre-existing immunity and limit the efficacy of existing vaccines. One approach towards developing superior, variant-proof vaccines is to engineer immunogens that preferentially elicit antibodies with broad cross-reactivity against SARS-CoV-2 and its variants by targeting conserved epitopes on spike. The inner and outer faces of the Receptor Binding Domain (RBD) are two such conserved regions targeted by antibodies that recognize diverse human and animal coronaviruses. To promote the elicitation of such antibodies by vaccination, we engineered "resurfaced" RBD immunogens that contained mutations at exposed RBD residues outside the target epitopes. In the context of pre-existing immunity, these vaccine candidates aim to disfavor the elicitation of strain-specific antibodies against the immunodominant Receptor Binding Motif (RBM) while boosting the induction of inner and outer face antibodies. The engineered resurfaced RBD immunogens were stable, lacked binding to monoclonal antibodies with limited breadth, and maintained strong interactions with target broadly neutralizing antibodies. When used as vaccines, they limited humoral responses against the RBM as intended. Multimerization on nanoparticles further increased the immunogenicity of the resurfaced RBDs immunogens, thus supporting resurfacing as a promising immunogen design approach to rationally shift natural immune responses to develop more protective vaccines.
Collapse
|
4
|
Tse AL, Acreman CM, Ricardo-Lax I, Berrigan J, Lasso G, Balogun T, Kearns FL, Casalino L, McClain GL, Chandran AM, Lemeunier C, Amaro RE, Rice CM, Jangra RK, McLellan JS, Chandran K, Miller EH. Distinct pathways for evolution of enhanced receptor binding and cell entry in SARS-like bat coronaviruses. PLoS Pathog 2024; 20:e1012704. [PMID: 39546542 PMCID: PMC11602109 DOI: 10.1371/journal.ppat.1012704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/27/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Understanding the zoonotic risks posed by bat coronaviruses (CoVs) is critical for pandemic preparedness. Herein, we generated recombinant vesicular stomatitis viruses (rVSVs) bearing spikes from divergent bat CoVs to investigate their cell entry mechanisms. Unexpectedly, the successful recovery of rVSVs bearing the spike from SHC014-CoV, a SARS-like bat CoV, was associated with the acquisition of a novel substitution in the S2 fusion peptide-proximal region (FPPR). This substitution enhanced viral entry in both VSV and coronavirus contexts by increasing the availability of the spike receptor-binding domain to recognize its cellular receptor, ACE2. A second substitution in the S1 N-terminal domain, uncovered through the rescue and serial passage of a virus bearing the FPPR substitution, further enhanced spike:ACE2 interaction and viral entry. Our findings identify genetic pathways for adaptation by bat CoVs during spillover and host-to-host transmission, fitness trade-offs inherent to these pathways, and potential Achilles' heels that could be targeted with countermeasures.
Collapse
Affiliation(s)
- Alexandra L. Tse
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Cory M. Acreman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Jacob Berrigan
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Gorka Lasso
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Toheeb Balogun
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Fiona L. Kearns
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Lorenzo Casalino
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Georgia L. McClain
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Amartya Mudry Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Charlotte Lemeunier
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Rommie E. Amaro
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Rohit K. Jangra
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Present address: Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kartik Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Emily Happy Miller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| |
Collapse
|
5
|
Martinez EJ, Chang WC, Chen WH, Hajduczki A, Thomas PV, Jensen JL, Choe M, Sankhala RS, Peterson CE, Rees PA, Kimner J, Soman S, Kuklis C, Mendez-Rivera L, Dussupt V, King J, Corbett C, Mayer SV, Fernandes A, Murzello K, Cookenham T, Hvizdos J, Kummer L, Hart T, Lanzer K, Gambacurta J, Reagan M, Duso D, Vasan S, Collins ND, Michael NL, Krebs SJ, Gromowski GD, Modjarrad K, Kaundinya J, Joyce MG. SARS-CoV-2 ferritin nanoparticle vaccines produce hyperimmune equine sera with broad sarbecovirus activity. iScience 2024; 27:110624. [PMID: 39351195 PMCID: PMC11440237 DOI: 10.1016/j.isci.2024.110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
The rapid emergence of SARS-CoV-2 variants of concern (VoC) and the threat of future zoonotic sarbecovirus spillover emphasizes the need for broadly protective next-generation vaccines and therapeutics. We utilized SARS-CoV-2 spike ferritin nanoparticle (SpFN), and SARS-CoV-2 receptor binding domain ferritin nanoparticle (RFN) immunogens, in an equine model to elicit hyperimmune sera and evaluated its sarbecovirus neutralization and protection capacity. Immunized animals rapidly elicited sera with the potent neutralization of SARS-CoV-2 VoC, and SARS-CoV-1 pseudoviruses, and potent binding against receptor binding domains from sarbecovirus clades 1b, 1a, 2, 3, and 4. Purified equine polyclonal IgG provided protection against Omicron XBB.1.5 virus in the K18-hACE2 transgenic mouse model. These results suggest that SARS-CoV-2-based nanoparticle vaccines can rapidly produce a broad and protective sarbecovirus response in the equine model and that equine serum has therapeutic potential against emerging SARS-CoV-2 VoC and diverse sarbecoviruses, presenting a possible alternative or supplement to monoclonal antibody immunotherapies.
Collapse
Affiliation(s)
- Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Paul V Thomas
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jordan Kimner
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Letzibeth Mendez-Rivera
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Vincent Dussupt
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jocelyn King
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Courtney Corbett
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sandra V Mayer
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | - Sandhya Vasan
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Natalie D Collins
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| |
Collapse
|
6
|
Ashoor D, Marzouq M, Fathallah MD. Comparison of the Neutralization Power of Sotrovimab Against SARS-CoV-2 Variants: Development of a Rapid Computational Method. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2024; 5:e58018. [PMID: 39388246 PMCID: PMC11502979 DOI: 10.2196/58018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND The rapid evolution of SARS-CoV-2 imposed a huge challenge on disease control. Immune evasion caused by genetic variations of the SARS-CoV-2 spike protein's immunogenic epitopes affects the efficiency of monoclonal antibody-based therapy of COVID-19. Therefore, a rapid method is needed to evaluate the efficacy of the available monoclonal antibodies against the new emerging variants or potential novel variants. OBJECTIVE The aim of this study is to develop a rapid computational method to evaluate the neutralization power of anti-SARS-CoV-2 monoclonal antibodies against new SARS-CoV-2 variants and other potential new mutations. METHODS The amino acid sequence of the extracellular domain of the spike proteins of the severe acute respiratory syndrome coronavirus (GenBank accession number YP_009825051.1) and SARS-CoV-2 (GenBank accession number YP_009724390.1) were used to create computational 3D models for the native spike proteins. Specific mutations were introduced to the curated sequence to generate the different variant spike models. The neutralization potential of sotrovimab (S309) against these variants was evaluated based on its molecular interactions and Gibbs free energy in comparison to a reference model after molecular replacement of the reference receptor-binding domain with the variant's receptor-binding domain. RESULTS Our results show a loss in the binding affinity of the neutralizing antibody S309 with both SARS-CoV and SARS-CoV-2. The binding affinity of S309 was greater to the Alpha, Beta, Gamma, and Kappa variants than to the original Wuhan strain of SARS-CoV-2. However, S309 showed a substantially decreased binding affinity to the Delta and Omicron variants. Based on the mutational profile of Omicron subvariants, our data describe the effect of the G339H and G339D mutations and their role in escaping antibody neutralization, which is in line with published clinical reports. CONCLUSIONS This method is rapid, applicable, and of interest to adapt the use of therapeutic antibodies to the treatment of emerging variants. It could be applied to antibody-based treatment of other viral infections.
Collapse
Affiliation(s)
- Dana Ashoor
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Maryam Marzouq
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - M-Dahmani Fathallah
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
7
|
Cui L, Li T, Xue W, Zhang S, Wang H, Liu H, Gu Y, Xia N, Li S. Comprehensive Overview of Broadly Neutralizing Antibodies against SARS-CoV-2 Variants. Viruses 2024; 16:900. [PMID: 38932192 PMCID: PMC11209230 DOI: 10.3390/v16060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, SARS-CoV-2 has evolved into various variants, including the numerous highly mutated Omicron sub-lineages, significantly increasing immune evasion ability. The development raises concerns about the possibly diminished effectiveness of available vaccines and antibody-based therapeutics. Here, we describe those representative categories of broadly neutralizing antibodies (bnAbs) that retain prominent effectiveness against emerging variants including Omicron sub-lineages. The molecular characteristics, epitope conservation, and resistance mechanisms of these antibodies are further detailed, aiming to offer suggestion or direction for the development of therapeutic antibodies, and facilitate the design of vaccines with broad-spectrum potential.
Collapse
Affiliation(s)
- Lingyan Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Wenhui Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Sibo Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hongjing Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| |
Collapse
|
8
|
Iketani S, Ho DD. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem Biol 2024; 31:632-657. [PMID: 38640902 PMCID: PMC11084874 DOI: 10.1016/j.chembiol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Over four years have passed since the beginning of the COVID-19 pandemic. The scientific response has been rapid and effective, with many therapeutic monoclonal antibodies and small molecules developed for clinical use. However, given the ability for viruses to become resistant to antivirals, it is perhaps no surprise that the field has identified resistance to nearly all of these compounds. Here, we provide a comprehensive review of the resistance profile for each of these therapeutics. We hope that this resource provides an atlas for mutations to be aware of for each agent, particularly as a springboard for considerations for the next generation of antivirals. Finally, we discuss the outlook and thoughts for moving forward in how we continue to manage this, and the next, pandemic.
Collapse
Affiliation(s)
- Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
9
|
Vitiello A, Sabbatucci M, Ponzo A, Salzano A, Zovi A. A Short Update on the Use of Monoclonal Antibodies in COVID-19. AAPS J 2024; 26:30. [PMID: 38443725 DOI: 10.1208/s12248-024-00904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Monoclonal antibodies in the prophylaxis and treatment of COVID-19 have been crucial in reducing severe infections when vaccines were unavailable. However, as the virus and its variants have changed over time, the effectiveness of monoclonal antibodies has been questioned. This technical note highlights the need to assess the antiviral activity of these antibodies against new variants and adapt treatment strategies accordingly. On the one hand, in vitro studies have suggested reduced susceptibility of the latest variants to monoclonal antibodies, whereas clinical data still show benefits in reducing severe illness and mortality, indicating that laboratory results do not always mirror real-world outcomes. As a result, although resistance to monoclonal antibodies can develop over time, they could still have an important role in COVID-19 treatment, especially when used in combination, and ongoing research aims to identify effective antibodies against new variants.
Collapse
Affiliation(s)
- Antonio Vitiello
- Directorate General for Health Prevention, Italian Ministry of Health, Rome, Italy
| | - Michela Sabbatucci
- Department Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Annarita Ponzo
- Biology Department L. Spallanzani, University of Pavia, Pavia, Italy
| | - Antonio Salzano
- Directorate General for Health Prevention, Italian Ministry of Health, Rome, Italy
| | | |
Collapse
|
10
|
Chiyyeadu A, Asgedom G, Bruhn M, Rocha C, Schlegel TU, Neumann T, Galla M, Vollmer Barbosa P, Hoffmann M, Ehrhardt K, Ha TC, Morgan M, Schoeder CT, Pöhlmann S, Kalinke U, Schambach A. A tetravalent bispecific antibody outperforms the combination of its parental antibodies and neutralizes diverse SARS-CoV-2 variants. Clin Immunol 2024; 260:109902. [PMID: 38218210 DOI: 10.1016/j.clim.2024.109902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
The devastating impact of COVID-19 on global health shows the need to increase our pandemic preparedness. Recombinant therapeutic antibodies were successfully used to treat and protect at-risk patients from COVID-19. However, the currently circulating Omicron subvariants of SARS-CoV-2 are largely resistant to therapeutic antibodies, and novel approaches to generate broadly neutralizing antibodies are urgently needed. Here, we describe a tetravalent bispecific antibody, A7A9 TVB, which actively neutralized many SARS-CoV-2 variants of concern, including early Omicron subvariants. Interestingly, A7A9 TVB neutralized more variants at lower concentration as compared to the combination of its parental monoclonal antibodies, A7K and A9L. A7A9 also reduced the viral load of authentic Omicron BA.1 virus in infected pseudostratified primary human nasal epithelial cells. Overall, A7A9 displayed the characteristics of a potent broadly neutralizing antibody, which may be suitable for prophylactic and therapeutic applications in the clinics, thus highlighting the usefulness of an effective antibody-designing approach.
Collapse
Affiliation(s)
- Abhishek Chiyyeadu
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Girmay Asgedom
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Matthias Bruhn
- Institute for Experimental Infection Research, TWINCORE, Center for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Cheila Rocha
- German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Tom U Schlegel
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Thomas Neumann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Philippe Vollmer Barbosa
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Markus Hoffmann
- German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Katrin Ehrhardt
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Clara T Schoeder
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Stefan Pöhlmann
- German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Center for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
11
|
Avila-Herrera A, Kimbrel JA, Manuel Martí J, Thissen J, Saada EA, Weisenberger T, Arrildt KT, Segelke BW, Allen JE, Zemla A, Borucki MK. Differential laboratory passaging of SARS-CoV-2 viral stocks impacts the in vitro assessment of neutralizing antibodies. PLoS One 2024; 19:e0289198. [PMID: 38271318 PMCID: PMC10810540 DOI: 10.1371/journal.pone.0289198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Viral populations in natural infections can have a high degree of sequence diversity, which can directly impact immune escape. However, antibody potency is often tested in vitro with a relatively clonal viral populations, such as laboratory virus or pseudotyped virus stocks, which may not accurately represent the genetic diversity of circulating viral genotypes. This can affect the validity of viral phenotype assays, such as antibody neutralization assays. To address this issue, we tested whether recombinant virus carrying SARS-CoV-2 spike (VSV-SARS-CoV-2-S) stocks could be made more genetically diverse by passage, and if a stock passaged under selective pressure was more capable of escaping monoclonal antibody (mAb) neutralization than unpassaged stock or than viral stock passaged without selective pressures. We passaged VSV-SARS-CoV-2-S four times concurrently in three cell lines and then six times with or without polyclonal antiserum selection pressure. All three of the monoclonal antibodies tested neutralized the viral population present in the unpassaged stock. The viral inoculum derived from serial passage without antiserum selection pressure was neutralized by two of the three mAbs. However, the viral inoculum derived from serial passage under antiserum selection pressure escaped neutralization by all three mAbs. Deep sequencing revealed the rapid acquisition of multiple mutations associated with antibody escape in the VSV-SARS-CoV-2-S that had been passaged in the presence of antiserum, including key mutations present in currently circulating Omicron subvariants. These data indicate that viral stock that was generated under polyclonal antiserum selection pressure better reflects the natural environment of the circulating virus and may yield more biologically relevant outcomes in phenotypic assays. Thus, mAb assessment assays that utilize a more genetically diverse, biologically relevant, virus stock may yield data that are relevant for prediction of mAb efficacy and for enhancing biosurveillance.
Collapse
Affiliation(s)
- Aram Avila-Herrera
- Lawrence Livermore National Laboratory, Computing Directorate, Global Security Computing Applications Division, Livermore, California, United States of America
| | - Jeffrey A. Kimbrel
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Livermore, California, United States of America
| | - Jose Manuel Martí
- Lawrence Livermore National Laboratory, Computing Directorate, Global Security Computing Applications Division, Livermore, California, United States of America
| | - James Thissen
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Livermore, California, United States of America
| | - Edwin A. Saada
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Livermore, California, United States of America
| | - Tracy Weisenberger
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Livermore, California, United States of America
| | - Kathryn T. Arrildt
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Livermore, California, United States of America
| | - Brent W. Segelke
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Livermore, California, United States of America
| | - Jonathan E. Allen
- Lawrence Livermore National Laboratory, Computing Directorate, Global Security Computing Applications Division, Livermore, California, United States of America
| | - Adam Zemla
- Lawrence Livermore National Laboratory, Computing Directorate, Global Security Computing Applications Division, Livermore, California, United States of America
| | - Monica K. Borucki
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Livermore, California, United States of America
| |
Collapse
|
12
|
Frische A, Gunalan V, Krogfelt KA, Fomsgaard A, Lassaunière R. A Candidate DNA Vaccine Encoding the Native SARS-CoV-2 Spike Protein Induces Anti-Subdomain 1 Antibodies. Vaccines (Basel) 2023; 11:1451. [PMID: 37766128 PMCID: PMC10535225 DOI: 10.3390/vaccines11091451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The ideal vaccine against viral infections should elicit antibody responses that protect against divergent strains. Designing broadly protective vaccines against SARS-CoV-2 and other divergent viruses requires insight into the specific targets of cross-protective antibodies on the viral surface protein(s). However, unlike therapeutic monoclonal antibodies, the B-cell epitopes of vaccine-induced polyclonal antibody responses remain poorly defined. Here we show that, through the combination of neutralizing antibody functional responses with B-cell epitope mapping, it is possible to identify unique antibody targets associated with neutralization breadth. The polyclonal antibody profiles of SARS-CoV-2 index-strain-vaccinated rabbits that demonstrated a low, intermediate, or high neutralization efficiency of different SARS-CoV-2 variants of concern (VOCs) were distinctly different. Animals with an intermediate and high cross-neutralization of VOCs targeted fewer antigenic sites on the spike protein and targeted one particular epitope, subdomain 1 (SD1), situated outside the receptor binding domain (RBD). Our results indicate that a targeted functional antibody response and an additional focus on non-RBD epitopes could be effective for broad protection against different SARS-CoV-2 variants. We anticipate that the approach taken in this study can be applied to other viral vaccines for identifying future epitopes that confer cross-neutralizing antibody responses, and that our findings will inform a rational vaccine design for SARS-CoV-2.
Collapse
Affiliation(s)
- Anders Frische
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
- Section of Molecular and Medicinal Biology, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Vithiagaran Gunalan
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
| | - Karen Angeliki Krogfelt
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
- Section of Molecular and Medicinal Biology, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Anders Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
- Infectious Diseases Unit, Clinical Institute, University of Southern Denmark, 5230 Odense, Denmark
| | - Ria Lassaunière
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
| |
Collapse
|
13
|
Aschauer C, Heinzel A, Stiasny K, Borsodi C, Hu K, Koholka J, Winnicki W, Kainz A, Haslacher H, Oberbauer R, Reindl-Schwaighofer R, Weseslindtner L. Monitoring of Sotrovimab-Levels as Pre-Exposure Prophylaxis in Kidney Transplant Recipients Not Responding to SARS-CoV-2 Vaccines. Viruses 2023; 15:1624. [PMID: 37631967 PMCID: PMC10459887 DOI: 10.3390/v15081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023] Open
Abstract
Background Sotrovimab, a monoclonal antibody against SARS-CoV-2, is used as a pre-exposition prophylaxis (PrEP) against COVID-19, but monitoring strategies using routine test systems have not been defined. Methods Twenty kidney transplant recipients without antibodies after vaccination received 500 mg Sotrovimab. Antibody levels were quantified over eight weeks using live-virus neutralization (BA1 and BA2), antibody binding assays (TrimericS, Elecsys, QuantiVAC) and surrogate virus neutralization tests (sVNTs; TECOmedical, cPass and NeutraLISA). Results Sotrovimab neutralized both Omicron subvariants (BA1 NT titer 90 (+-50) > BA2 NT titer 33 (+-15) one hour post infusion). Sotrovimab was measurable on all used immunoassays, although a prior 1:100 dilution was necessary for Elecsys due to a presumed prozone effect. The best correlation with live-virus neutralization titers was found for QuantiVAC and TrimericS, with a respective R2 of 0.65/0.59 and 0.76/0.57 against BA1/BA2. Elecsys showed an R2 of 0.56/0.54 for BA1/BA2, respectively. sVNT values increased after infusion but had only a poor correlation with live-virus neutralization titers (TECOmedical and cPass) or did not reach positivity thresholds (NeutraLISA). Conclusion Antibody measurements by the used immunoassays showed differences in antibody levels and only a limited correlation with neutralization capacity. We do not recommend sVNTs for monitoring SARS-CoV-2 neutralization by Sotrovimab.
Collapse
Affiliation(s)
- Constantin Aschauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (C.A.); (K.H.); (J.K.); (W.W.); (A.K.); (R.O.)
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (C.A.); (K.H.); (J.K.); (W.W.); (A.K.); (R.O.)
| | - Karin Stiasny
- Center of Virology, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (C.B.); (L.W.)
| | - Christian Borsodi
- Center of Virology, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (C.B.); (L.W.)
| | - Karin Hu
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (C.A.); (K.H.); (J.K.); (W.W.); (A.K.); (R.O.)
| | - Jolanta Koholka
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (C.A.); (K.H.); (J.K.); (W.W.); (A.K.); (R.O.)
| | - Wolfgang Winnicki
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (C.A.); (K.H.); (J.K.); (W.W.); (A.K.); (R.O.)
| | - Alexander Kainz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (C.A.); (K.H.); (J.K.); (W.W.); (A.K.); (R.O.)
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (C.A.); (K.H.); (J.K.); (W.W.); (A.K.); (R.O.)
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (C.A.); (K.H.); (J.K.); (W.W.); (A.K.); (R.O.)
| | - Lukas Weseslindtner
- Center of Virology, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (C.B.); (L.W.)
| |
Collapse
|
14
|
Focosi D, Quiroga R, McConnell S, Johnson MC, Casadevall A. Convergent Evolution in SARS-CoV-2 Spike Creates a Variant Soup from Which New COVID-19 Waves Emerge. Int J Mol Sci 2023; 24:2264. [PMID: 36768588 PMCID: PMC9917121 DOI: 10.3390/ijms24032264] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023] Open
Abstract
The first 2 years of the COVID-19 pandemic were mainly characterized by recurrent mutations of SARS-CoV-2 Spike protein at residues K417, L452, E484, N501 and P681 emerging independently across different variants of concern (Alpha, Beta, Gamma, and Delta). Such homoplasy is a marker of convergent evolution. Since Spring 2022 and the third year of the pandemic, with the advent of Omicron and its sublineages, convergent evolution has led to the observation of different lineages acquiring an additional group of mutations at different amino acid residues, namely R346, K444, N450, N460, F486, F490, Q493, and S494. Mutations at these residues have become increasingly prevalent during Summer and Autumn 2022, with combinations showing increased fitness. The most likely reason for this convergence is the selective pressure exerted by previous infection- or vaccine-elicited immunity. Such accelerated evolution has caused failure of all anti-Spike monoclonal antibodies, including bebtelovimab and cilgavimab. While we are learning how fast coronaviruses can mutate and recombine, we should reconsider opportunities for economically sustainable escape-proof combination therapies, and refocus antibody-mediated therapeutic efforts on polyclonal preparations that are less likely to allow for viral immune escape.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Rodrigo Quiroga
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordova 5000, Argentina
| | - Scott McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Marc C. Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65201, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|