1
|
Ghoshal D, Petersen I, Ringquist R, Kramer L, Bhatia E, Hu T, Richard A, Park R, Corbin J, Agarwal S, Thomas A, Ramirez S, Tharayil J, Downey E, Ketchum F, Ochal A, Sonthi N, Lonial S, Kochenderfer JN, Tran R, Zhu M, Lam WA, Coskun AF, Roy K. Multi-niche human bone marrow on-a-chip for studying the interactions of adoptive CAR-T cell therapies with multiple myeloma. Biomaterials 2025; 316:123016. [PMID: 39709851 DOI: 10.1016/j.biomaterials.2024.123016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
Multiple myeloma (MM), a cancer of bone marrow plasma cells, is the second-most common hematological malignancy. However, despite immunotherapies like chimeric antigen receptor (CAR)-T cells, relapse is nearly universal. The bone marrow (BM) microenvironment influences how MM cells survive, proliferate, and resist treatment. Yet, it is unclear which BM niches give rise to MM pathophysiology. Here, we present a 3D microvascularized culture system, which models the endosteal and perivascular bone marrow niches, allowing us to study MM-stroma interactions in the BM niche and model responses to therapeutic CAR-T cells. We demonstrated the prolonged survival of cell line-based and patient-derived multiple myeloma cells within our in vitro system and successfully perfused in donor-matched CAR-T cells. We then measured T cell survival, differentiation, and cytotoxicity against MM cells using a variety of analysis techniques. Our MM-on-a-chip system could elucidate the role of the BM microenvironment in MM survival and therapeutic evasion and inform the rational design of next-generation therapeutics.
Collapse
Affiliation(s)
- Delta Ghoshal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ingrid Petersen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Rachel Ringquist
- The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Liana Kramer
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eshant Bhatia
- The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; The George W. Woodruff Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Thomas Hu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ariane Richard
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Reda Park
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Jenna Corbin
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Savi Agarwal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Abel Thomas
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; Department of Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sebastian Ramirez
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Jacob Tharayil
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Emma Downey
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Frank Ketchum
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Abigail Ochal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Neha Sonthi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Reginald Tran
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mandy Zhu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Wilbur A Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ahmet F Coskun
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Krishnendu Roy
- School of Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
2
|
Hou X, Zhang H. Research Progress of Hyaluronic Acid-Coated Nanocarriers in Targeted Cancer Therapy. Cancer Biother Radiopharm 2025; 40:231-243. [PMID: 39611654 DOI: 10.1089/cbr.2024.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Background: Hyaluronic acid (HA), as a critical ingredient of extracellular matrix (ECM) and synovial fluid, has attracted extensive attention in targeted tumor thearpy. The superiority of HA is reflected as its great biocompatibility, biodegradability and special binding ability to CD44 receptor. Moreover, CD44 receptor proteins are overexpressed in many kinds of tumor cells and cancer stem cells (CSCs). Therefore, HA is commonly used as ligands for the surface modification of versatile nanocarriers applied in various tumor therapy approaches. Methods: We reviewed the literature and summarized the unique properties of HA, the rationale for the use of HA as tumor-specific carrier for drug delivery, catabolism of HA coated nanocarriers, and research achievements of frequently-used HA-modified organic and inorganic nanocarries. Results: We concluded the significant applications of HA coated nanocarriers in tumor chemotherapy and chemoresistance, combination therapy and cancer theranostics. Conclusion: The application prospect of HA-coated nanocarriers will be more extensive for various targeting combination therapy and theranostics.
Collapse
Affiliation(s)
- Xinxin Hou
- School of Medicine of Henan Polytechnic University, Jiaozuo, P.R. China
| | - Hao Zhang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College North Sichuan Medical College, Sichuan, China
| |
Collapse
|
3
|
Ding X, Liang Y, Zhou S, Wu Y, Sałata P, Mikolajczk-Martinez A, Khosrawipour V, Zhang Z. Targeting tumor extracellular matrix with nanoparticles to circumvent therapeutic resistance. J Control Release 2025; 383:113786. [PMID: 40306575 DOI: 10.1016/j.jconrel.2025.113786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Each stage of tumor development is intrinsically linked to the tumor microenvironment (TME), wherein the extracellular matrix (ECM) serves as a vital and abundant component in tumor tissues. The ECM is a non-cellular, three-dimensional macromolecular network scaffold that provides structural support to cells, stores bioactive molecules, and mediates signaling pathways through specific binding to cell surface receptors. Moreover, the ECM in tumor tissues plays a crucial role in impeding drug diffusion and resisting apoptosis induced by conventional anti-cancer therapies that primarily target cancer cells. Therefore, directing attentions towards the tumor ECM can facilitate the identification of novel targets and the development of new therapies. This review aims to summarize the composition, structure, remodeling, and function of tumor ECM, its association with drug resistance, and current targeting strategies, with a specific emphasis on nanoparticles (NPs).
Collapse
Affiliation(s)
- Xinyue Ding
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Yiyu Liang
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Siyuan Zhou
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Yao Wu
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Patricia Sałata
- Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | | | - Zhiwen Zhang
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China.
| |
Collapse
|
4
|
Laffleur F, Bachleitner K, Millotti G, Lagast J, Veider F, Bernkop-Schnürch A. The progress of hyaluronic acid's application in therapeutic delivery. Ther Deliv 2025:1-13. [PMID: 40205882 DOI: 10.1080/20415990.2025.2483150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
Hyaluronic acid (HA) is a widely available, bio-compatible, polysaccharide with unique physical and chemical properties, which have inspired its application in many fields. Firstly, HA is a significant representative in wound healing, embryonic development, repair as well as regeneration. Secondly, HA exhibits pregnant meaning in cancer progression. Tumor cell proliferation, invasiveness, and motility can be modulated by the accumulation of HA in tumor stoma. Thirdly, HA is an actor in regulation processes during the angiogenesis. The level of HA, even low-molecular-weight HA, is considered to be a biomarker of tumor malignancy. Within this work, an intense overview of its application and the use of HA in drug delivery systems is given.HA plays a crucial role in many cases, such as cell signaling, morphogenesis, matrix organization, tissue regeneration, and pathobiology. Biocompatibility, mucoadhesivity, hygroscopicity, biodegradability, and viscoelasticity are to mention as physico-chemical properties of hyaluronan. This is why exogenous HA is investigated for drug delivery systems and exhibits a representative therapy of cancer, esthetic medicine, rhinology, arthrology, and cosmetics.In the end, the proof of concept presented by clinical trials is convincing to further investigate native HA as well as modified one for therapeutic delivery purposes.
Collapse
Affiliation(s)
- Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Katharina Bachleitner
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Gioconda Millotti
- Faculty for Natural Sciences, Juraj Dobrila University of Pula, Pula, Croatia
| | - Jennifer Lagast
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Florina Veider
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Klabukov I, Kabakov AE, Yakimova A, Baranovskii D, Sosin D, Atiakshin D, Ignatyuk M, Yatsenko E, Rybachuk V, Evstratova E, Eygel D, Kudlay D, Stepanenko V, Shegay P, Kaprin AD. Tumor-Associated Extracellular Matrix Obstacles for CAR-T Cell Therapy: Approaches to Overcoming. Curr Oncol 2025; 32:79. [PMID: 39996879 PMCID: PMC11854105 DOI: 10.3390/curroncol32020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy yields good results in the treatment of various hematologic malignancies. However, the efficacy of CAR-T cell therapy against solid tumors has proven to be limited, primarily because the tumor-associated extracellular matrix (ECM) creates an intractable barrier for the cytotoxic CAR-T cells that are supposed to kill cancer cells. This review unravels the multifaceted role of the tumor-associated ECM in impeding CAR-T cell infiltration, survival, and functions within solid tumors. We analyze the situations when intratumoral ECM limits the efficacy of CAR-T cell therapy by being a purely physical barrier that complicates lymphocyte penetration/migration and also acts as an immunosuppressive factor that impairs the antitumor activities of CAR-T cells. In addition, we highlight promising approaches such as engineering CAR-T cells with improved capabilities to penetrate and migrate into/through the intratumoral ECM, combination therapies aimed at attenuating the high density and immunosuppressive potential of the intratumoral ECM, and others that enable overcoming ECM-related obstacles. A detailed overview of the data of relevant studies not only helps to better understand the interactions between CAR-T cells and the intratumoral ECM but also outlines potential ways to more effectively use CAR-T cell therapy against solid tumors.
Collapse
Affiliation(s)
- Ilya Klabukov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
- GMP-Laboratory for Advanced Therapy Medicinal Products, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering of the National Research Nuclear University MEPhI, Studgorodok 1, 249039 Obninsk, Russia
| | - Alexander E. Kabakov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
| | - Anna Yakimova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
| | - Denis Baranovskii
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
- GMP-Laboratory for Advanced Therapy Medicinal Products, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
- University Hospital Basel, Basel University, 4001 Basel, Switzerland
| | - Dmitry Sosin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Dmitry Atiakshin
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Michael Ignatyuk
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Elena Yatsenko
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
| | - Victoria Rybachuk
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
| | - Ekaterina Evstratova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
| | - Daria Eygel
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
| | - Dmitry Kudlay
- Immunology Department, Institute of Immunology FMBA of Russia, 115552 Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasiliy Stepanenko
- Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Peter Shegay
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
6
|
Simpson MA. Impacts of Hyaluronan on Extracellular Vesicle Production and Signaling. Cells 2025; 14:139. [PMID: 39851567 PMCID: PMC11763598 DOI: 10.3390/cells14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Hyaluronan (HA) is a critical component of cell and tissue matrices and an important signaling molecule. The enzymes that synthesize and process HA, as well as the HA receptors through which the signaling properties of HA are transmitted, have been identified in extracellular vesicles and implicated in context-specific processes associated with health and disease. The goal of this review is to present a comprehensive summary of the research on HA and its related receptors and enzymes in extracellular vesicle biogenesis and the cellular responses to vesicles bearing these extracellular matrix modulators. When present in extracellular vesicles, HA is assumed to be on the outside of the vesicle and is sometimes found associated with CD44 or the HAS enzyme itself. Hyaluronidases may be inside the vesicles or present on the vesicle surface via a transmembrane domain or GPI linkage. The implication of presenting these signals in extracellular vesicles is that there is a greater range of systemic distribution and more complex delivery media than previously thought for secreted HA or hyaluronidase alone. Understanding the context for these HA signals offers new diagnostic and therapeutic insight.
Collapse
Affiliation(s)
- Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| |
Collapse
|
7
|
Zhang Z, Wang R, Chen L. Drug Delivery System Targeting Cancer-Associated Fibroblast for Improving Immunotherapy. Int J Nanomedicine 2025; 20:483-503. [PMID: 39816375 PMCID: PMC11734509 DOI: 10.2147/ijn.s500591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of non-malignant cells that play a crucial role in the tumor microenvironment, increasingly recognized as key contributors to cancer progression, metastasis, and treatment resistance. So, targeting CAFs has always been considered an important part of cancer immunotherapy. However, targeting CAFs to improve the efficacy of tumor therapy is currently a major challenge. Nanomaterials show their unique advantages in the whole process. At present, nanomaterials have achieved significant accomplishments in medical applications, particularly in the field of cancer-targeted therapy, showing enormous potential. It has been confirmed that nanomaterials can not only directly target CAFs, but also interact with the tumor microenvironment (TME) and immune cells to affect tumorigenesis. As for the cancer treatment, nanomaterials could enhance the therapeutic effect in many ways. Therefore, in this review, we first summarized the current understanding of the complex interactions between CAFs and TME, immune cells, and tumor cells. Next, we discussed common nanomaterials in modern medicine and their respective impacts on the TME, CAFs, and interactions with tumors. Finally, we focus on the application of nano drug delivery system targeting CAFs in cancer therapy.
Collapse
Affiliation(s)
- Zhongsong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Rong Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Long Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| |
Collapse
|
8
|
Wienen F, Nilson R, Allmendinger E, Peters S, Barth TF, Kochanek S, Krutzke L. An oncolytic HAdV-5 with reduced surface charge combines diminished toxicity and improved tumor targeting. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200909. [PMID: 39758252 PMCID: PMC11699628 DOI: 10.1016/j.omton.2024.200909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/12/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025]
Abstract
Human adenovirus type 5 (HAdV-5)-based oncolytic viruses hold significant promise for anti-cancer therapy. However, poor tumor-targeting and off-target organ transduction after systemic administration limit their therapeutic efficacy. In addition, the strong liver tropism of HAdV-5-based vectors poses the risk of hepatotoxicity. By genetic modification of the major capsid protein hexon we generated a HAdV-5-based oncolytic vector (HAdV-5-HexPos3) with reduced negative surface charge. Coxsackie and adenovirus receptor (CAR) binding-ablated (ΔCAR) HAdV-5-HexPos3_ΔCAR exhibited superior and CAR-independent transduction of various cancer cell lines in vitro, further enhanced in the presence of HAdV-5 naive murine plasma. Upon intravenous administration into tumor-bearing immunodeficient NSG mice, replication-deficient HAdV-5-HexPos3_ΔCAR vector particles showed significantly reduced off-target organ tropism in all tissues analyzed, including the liver. Moreover, we detected a significantly increased intratumoral vector load for HAdV-5-HexPos3_ΔCAR, leading to a 29-fold elevated tumor-to-liver ratio compared with a control vector with unmodified hexon. Intravenous injection of a conditionally replicating hexon-unmodified control vector induced severe hepatotoxicity in tumor-bearing NSG mice, while a conditionally replicating HAdV-5-HexPos3_ΔCAR vector was well tolerated and resulted in intratumoral vector presence for up to 56 days. HAdV-5-HexPos3_ΔCAR represents a promising vector platform for the generation of HAdV-5-based oncolytic viruses with reduced systemic toxicity and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Frederik Wienen
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | - Robin Nilson
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | | | - Sarah Peters
- Department of Clinical Chemistry, Ulm University Medical Center, 89081 Ulm, Germany
| | - Thomas F.E. Barth
- Institute of Pathology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | - Lea Krutzke
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
9
|
Avsharian LC, Loganathan S, Ebelt ND, Shalamzari AF, Rodarte Muñoz I, Manuel ER. Tumor-Colonizing E. coli Expressing Both Collagenase and Hyaluronidase Enhances Therapeutic Efficacy of Gemcitabine in Pancreatic Cancer Models. Biomolecules 2024; 14:1458. [PMID: 39595636 PMCID: PMC11591662 DOI: 10.3390/biom14111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Desmoplasia is a hallmark feature of pancreatic ductal adenocarcinoma (PDAC) that contributes significantly to treatment resistance. Approaches to enhance drug delivery into fibrotic PDAC tumors continue to be an important unmet need. In this study, we have engineered a tumor-colonizing E. coli-based agent that expresses both collagenase and hyaluronidase as a strategy to reduce desmoplasia and enhance the intratumoral perfusion of anticancer agents. Overall, we observed that the tandem expression of both these enzymes by tumor-colonizing E. coli resulted in the reduced presence of intratumoral collagen and hyaluronan, which likely contributed to the enhanced chemotherapeutic efficacy observed when used in combination. These results highlight the importance of combination treatments involving the depletion of desmoplastic components in PDAC before or during treatment.
Collapse
Affiliation(s)
- Lara C. Avsharian
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (L.C.A.); (S.L.); (N.D.E.)
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA;
| | - Suvithanandhini Loganathan
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (L.C.A.); (S.L.); (N.D.E.)
| | - Nancy D. Ebelt
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (L.C.A.); (S.L.); (N.D.E.)
| | - Azadeh F. Shalamzari
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA;
| | - Itzel Rodarte Muñoz
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (L.C.A.); (S.L.); (N.D.E.)
| | - Edwin R. Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (L.C.A.); (S.L.); (N.D.E.)
| |
Collapse
|
10
|
Yang C, Wusigale, You L, Li X, Kwok LY, Chen Y. Inflammation, Gut Microbiota, and Metabolomic Shifts in Colorectal Cancer: Insights from Human and Mouse Models. Int J Mol Sci 2024; 25:11189. [PMID: 39456970 PMCID: PMC11508446 DOI: 10.3390/ijms252011189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Colorectal cancer (CRC) arises from aberrant mutations in colorectal cells, frequently linked to chronic inflammation. This study integrated human gut metagenome analysis with an azoxymethane and dextran sulfate sodium-induced CRC mouse model to investigate the dynamics of inflammation, gut microbiota, and metabolomic profiles throughout tumorigenesis. The analysis of stool metagenome data from 30 healthy individuals and 40 CRC patients disclosed a significant escalation in both gut microbiota diversity and abundance in CRC patients compared to healthy individuals (p < 0.05). Marked structural disparities were identified between the gut microbiota of healthy individuals and those with CRC (p < 0.05), characterized by elevated levels of clostridia and diminished bifidobacteria in CRC patients (p < 0.05). In the mouse model, CRC mice exhibited distinct gut microbiota structures and metabolite signatures at early and advanced tumor stages, with subtle variations noted during the intermediate phase. Additionally, inflammatory marker levels increased progressively during tumor development in CRC mice, in contrast to their stable levels in healthy counterparts. These findings suggest that persistent inflammation might precipitate gut dysbiosis and altered microbial metabolism. Collectively, this study provides insights into the interplay between inflammation, gut microbiota, and metabolite changes during CRC progression, offering potential biomarkers for diagnosis. While further validation with larger cohorts is warranted, the data obtained support the development of CRC prevention and diagnosis strategies.
Collapse
Affiliation(s)
- Chengcong Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wusigale
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lijun You
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiang Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
11
|
Neves ER, Anand A, Mueller J, Remy RA, Xu H, Selting KA, Sarkaria JN, Harley BAC, Pedron-Haba S. Targeting glioblastoma tumor hyaluronan to enhance therapeutic interventions that regulate metabolic cell properties. ADVANCED THERAPEUTICS 2024; 7:2400041. [PMID: 40248278 PMCID: PMC12002556 DOI: 10.1002/adtp.202400041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 04/19/2025]
Abstract
Despite extensive advances in cancer research, glioblastoma (GBM) still remains a very locally invasive and thus challenging tumor to treat, with a poor median survival. Tumor cells remodel their microenvironment and utilize extracellular matrix to promote invasion and therapeutic resistance. We aim here to determine how GBM cells exploit hyaluronan (HA) to maintain proliferation using ligand-receptor dependent and ligand-receptor independent signaling. We use tissue engineering approaches to recreate the three-dimensional tumor microenvironment in vitro, then analyze shifts in metabolism, hyaluronan secretion, HA molecular weight distribution, as well as hyaluronan synthetic enzymes (HAS) and hyaluronidases (HYAL) activity in an array of patient derived xenograft GBM cells. We reveal that endogenous HA plays a role in mitochondrial respiration and cell proliferation in a tumor subtype dependent manner. We propose a tumor specific combination treatment of HYAL and HAS inhibitors to disrupt the HA stabilizing role in GBM cells. Taken together, these data shed light on the dual metabolic and ligand - dependent signaling roles of hyaluronan in glioblastoma.
Collapse
Affiliation(s)
- Edward R Neves
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, 1206 W Gregory Dr., Urbana IL 61801, USA
| | - Achal Anand
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, 1206 W Gregory Dr., Urbana IL 61801, USA
| | - Joseph Mueller
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, 1206 W Gregory Dr., Urbana IL 61801, USA
| | - Roddel A Remy
- Materials Research Laboratory, University of Illinois Urbana-Champaign, 104 S Goodwin Ave MC-230, Urbana, IL 61801, USA
| | - Hui Xu
- Tumor Engineering and Phenotyping, Cancer Center at Illinois, University of Illinois Urbana Champaign, Beckman Institute, 405 N. Mathews, Urbana, IL 61801, USA
| | - Kim A Selting
- Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, 2001 S Lincoln Ave. Urbana, IL 61802, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Brendan AC Harley
- Dept. of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801
| | - Sara Pedron-Haba
- Dept. of Chemical and Biomolecular Engineering, Carle Illinois College of Medicine, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, 1206 W Gregory Dr. Urbana, IL 61801, USA
| |
Collapse
|
12
|
Gimła M, Herman-Antosiewicz A. Multifaceted Properties of Usnic Acid in Disrupting Cancer Hallmarks. Biomedicines 2024; 12:2199. [PMID: 39457512 PMCID: PMC11505503 DOI: 10.3390/biomedicines12102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer, a complex group of diseases marked by uncontrolled cell growth and invasive behavior, is characterized by distinct hallmarks acquired during tumor development. These hallmarks, first proposed by Douglas Hanahan and Robert Weinberg in 2000, provide a framework for understanding cancer's complexity. Targeting them is a key strategy in cancer therapy. It includes inhibiting abnormal signaling, reactivating growth suppressors, preventing invasion and metastasis, inhibiting angiogenesis, limiting replicative immortality, modulating the immune system, inducing apoptosis, addressing genome instability and regulating cellular energetics. Usnic acid (UA) is a natural compound found in lichens that has been explored as a cytotoxic agent against cancer cells of different origins. Although the exact mechanisms remain incompletely understood, UA presents a promising compound for therapeutic intervention. Understanding its impact on cancer hallmarks provides valuable insights into the potential of UA in developing targeted and multifaceted cancer therapies. This article explores UA activity in the context of disrupting hallmarks in cancer cells of different origins based on recent articles that emphasize the molecular mechanisms of this activity.
Collapse
Affiliation(s)
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland;
| |
Collapse
|
13
|
Quartey BC, Torres G, ElGindi M, Alatoom A, Sapudom J, Teo JCM. Tug of war: Understanding the dynamic interplay of tumor biomechanical environment on dendritic cell function. MECHANOBIOLOGY IN MEDICINE 2024; 2:100068. [PMID: 40395498 PMCID: PMC12082323 DOI: 10.1016/j.mbm.2024.100068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/10/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2025]
Abstract
Dendritic cells (DCs) play a pivotal role in bridging the innate and adaptive immune systems. From their immature state, scavenging tissue for foreign antigens to uptake, then maturation, to their trafficking to lymph nodes for antigen presentation, these cells are exposed to various forms of mechanical forces. Particularly, in the tumor microenvironment, it is widely known that microenvironmental biomechanical cues are heightened. The source of these forces arises from cell-to-extracellular matrix (ECM) and cell-to-cell interactions, as well as being exposed to increased microenvironmental pressures and fluid shear forces typical of tumors. DCs then integrate these forces, influencing their immune functions through mechanotransduction. This aspect of DC biology holds alternative, but important clues to understanding suppressed/altered DC responses in tumors, or allow the artificial enhancement of DCs for therapeutic purposes. This review discusses the current understanding of DC mechanobiology from the perspectives of DCs as sensors of mechanical forces and providers of mechanical forces.
Collapse
Affiliation(s)
- Brian Chesney Quartey
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, NY, USA
| | - Gabriella Torres
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Mechanical Engineering, Tandon School of Engineering, New York University, NY, USA
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jeremy CM Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, NY, USA
- Department of Mechanical Engineering, Tandon School of Engineering, New York University, NY, USA
| |
Collapse
|
14
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
15
|
Cao Y, Yi W, Zhu Q. Glycosylation in the tumor immune response: the bitter side of sweetness. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1184-1198. [PMID: 38946426 PMCID: PMC11399423 DOI: 10.3724/abbs.2024107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Glycosylation is the most structurally diverse form of post-translational modification (PTM) of proteins that affects a myriad of cellular processes. As a pivotal regulator of protein homeostasis, glycosylation notably impacts the function of proteins, spanning from protein localization and stability to protein-protein interactions. Aberrant glycosylation is a hallmark of cancer, and extensive studies have revealed the multifaceted roles of glycosylation in tumor growth, migration, invasion and immune escape Over the past decade, glycosylation has emerged as an immune regulator in the tumor microenvironment (TME). Here, we summarize the intricate interplay between glycosylation and the immune system documented in recent literature, which orchestrates the regulation of the tumor immune response through endogenous lectins, immune checkpoints and the extracellular matrix (ECM) in the TME. In addition, we discuss the latest progress in glycan-based cancer immunotherapy. This review provides a basic understanding of glycosylation in the tumor immune response and a theoretical framework for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuting Cao
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Wen Yi
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Qiang Zhu
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
16
|
Standing D, Dandawate P, Gunewardena S, Covarrubias-Zambrano O, Roby KF, Khabele D, Jewell A, Tawfik O, Bossmann SH, Godwin AK, Weir SJ, Jensen RA, Anant S. Selective targeting of IRAK1 attenuates low molecular weight hyaluronic acid-induced stemness and non-canonical STAT3 activation in epithelial ovarian cancer. Cell Death Dis 2024; 15:362. [PMID: 38796478 PMCID: PMC11127949 DOI: 10.1038/s41419-024-06717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
Advanced epithelial ovarian cancer (EOC) survival rates are dishearteningly low, with ~25% surviving beyond 5 years. Evidence suggests that cancer stem cells contribute to acquired chemoresistance and tumor recurrence. Here, we show that IRAK1 is upregulated in EOC tissues, and enhanced expression correlates with poorer overall survival. Moreover, low molecular weight hyaluronic acid, which is abundant in malignant ascites from patients with advanced EOC, induced IRAK1 phosphorylation leading to STAT3 activation and enhanced spheroid formation. Knockdown of IRAK1 impaired tumor growth in peritoneal disease models, and impaired HA-induced spheroid growth and STAT3 phosphorylation. Finally, we determined that TCS2210, a known inducer of neuronal differentiation in mesenchymal stem cells, is a selective inhibitor of IRAK1. TCS2210 significantly inhibited EOC growth in vitro and in vivo both as monotherapy, and in combination with cisplatin. Collectively, these data demonstrate IRAK1 as a druggable target for EOC.
Collapse
Affiliation(s)
- David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Katherine F Roby
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrea Jewell
- Department of Gynecologic Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Stefan H Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pharmacology and Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Roy A Jensen
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
17
|
Jokelainen O, Rintala TJ, Fortino V, Pasonen-Seppänen S, Sironen R, Nykopp TK. Differential expression analysis identifies a prognostically significant extracellular matrix-enriched gene signature in hyaluronan-positive clear cell renal cell carcinoma. Sci Rep 2024; 14:10626. [PMID: 38724670 PMCID: PMC11082176 DOI: 10.1038/s41598-024-61426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.
Collapse
Affiliation(s)
- Otto Jokelainen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland.
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
| | - Teemu J Rintala
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Reijo Sironen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Timo K Nykopp
- Department of Surgery, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Surgery, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
18
|
Ghoshal D, Petersen I, Ringquist R, Kramer L, Bhatia E, Hu T, Richard A, Park R, Corbin J, Agarwal S, Thomas A, Ramirez S, Tharayil J, Downey E, Ketchum F, Ochal A, Sonthi N, Lonial S, Kochenderfer JN, Tran R, Zhu M, Lam WA, Coskun AF, Roy K. Multi-Niche Human Bone Marrow On-A-Chip for Studying the Interactions of Adoptive CAR-T Cell Therapies with Multiple Myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588601. [PMID: 38644993 PMCID: PMC11030357 DOI: 10.1101/2024.04.08.588601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Multiple myeloma (MM), a cancer of bone marrow plasma cells, is the second-most common hematological malignancy. However, despite immunotherapies like chimeric antigen receptor (CAR)-T cells, relapse is nearly universal. The bone marrow (BM) microenvironment influences how MM cells survive, proliferate, and resist treatment. Yet, it is unclear which BM niches give rise to MM pathophysiology. Here, we present a 3D microvascularized culture system, which models the endosteal and perivascular bone marrow niches, allowing us to study MM-stroma interactions in the BM niche and model responses to therapeutic CAR-T cells. We demonstrated the prolonged survival of cell line-based and patient-derived multiple myeloma cells within our in vitro system and successfully flowed in donor-matched CAR-T cells. We then measured T cell survival, differentiation, and cytotoxicity against MM cells using a variety of analysis techniques. Our MM-on-a-chip system could elucidate the role of the BM microenvironment in MM survival and therapeutic evasion and inform the rational design of next-generation therapeutics. TEASER A multiple myeloma model can study why the disease is still challenging to treat despite options that work well in other cancers.
Collapse
|
19
|
Yordanov TE, Keyser MS, Enriquez Martinez MA, Esposito T, Tefft JB, Morris EK, Labzin LI, Stehbens SJ, Rowan AE, Hogan BM, Chen CS, Lauko J, Lagendijk AK. Hyaluronic acid turnover controls the severity of cerebral cavernous malformations in bioengineered human micro-vessels. APL Bioeng 2024; 8:016108. [PMID: 38352162 PMCID: PMC10864035 DOI: 10.1063/5.0159330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions that predominantly form in blood vessels of the central nervous system upon loss of the CCM multimeric protein complex. The endothelial cells within CCM lesions are characterized by overactive MEKK3 kinase and KLF2/4 transcription factor signaling, leading to pathological changes such as increased endothelial cell spreading and reduced junctional integrity. Concomitant to aberrant endothelial cell signaling, non-autonomous signals from the extracellular matrix (ECM) have also been implicated in CCM lesion growth and these factors might explain why CCM lesions mainly develop in the central nervous system. Here, we adapted a three-dimensional microfluidic system to examine CCM1 deficient human micro-vessels in distinctive extracellular matrices. We validate that pathological hallmarks are maintained in this model. We further show that key genes responsible for homeostasis of hyaluronic acid, a major extracellular matrix component of the central nervous system, are dysregulated in CCM. Supplementing the matrix in our model with distinct forms of hyaluronic acid inhibits pathological cell spreading and rescues barrier function. Hyaluronic acid acts by dampening cell-matrix adhesion signaling in CCM, either downstream or in parallel of KLF2/4. This study provides a proof-of-principle that ECM embedded 3D microfluidic models are ideally suited to identify how changes in ECM structure and signaling impact vascular malformations.
Collapse
Affiliation(s)
- Teodor E. Yordanov
- Centre for Cell Biology and Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Mikaela S. Keyser
- Centre for Cell Biology and Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Marco A. Enriquez Martinez
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Juliann B. Tefft
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA
| | - Elysse K. Morris
- Centre for Cell Biology and Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Alan E. Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
20
|
Pesold VV, Wendler O, Gröhn F, Mueller SK. Lymphatic Vessels in Chronic Rhinosinusitis. J Inflamm Res 2024; 17:865-880. [PMID: 38348276 PMCID: PMC10860572 DOI: 10.2147/jir.s436450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose The purpose of this study was to analyze the nasal lymphatic system in order to uncover novel factors that might be involved in pathogenesis of chronic rhinosinusitis (CRS) with (CRSwNP) and without nasal polyps (CRSsNP). Patients and Methods Lymphatic vessels (LVs) and macrophages were localized and counted in the inferior and middle turbinate, the uncinate process and the ethmoid of CRSwNP and CRSsNP patients, the NP and the inferior turbinate of controls (n≥6 per group). Lysates of the same tissue types (n=7 per group) were analyzed for lymphatic vessel endothelial receptor 1 (LYVE-1), for matrix metalloproteinase 14 (MMP-14) and for Hyaluronic acid (HA) using ELISA. HA was localized in sections of CRSwNP NP, CRSsNP ethmoid and control inferior turbinate (n=6 per group). The results of HA levels were correlated to the number of macrophages in tissues. The nasal secretions of CRSwNP (n=28), CRSsNP (n=30), and control (n=30) patients were analyzed for LYVE-1 and HA using ELISA. Results The number of LVs was significantly lower in tissues of both CRS groups compared to the control. In the tissue lysates, LYVE-1 expression differed significantly between the CRSwNP tissues with a particularly high level in the NP. MMP-14 was significantly overexpressed in CRSwNP uncinate process. There were no significant differences in tissue HA expression. In the mucus LYVE-1 was significantly underexpressed in CRSsNP compared to CRSwNP and control, while HA was significantly underexpressed in both CRS groups. In the NP, HA and macrophages were accumulated particularly below the epithelium. Tissue levels of HA revealed a significant positive correlation with the number of macrophages. Conclusion CRS might be associated with an insufficient clearing of the nasal mucosa through the lymphatics. The accumulation of HA and macrophages might promote inflammation, fluid retention, and polyp formation. These results may provide novel CRS-associated factors.
Collapse
Affiliation(s)
- Vanessa-Vivien Pesold
- Department of Otolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| | - Olaf Wendler
- Department of Otolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| | - Sarina K Mueller
- Department of Otolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, BY, Germany
| |
Collapse
|
21
|
Neves ER, Anand A, Mueller J, Remy RA, Xu H, Selting KA, Sarkaria JN, Harley BA, Pedron-Haba S. Targeting glioblastoma tumor hyaluronan to enhance therapeutic interventions that regulate metabolic cell properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574065. [PMID: 38260497 PMCID: PMC10802468 DOI: 10.1101/2024.01.05.574065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Despite extensive advances in cancer research, glioblastoma (GBM) still remains a very locally invasive and thus challenging tumor to treat, with a poor median survival. Tumor cells remodel their microenvironment and utilize extracellular matrix to promote invasion and therapeutic resistance. We aim here to determine how GBM cells exploit hyaluronan (HA) to maintain proliferation using ligand-receptor dependent and ligand-receptor independent signaling. We use tissue engineering approaches to recreate the three-dimensional tumor microenvironment in vitro, then analyze shifts in metabolism, hyaluronan secretion, HA molecular weight distribution, as well as hyaluronan synthetic enzymes (HAS) and hyaluronidases (HYAL) activity in an array of patient derived xenograft GBM cells. We reveal that endogenous HA plays a role in mitochondrial respiration and cell proliferation in a tumor subtype dependent manner. We propose a tumor specific combination treatment of HYAL and HAS inhibitors to disrupt the HA stabilizing role in GBM cells. Taken together, these data shed light on the dual metabolic and ligand - dependent signaling roles of hyaluronan in glioblastoma. Significance The control of aberrant hyaluronan metabolism in the tumor microenvironment can improve the efficacy of current treatments. Bioengineered preclinical models demonstrate potential to predict, stratify and accelerate the development of cancer treatments.
Collapse
|
22
|
Feng X, Liu X, Xiang J, Xu J, Yin N, Wang L, Liu C, Liu Y, Zhao T, Zhao Z, Gao Y. Exosomal ITGB6 from dormant lung adenocarcinoma cells activates cancer-associated fibroblasts by KLF10 positive feedback loop and the TGF-β pathway. Transl Lung Cancer Res 2023; 12:2520-2537. [PMID: 38205211 PMCID: PMC10775012 DOI: 10.21037/tlcr-23-707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Background Dormant cancer cells are commonly known to play a pivotal role in cancer recurrence and metastasis. However, the mechanism of tumor dormancy and recurrence remains largely unknown. This study aimed to investigate the mechanism by which exosomes derived from dormant lung adenocarcinoma (LUAD) cells activate cancer-associated fibroblasts (CAFs) to reconstruct the extracellular matrix (ECM), providing a novel idea for decoding the mechanism of tumor dormancy. Methods In this study, high-dose cisplatin was used to induce the dormant LUAD cells. Exosomes were extracted from the culture supernatant of normal and dormant cancer cells. The effects of selected exosomal proteins on the fibroblasts were evaluated. RNA-seq for fibroblasts and exosomal proteomics for normal and dormant cancer cells were used to identify and verify the mechanism of activating fibroblasts. Results We demonstrated that exosomes derived from dormant A549 cells could be taken by fibroblasts. Exosomal ITGB6 transferred into fibroblasts induced the activation of CAFs by activating the KLF10 positive feedback loop and transforming growth factor β (TGF-β) pathway. High ITGB6 expression was associated with activation of the TGF-β pathway and ECM remodeling. Conclusions In all, we demonstrated that CAFs were activated by exosomes from dormant lung cancer cells and reconstruct ECM. ITGB6 may be a critical molecule for activating the TGF-β pathway and remodeling ECM.
Collapse
Affiliation(s)
- Xiang Feng
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juanjuan Xiang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Jiaqi Xu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Na Yin
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Lujuan Wang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaoyuan Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuyao Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tiantian Zhao
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zengyi Zhao
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
23
|
Donelan W, Brisbane W, O'Malley P, Crispen P, Kusmartsev S. Hyaluronan Metabolism in Urologic Cancers. Adv Biol (Weinh) 2023; 7:e2300168. [PMID: 37615259 DOI: 10.1002/adbi.202300168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/06/2023] [Indexed: 08/25/2023]
Abstract
Hyaluronan (HA) is one of the major components of the extracellular matrix in tumor tissue. Recent reports have made it clear that the balance of HA synthesis and degradation is critical for tumor progression. HA is synthesized on the cytoplasmic surface of the plasma membrane by hyaluronan synthases (HAS) and extruded into the extracellular space. Excessive HA production in cancer is associated with enhanced HA degradation in the tumor microenvironment, leading to the accumulation of HA fragments with small molecular weight. These perturbations in both HA synthesis and degradation may play important roles in tumor progression. Recently, it has become increasingly clear that small HA fragments can induce a variety of biological events, such as angiogenesis, cancer-promoting inflammation, and tumor-associated immune suppression. Progression of urologic malignancies, particularly of prostate and bladder cancers, as well as of certain types of kidney cancer show markedly perturbed metabolism of tumor-associated HA. This review highlights the recent research findings regarding HA metabolism in tumor microenvironments with a special focus on urologic cancers. It also will discuss the potential implications of these findings for the development of novel therapeutic interventions for the treatment of prostate, bladder, and kidney cancers.
Collapse
Affiliation(s)
| | - Wayne Brisbane
- UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Paul Crispen
- University of Florida, Gainesville, FL, 32611, USA
| | | |
Collapse
|
24
|
Stecco A, Bonaldi L, Fontanella CG, Stecco C, Pirri C. The Effect of Mechanical Stress on Hyaluronan Fragments' Inflammatory Cascade: Clinical Implications. Life (Basel) 2023; 13:2277. [PMID: 38137878 PMCID: PMC10744800 DOI: 10.3390/life13122277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
It is a common experience, reported by patients who have undergone manual therapy that uses deep friction, to perceive soreness in treatment areas; however, it is still not clear what causes it and if it is therapeutically useful or a simple side effect. The purpose of this narrative review is to determine whether manual and physical therapies can catalyze an inflammatory process driven by HA fragments. The literature supports the hypothesis that mechanical stress can depolymerize into small pieces at low molecular weight and have a high inflammatory capacity. Many of these pieces are then further degraded into small oligosaccharides. Recently, it has been demonstrated that oligosaccharides are able to stop this inflammatory process. These data support the hypothesis that manual therapy that uses deep friction could metabolize self-aggregated HA chains responsible for increasing loose connective tissue viscosity, catalyzing a local HA fragment cascade that will generate soreness but, at the same time, facilitate the reconstitution of the physiological loose connective tissue properties. This information can help to explain the meaning of the inflammatory process as well as the requirement for it for the long-lasting resolution of these alterations.
Collapse
Affiliation(s)
- Antonio Stecco
- Department of Physical Medicine and Rehabilitation, New York University School of Medicine, New York, NY 10016, USA;
| | - Lorenza Bonaldi
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy;
| | | | - Carla Stecco
- Department of Neurosciences, Institute of Human Anatomy, University of Padua, 35121 Padova, Italy;
| | - Carmelo Pirri
- Department of Neurosciences, Institute of Human Anatomy, University of Padua, 35121 Padova, Italy;
| |
Collapse
|
25
|
Cirillo N. The Hyaluronan/CD44 Axis: A Double-Edged Sword in Cancer. Int J Mol Sci 2023; 24:15812. [PMID: 37958796 PMCID: PMC10649834 DOI: 10.3390/ijms242115812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Hyaluronic acid (HA) receptor CD44 is widely used for identifying cancer stem cells and its activation promotes stemness. Recent evidence shows that overexpression of CD44 is associated with poor prognosis in most human cancers and mediates therapy resistance. For these reasons, in recent years, CD44 has become a treatment target in precision oncology, often via HA-conjugated antineoplastic drugs. Importantly, HA molecules of different sizes have a dual effect and, therefore, may enhance or attenuate the CD44-mediated signaling pathways, as they compete with endogenous HA for binding to the receptors. The magnitude of these effects could be crucial for cancer progression, as well as for driving the inflammatory response in the tumor microenvironment. The increasingly common use of HA-conjugated drugs in oncology, as well as HA-based compounds as adjuvants in cancer treatment, adds further complexity to the understanding of the net effect of hyaluronan-CD44 activation in cancers. In this review, I focus on the significance of CD44 in malignancy and discuss the dichotomous function of the hyaluronan/CD44 axis in cancer progression.
Collapse
Affiliation(s)
- Nicola Cirillo
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| |
Collapse
|
26
|
Parnigoni A, Moretto P, Viola M, Karousou E, Passi A, Vigetti D. Effects of Hyaluronan on Breast Cancer Aggressiveness. Cancers (Basel) 2023; 15:3813. [PMID: 37568628 PMCID: PMC10417239 DOI: 10.3390/cancers15153813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) in breast cancer cells is critical for determining tumor aggressiveness and targeting therapies. The presence of such receptors allows for the use of antagonists that effectively reduce breast cancer growth and dissemination. However, the absence of such receptors in triple-negative breast cancer (TNBC) reduces the possibility of targeted therapy, making these tumors very aggressive with a poor outcome. Cancers are not solely composed of tumor cells, but also include several types of infiltrating cells, such as fibroblasts, macrophages, and other immune cells that have critical functions in regulating cancer cell behaviors. In addition to these cells, the extracellular matrix (ECM) has become an important player in many aspects of breast cancer biology, including cell growth, motility, metabolism, and chemoresistance. Hyaluronan (HA) is a key ECM component that promotes cell proliferation and migration in several malignancies. Notably, HA accumulation in the tumor stroma is a negative prognostic factor in breast cancer. HA metabolism depends on the fine balance between HA synthesis by HA synthases and degradation yielded by hyaluronidases. All the different cell types present in the tumor can release HA in the ECM, and in this review, we will describe the role of HA and HA metabolism in different breast cancer subtypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.P.); (P.M.); (M.V.); (E.K.); (A.P.)
| |
Collapse
|
27
|
Wang X, Song Y, Yu L, Xue X, Pang M, Li Y, Luo X, Hua Z, Lu C, Lu A, Liu Y. Co-Delivery of Hesperetin and Cisplatin via Hyaluronic Acid-Modified Liposome for Targeted Inhibition of Aggression and Metastasis of Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34360-34377. [PMID: 37432741 DOI: 10.1021/acsami.3c03233] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Having no specific therapy for triple-negative breast cancer (TNBC), this subtype has the lowest survival rate and highest metastatic risk of breast cancer since the tumor inflammatory microenvironment mainly accounts for heterogeneity-induced insensitivity to chemotherapy and epithelial-mesenchymal transition (EMT). This study reports hyaluronic acid (HA)-modified liposomes loaded with cisplatin (CDDP) and hesperetin (Hes) (CDDP-HA-Lip/Hes) for active targeting to relieve systematic toxicity and effective anti-tumor/anti-metastasis ability of TNBC. Our results revealed that HA modification promoted the cellular uptake of the synthesized CDDP-HA-Lip/Hes nanoparticles in MDA-MB-231 cells and accumulation in tumor sites in vivo, indicating deeper tumor penetration. Importantly, CDDP-HA-Lip/Hes inhibited the PI3K/Akt/mTOR pathway to alleviate the inflammation in the tumor and with a crosstalk to suppress the process of the EMT, increasing the chemosensitivity and inhibiting tumor metastasis. Meanwhile, CDDP-HA-Lip/Hes could significantly inhibit the aggression and metastasis of TNBC with less side effects on normal tissues. Overall, this study provides a tumor-targeting drug delivery system with great potential for treating TNBC and its lung metastasis robustly.
Collapse
Affiliation(s)
- Xiangpeng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoxia Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
28
|
Geng T, Zheng M, Wang Y, Reseland JE, Samara A. An artificial intelligence prediction model based on extracellular matrix proteins for the prognostic prediction and immunotherapeutic evaluation of ovarian serous adenocarcinoma. Front Mol Biosci 2023; 10:1200354. [PMID: 37388244 PMCID: PMC10301747 DOI: 10.3389/fmolb.2023.1200354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Background: Ovarian Serous Adenocarcinoma is a malignant tumor originating from epithelial cells and one of the most common causes of death from gynecological cancers. The objective of this study was to develop a prediction model based on extracellular matrix proteins, using artificial intelligence techniques. The model aimed to aid healthcare professionals to predict the overall survival of patients with ovarian cancer (OC) and determine the efficacy of immunotherapy. Methods: The Cancer Genome Atlas Ovarian Cancer (TCGA-OV) data collection was used as the study dataset, whereas the TCGA-Pancancer dataset was used for validation. The prognostic importance of 1068 known extracellular matrix proteins for OC were determined by the Random Forest algorithm and the Lasso algorithm establishing the ECM risk score. Based on the gene expression data, the differences in mRNA abundance, tumour mutation burden (TMB) and tumour microenvironment (TME) between the high- and low-risk groups were assessed. Results: Combining multiple artificial intelligence algorithms we were able to identify 15 key extracellular matrix genes, namely, AMBN, CXCL11, PI3, CSPG5, TGFBI, TLL1, HMCN2, ESM1, IL12A, MMP17, CLEC5A, FREM2, ANGPTL4, PRSS1, FGF23, and confirm the validity of this ECM risk score for overall survival prediction. Several other parameters were identified as independent prognostic factors for OC by multivariate COX analysis. The analysis showed that thyroglobulin (TG) targeted immunotherapy was more effective in the high ECM risk score group, while the low ECM risk score group was more sensitive to the RYR2 gene-related immunotherapy. Additionally, the patients with low ECM risk scores had higher immune checkpoint gene expression and immunophenoscore levels and responded better to immunotherapy. Conclusion: The ECM risk score is an accurate tool to assess the patient's sensitivity to immunotherapy and forecast OC prognosis.
Collapse
Affiliation(s)
- Tianxiang Geng
- Department of Biomaterials, FUTURE, Center for Functional Tissue Reconstruction, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Mengxue Zheng
- Laboratory of Reproductive Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yongfeng Wang
- Department of Obstetrics and Gynecology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Janne Elin Reseland
- Department of Biomaterials, FUTURE, Center for Functional Tissue Reconstruction, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Athina Samara
- Department of Biomaterials, FUTURE, Center for Functional Tissue Reconstruction, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Balduit A, Vidergar R, Zacchi P, Mangogna A, Agostinis C, Grandolfo M, Bottin C, Salton F, Confalonieri P, Rocca A, Zanconati F, Confalonieri M, Kishore U, Ghebrehiwet B, Bulla R. Complement protein C1q stimulates hyaluronic acid degradation via gC1qR/HABP1/p32 in malignant pleural mesothelioma. Front Immunol 2023; 14:1151194. [PMID: 37334363 PMCID: PMC10275365 DOI: 10.3389/fimmu.2023.1151194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Complement component C1q can act as a pro-tumorigenic factor in the tumor microenvironment (TME). The TME in malignant pleural mesothelioma (MPM) is rich in C1q and hyaluronic acid (HA), whose interaction enhances adhesion, migration and proliferation of malignant cells. HA-bound C1q is also capable of modulating HA synthesis. Thus, we investigated whether HA-C1q interaction would affect HA degradation, analyzing the main degradation enzymes, hyaluronidase (HYAL)1 and HYAL2, and a C1q receptor candidate. We first proceeded with the characterization of HYALs in MPM cells, especially HYAL2, since bioinformatics survival analysis revealed that higher HYAL2 mRNA levels have an unfavorable prognostic index in MPM patients. Interestingly, Real-Time quantitative PCR, flow cytometry and Western blot highlighted an upregulation of HYAL2 after seeding of primary MPM cells onto HA-bound C1q. In an attempt to unveil the receptors potentially involved in HA-C1q signaling, a striking co-localization between HYAL2 and globular C1q receptor/HABP1/p32 (gC1qR) was found by immunofluorescence, surface biotinylation and proximity ligation assays. RNA interference experiments revealed a potentially regulatory function exerted by gC1qR on HYAL2 expression, since C1QBP (gene for gC1qR) silencing unexpectedly caused HYAL2 downregulation. In addition, the functional blockage of gC1qR by a specific antibody hindered HA-C1q signaling and prevented HYAL2 upregulation. Thus, C1q-HA interplay is responsible for enhanced HYAL2 expression, suggesting an increased rate of HA catabolism and the release of pro-inflammatory and pro-tumorigenic HA fragments in the MPM TME. Our data support the notion of an overall tumor-promoting property of C1q. Moreover, the overlapping localization and physical interaction between HYAL2 and gC1qR suggests a potential regulatory effect of gC1qR within a putative HA-C1q macromolecular complex.
Collapse
Affiliation(s)
- Andrea Balduit
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Romana Vidergar
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, Trieste, Italy
| | - Micaela Grandolfo
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Francesco Salton
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Paola Confalonieri
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Andrea Rocca
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
- Struttura Complessa di Anatomia ed Istologia Patologica, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Marco Confalonieri
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
30
|
Silant'ev VE, Shmelev ME, Belousov AS, Patlay AA, Shatilov RA, Farniev VM, Kumeiko VV. How to Develop Drug Delivery System Based on Carbohydrate Nanoparticles Targeted to Brain Tumors. Polymers (Basel) 2023; 15:polym15112516. [PMID: 37299315 DOI: 10.3390/polym15112516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Brain tumors are the most difficult to treat, not only because of the variety of their forms and the small number of effective chemotherapeutic agents capable of suppressing tumor cells, but also limited by poor drug transport across the blood-brain barrier (BBB). Nanoparticles are promising drug delivery solutions promoted by the expansion of nanotechnology, emerging in the creation and practical use of materials in the range from 1 to 500 nm. Carbohydrate-based nanoparticles is a unique platform for active molecular transport and targeted drug delivery, providing biocompatibility, biodegradability, and a reduction in toxic side effects. However, the design and fabrication of biopolymer colloidal nanomaterials have been and remain highly challenging to date. Our review is devoted to the description of carbohydrate nanoparticle synthesis and modification, with a brief overview of the biological and promising clinical outcomes. We also expect this manuscript to highlight the great potential of carbohydrate nanocarriers for drug delivery and targeted treatment of gliomas of various grades and glioblastomas, as the most aggressive of brain tumors.
Collapse
Affiliation(s)
- Vladimir E Silant'ev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- Laboratory of Electrochemical Processes, Institute of Chemistry, FEB RAS, 690022 Vladivostok, Russia
| | - Mikhail E Shmelev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Andrei S Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Aleksandra A Patlay
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Roman A Shatilov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Vladislav M Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Vadim V Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, 690041 Vladivostok, Russia
| |
Collapse
|
31
|
Kusmartsev S, Ku JH, Grizzi F. Editorial: Tumor microenvironment in bladder cancer. Front Oncol 2023; 13:1208196. [PMID: 37207141 PMCID: PMC10189122 DOI: 10.3389/fonc.2023.1208196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Affiliation(s)
- Sergei Kusmartsev
- Department of Urology, University of Florida, Gainesville, FL, United States
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
32
|
Feng J, Read OJ, Dinkova-Kostova AT. Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment. Mol Cells 2023; 46:142-152. [PMID: 36927604 PMCID: PMC10070167 DOI: 10.14348/molcells.2023.2183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 03/18/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of pro-inflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.
Collapse
Affiliation(s)
- Jialin Feng
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Oliver J. Read
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Albena T. Dinkova-Kostova
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
33
|
Size matters: differential property of hyaluronan and its fragments in the skin- relation to pharmacokinetics, immune activity and wound healing. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023. [DOI: 10.1007/s40005-023-00614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
34
|
Wang X, Zhang Q, Zhou J, Xiao Z, Liu J, Deng S, Hong X, Huang W, Cai M, Guo Y, Huang J, Wang Y, Lin L, Zhu K. T cell-mediated targeted delivery of tadalafil regulates immunosuppression and polyamine metabolism to overcome immune checkpoint blockade resistance in hepatocellular carcinoma. J Immunother Cancer 2023; 11:jitc-2022-006493. [PMID: 36813307 PMCID: PMC9950981 DOI: 10.1136/jitc-2022-006493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) monotherapy provides poor survival benefit in hepatocellular carcinoma (HCC) due to ICB resistance caused by immunosuppressive tumor microenvironment (TME) and drug discontinuation resulting from immune-related side effects. Thus, novel strategies that can simultaneously reshape immunosuppressive TME and ameliorate side effects are urgently needed. METHODS Both in vitro and orthotopic HCC models were used to explore and demonstrate the new role of a conventional, clinically used drug, tadalafil (TA), in conquering immunosuppressive TME. In detail, the effect of TA on M2 polarization and polyamine metabolism in tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) was identified. After making clear the aforementioned immune regulatory effect of TA, we introduced a nanomedicine-based strategy of tumor-targeted drug delivery to make better use of TA to reverse immunosuppressive TME and overcome ICB resistance for HCC immunotherapy. A dual pH-sensitive nanodrug simultaneously carrying both TA and programmed cell death receptor 1 antibody (aPD-1) was developed, and its ability for tumor-targeted drug delivery and TME-responsive drug release was evaluated in an orthotopic HCC model. Finally, the immune regulatory effect, antitumor therapeutic effect, as well as side effects of our nanodrug combining both TA and aPD-1 were analyzed. RESULTS TA exerted a new role in conquering immunosuppressive TME by inhibiting M2 polarization and polyamine metabolism in TAMs and MDSCs. A dual pH-sensitive nanodrug was successfully synthesized to simultaneously carry both TA and aPD-1. On one hand, the nanodrug realized tumor-targeted drug delivery by binding to circulating programmed cell death receptor 1-positive T cells and following their infiltration into tumor. On the other hand, the nanodrug facilitated efficient intratumoral drug release in acidic TME, releasing aPD-1 for ICB and leaving TA-encapsulated nanodrug to dually regulate TAMs and MDSCs. By virtue of the combined application of TA and aPD-1, as well as the efficient tumor-targeted drug delivery, our nanodrug effectively inhibited M2 polarization and polyamine metabolism in TAMs and MDSCs to conquer immunosuppressive TME, which contributed to remarkable ICB therapeutic efficacy with minimal side effects in HCC. CONCLUSIONS Our novel tumor-targeted nanodrug expands the application of TA in tumor therapy and holds great potential to break the logjam of ICB-based HCC immunotherapy.
Collapse
Affiliation(s)
- Xiaobin Wang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiaoyun Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Jingwen Zhou
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zecong Xiao
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianxin Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shaohui Deng
- PCFM Lab of Ministry of Education School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyang Hong
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wensou Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingyue Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongjian Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingjun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
Donelan W, Crispen PL, Kusmartsev S. Tissue Slice Culture and Analysis of Tumor-Associated Hyaluronan in Urothelial Carcinoma. Methods Mol Biol 2023; 2684:167-175. [PMID: 37410234 DOI: 10.1007/978-1-0716-3291-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Hyaluronan is a major component of the extracellular matrix in both normal and tumor tissue. Many solid cancers, including bladder cancer, are characterized by deregulated hyaluronan metabolism. It is postulated that the deregulated metabolism in cancer tissue is characterized by elevated hyaluronan synthesis and degradation. This results in the accumulation of small hyaluronan fragments in the tumor microenvironment which promotes cancer-related inflammation, stimulates tumor cell proliferation and angiogenesis, and contributes to immune-associated immune suppression. For a better understanding of the complex mechanisms of hyaluronan metabolism in cancer, it has been proposed to use precision-cut tissue slice cultures prepared using freshly excised cancer tissue. Here we describe the protocol for establishing tissue slice cultures and analysis of tumor-associated hyaluronan in human urothelial carcinoma.
Collapse
Affiliation(s)
- William Donelan
- Department of Urology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Paul L Crispen
- Department of Urology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Sergei Kusmartsev
- Department of Urology, University of Florida, College of Medicine, Gainesville, FL, USA.
| |
Collapse
|