1
|
Ma Y, Meng F, Lin Z, Chen Y, Lan T, Yang Z, Diao R, Zhang X, Chen Q, Zhang C, Tian Y, Li C, Fang W, Liang X, Zhang X. Bioengineering Platelets Presenting PD-L1, Galectin-9 and BTLA to Ameliorate Type 1 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2501139. [PMID: 40019367 PMCID: PMC12021092 DOI: 10.1002/advs.202501139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/14/2025] [Indexed: 03/01/2025]
Abstract
Autoimmune destruction of pancreatic β-cells leads to impaired insulin production and onset of type 1 diabetes (T1D). Hence, immunomodulation of pancreas-infiltrated immune cells especially the β-cells autoreactive-T cells is a promising way to hinder and reverse the progress of T1D. Herein, megakaryocytes are primed with interferon-γ (IFN-γ) to produce platelets presenting high levels of immunosuppressive checkpoint ligands including programmed death-ligand 1 (PD-L1), Programmed Death-Ligand 2 (PD-L2), the B and T lymphocyte attenuator (BTLA) and Galectin-9 (Gal-9), termed as IFN-γ platelets. The IFN-γ platelets bound and interacted with T cells through immune checkpoint ligands and receptors, which efficaciously induced T cell exhaustion and apoptosis in vitro. Virtually, NOD diabetes mice received IFN-γ platelets treatments prominently preserved β-cell integrity and insulin production, ultimately hindering the progress to hyperglycemia. Intriguingly, both the amount and activity of the pancreas infiltrate-T cells intensively reduced, whereas the magnitude of regulatory T cells (Tregs) remarkably increased, which is attributed to IFN-γ platelets treatments. Moreover, IFN-γ platelets treatment instigated macrophage polarization toward an anti-inflammatory M2 phenotype that may stimulate pancreatic angiogenesis, and promote β-cell proliferation, consequently ameliorating the new-onset T1D.
Collapse
Grants
- 32371425 National Natural Science Foundation of China
- 32201084 National Natural Science Foundation of China
- JCYJ20240813151128037 Science, Technology & Innovation Commission of Shenzhen Municipality, Shenzhen Science and Technology Program
- RCYX20200714114643121 Science, Technology & Innovation Commission of Shenzhen Municipality, Shenzhen Science and Technology Program
- JCYJ20200109142610136 Science, Technology & Innovation Commission of Shenzhen Municipality, Shenzhen Science and Technology Program
- JCYJ20180507181654186 Science, Technology & Innovation Commission of Shenzhen Municipality, Shenzhen Science and Technology Program
- ZDSYS20220606100803007 Science, Technology & Innovation Commission of Shenzhen Municipality, Shenzhen Science and Technology Program
- 2022A1515012289 Natural Science Foundation of Guangdong Province
- GDMUB2022037 Doctoral personnel scientific research start-up Fund project of Guangdong Medical University
- 2024ZDZX2069 Key Field Special Programs of Guangdong Provincial Ordinary Colleges and Universities
- GDMULCJC2024114 Special Project for Clinical and Basic Sci & Tech Innovation of Guangdong Medical University
- National Natural Science Foundation of China
- Natural Science Foundation of Guangdong Province
Collapse
Affiliation(s)
- Yumeng Ma
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Fanqiang Meng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Zhongda Lin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Yanjun Chen
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Tianyu Lan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Zhaoxin Yang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Rui Diao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Xiaozhou Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Qi Chen
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsKey Laboratory of Stem Cell and Regenerative Tissue EngineeringSchool of Basic Medical SciencesGuangdong Medical UniversityDongguan523808P. R. China
- The Affiliated Dongguan Songshan Lake Central HospitalGuangdong Medical UniversityDongguanGuangdong523806P. R. China
| | - Chi Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Yishi Tian
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Chanjuan Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Wenli Fang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsKey Laboratory of Stem Cell and Regenerative Tissue EngineeringSchool of Basic Medical SciencesGuangdong Medical UniversityDongguan523808P. R. China
- The Affiliated Dongguan Songshan Lake Central HospitalGuangdong Medical UniversityDongguanGuangdong523806P. R. China
| | - Xudong Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| |
Collapse
|
2
|
Dangana RS, Okon MB, Orire IE, Sanusi IO, Terkimbi SD, Aja PM, Abubakar IB, Anyim G. Systematic review of peptide nanoparticles for improved diabetes outcomes: insights and opportunities. DISCOVER NANO 2025; 20:41. [PMID: 39961878 PMCID: PMC11832960 DOI: 10.1186/s11671-025-04215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
This present study carried out a systematic review and meta-analysis of peptide nanoparticles in diabetes management for improved patient outcomes from 2014 to 2024. Different electronic databases, including PubMed, Scopus, Web of Science, ResearchGate, Google Scholar, and the Cochrane Library, were searched for relevant literature using Medical Subject Headings (MeSH) and boolean operators. A total of 317 articles were obtained and include PUBMED (39), Scopus (215), ResearchGate (30), Google Scholar (25), and Cochrane Library (8). From these, 186 duplicate entries were eliminated, while 76 articles were dismissed for some reasons. After scanning the titles, abstracts, and contents of the remaining 55 articles for relevance, 22 articles were eliminated. After a full-text screening using inclusion/exclusion criteria, an additional 11 articles were discarded, while 4 were excluded during the data extraction phase. In the end, seven (7) publications were considered relevant based on the eligibility criteria, representing 2.22%. Results showed that sequential exclusion of the studies did not have a significant impact on the effects of peptide nanoparticles on glucose control, insulin delivery, bioavailability, efficacy, safety, and patient outcomes in diabetes management. Also, peptide nanoparticles had positive improvement on glycemic control, insulin levels, glycated hemoglobin (HbA1C) levels, and overall patient outcomes. The study concludes that peptide nanoparticles harbour the potential to improve diabetes management through enhanced glucose control, insulin delivery, and patient outcomes. However, there is a significant gap in knowledge. Further research is required to understand the long-term safety and efficacy of many of the enlisted nanoparticles. Additionally, future studies should explore a wider range of peptides and proteins for encapsulation, develop delivery systems for larger and conformationally diverse molecules, and improve the oral bioavailability of encapsulated therapeutics. Long-term clinical trials are needed to validate this approach in humans and elucidate the underlying mechanisms for optimal treatment design. If these knowledge gaps are addressed, peptide nanoparticles will unavoidably become a powerful tool for effective management of diabetes along with traditional methods.
Collapse
Affiliation(s)
- Reuben Samson Dangana
- Department of Biochemistry, Kampala International University, Western Campus, Ishaka, Bushenyi, Uganda.
| | - Michael Ben Okon
- Department of Biochemistry, Kampala International University, Western Campus, Ishaka, Bushenyi, Uganda
| | - Ikuomola Emmanuel Orire
- Department of Physiology, Kampala International University, Western Campus, Ishaka, Bushenyi, Uganda
| | - Idris Olatunji Sanusi
- Department of Pharmaceutical Chemistry and Analysis, Kampala International University, Western-Campus, Ishaka, Bushenyi, Uganda
| | - Swase Dominic Terkimbi
- Department of Biochemistry, Kampala International University, Western Campus, Ishaka, Bushenyi, Uganda
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Western Campus, Ishaka, Bushenyi, Uganda
| | | | - Godwin Anyim
- Department of Biochemistry, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
3
|
Mistry PS, Chorawala MR, Sivamaruthi BS, Prajapati BG, Kumar A, Chaiyasut C. The Role of Dietary Anthocyanins for Managing Diabetes Mellitus-Associated Complications. Curr Diabetes Rev 2025; 21:e15733998322754. [PMID: 39136514 DOI: 10.2174/0115733998322754240802063730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 01/06/2025]
Abstract
Diabetes mellitus (DM) is an intricate metabolic disorder marked by persistent hyperglycemia, arising from disruptions in glucose metabolism, with two main forms, type 1 and type 2, involving distinct etiologies affecting β-cell destruction or insulin levels and sensitivity. The islets of Langerhans, particularly β-cells and α-cells, play a pivotal role in glucose regulation, and both DM types lead to severe complications, including retinopathy, nephropathy, and neuropathy. Plant-derived anthocyanins, rich in anti-inflammatory and antioxidant properties, show promise in mitigating DM-related complications, providing a potential avenue for prevention and treatment. Medicinal herbs, fruits, and vegetables, abundant in bioactive compounds like phenolics, offer diverse benefits, including glucose regulation and anti-inflammatory, antioxidant, anticancer, anti-mutagenic, and neuroprotective properties. Anthocyanins, a subgroup of polyphenols, exhibit diverse isoforms and biosynthesis involving glycosylation, making them potential natural replacements for synthetic food colorants. Clinical trials demonstrate the efficacy and safety of anthocyanins in controlling glucose, reducing oxidative stress, and enhancing insulin sensitivity in diabetic patients, emphasizing their therapeutic potential. Preclinical studies revealed their multifaceted mechanisms, positioning anthocyanins as promising bioactive compounds for managing diabetes and its associated complications, including retinopathy, nephropathy, and neuropathy.
Collapse
Affiliation(s)
- Priya S Mistry
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India
| | - Akash Kumar
- MM Institute of Hotel Management, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
- Department of Food Technology, SRM University, Delhi-NCR, Sonepat 131029, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Wang F, Li Z. Engineered extracellular vesicles as "supply vehicles" to alleviate type 1 diabetes. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:618-621. [PMID: 39811729 PMCID: PMC11725422 DOI: 10.20517/evcna.2024.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 01/16/2025]
Abstract
Recent findings have indicated that the deficiency of inhibitory programmed cell death ligand 1 (PD-L1) and galectin-9 (Gal-9) in pancreatic β-cells is associated with the progression of type 1 diabetes (T1D). This suggests that exogenous PD-L1 and Gal-9 may have promising potential as therapeutics for the treatment of T1D. In light of these reports, a recent work investigated the potential of artificial extracellular vesicles (aEVs) with the presentation of PD-L1 and Gal-9 ligands (PD-L1-Gal-9 aEVs) as a treatment for T1D, with the findings published in Diabetes. Notably, the PD-L1-Gal-9 aEVs demonstrated the capacity to induce apoptosis of T cells and the formation of regulatory T (Treg) cells, thereby maintaining immune tolerance. Furthermore, the in vivo administration of PD-L1-Gal-9 aEVs resulted in a reduction in T cell infiltration in the pancreas, an increase in β-cell integrity protection, a significant decrease in blood glucose levels, and a delay in the progression of T1D. In conclusion, this study proposed an innovative approach to the treatment of T1D progression through the use of immunosuppressive EVs. This highlight provides a comprehensive analysis and discussion of the pivotal findings of this study.
Collapse
Affiliation(s)
- Fei Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, Guangdong, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhenhua Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, Guangdong, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
5
|
Ramadan H, Moustafa N, Ahmed RR, El-Shahawy AA, Eldin ZE, Al-Jameel SS, Amin KA, Ahmed OM, Abdul-Hamid M. Therapeutic effect of oral insulin-chitosan nanobeads pectin-dextrin shell on streptozotocin-diabetic male albino rats. Heliyon 2024; 10:e35636. [PMID: 39170289 PMCID: PMC11336891 DOI: 10.1016/j.heliyon.2024.e35636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024] Open
Abstract
The current study inspects the therapeutic effects of orally ingested insulin-loaded chitosan nanobeads (INS-CsNBs) with a pectin-dextrin (PD) coating on streptozotocin (STZ)-induced diabetes in Wistar rats. The study also assessed antioxidant effects in pancreatic tissue homogenate, insulin, C-peptide, and inflammatory markers interleukin-1 beta and interleukin-6 (IL-1β and IL-6) in serum. Additionally, histopathological and immunohistochemical examination of insulin granules, oxidative stress, nuclear factor kappa B (NF-κB P65), and sirtuin-1 (SIRT-1) protein detection, as well as gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), B-cell lymphoma 2 (Bcl2), and Bcl-2-associated X protein (Bax) in pancreatic tissue were investigated. After induction of diabetes with STZ, rats were allocated into 6 groups: the normal control (C), the diabetic control (D), and the diabetic groups treated with INS-CsNBs coated with PD shell (50 IU/kg) (NF), free oral insulin (10 IU/kg) (FO), CsNBs-PD shell (50 IU/kg) (NB), and subcutaneous insulin (10 IU/kg) (Sc). The rats were treated daily for four weeks. Treatment of diabetic rats with INS-CsNBs coated with PD shell resulted in a significant improvement in blood glucose levels, elevated antioxidant activities, decreased NF-κB P65, IL-1β, and IL-6 levels, upregulated Nrf-2 and HO-1, in addition to a marked improvement in the histological architecture and integrity compared to the diabetic group. The effects of oral INS-CsNBs administration were comparable to those of subcutaneous insulin. In conclusion, oral administration of INS-loaded Cs-NBs with a pectin-dextrin shell demonstrated an ameliorative effect on STZ-induced diabetes, avoiding the drawbacks of subcutaneous insulin.
Collapse
Affiliation(s)
- Hanaa Ramadan
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Nadia Moustafa
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Rasha Rashad Ahmed
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Ahmed A.G. El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62521 Beni-Suef 12827, Egypt
| | - Zienab E. Eldin
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62521 Beni-Suef 12827, Egypt
| | - Suhailah S. Al-Jameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Kamal Adel Amin
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Manal Abdul-Hamid
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
6
|
Mor A, Tankiewicz-Kwedlo A, Ciwun M, Lewkowicz J, Pawlak D. Kynurenines as a Novel Target for the Treatment of Inflammatory Disorders. Cells 2024; 13:1259. [PMID: 39120289 PMCID: PMC11311768 DOI: 10.3390/cells13151259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
This review discusses the potential of targeting the kynurenine pathway (KP) in the treatment of inflammatory diseases. The KP, responsible for the catabolism of the amino acid tryptophan (TRP), produces metabolites that regulate various physiological processes, including inflammation, cell cycle, and neurotransmission. These metabolites, although necessary to maintain immune balance, may accumulate excessively during inflammation, leading to systemic disorders. Key KP enzymes such as indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), tryptophan 2,3-dioxygenase (TDO), and kynurenine 3-monooxygenase (KMO) have been considered promising therapeutic targets. It was highlighted that both inhibition and activation of these enzymes may be beneficial, depending on the specific inflammatory disorder. Several inflammatory conditions, including autoimmune diseases, for which modulation of KP activity holds therapeutic promise, have been described in detail. Preclinical studies suggest that this modulation may be an effective treatment strategy for diseases for which treatment options are currently limited. Taken together, this review highlights the importance of further research on the clinical application of KP enzyme modulation in the development of new therapeutic strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Adrian Mor
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Anna Tankiewicz-Kwedlo
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Marianna Ciwun
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Janina Lewkowicz
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| |
Collapse
|
7
|
Qi J, Liu C, Bai Z, Li X, Yao G. T follicular helper cells and T follicular regulatory cells in autoimmune diseases. Front Immunol 2023; 14:1178792. [PMID: 37187757 PMCID: PMC10175690 DOI: 10.3389/fimmu.2023.1178792] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
T follicular helper (Tfh) cells are heterogeneous and mainly characterized by expressing surface markers CXCR5, ICOS, and PD-1; cytokine IL-21; and transcription factor Bcl6. They are crucial for B-cell differentiation into long-lived plasma cells and high-affinity antibody production. T follicular regulatory (Tfr) cells were described to express markers of conventional T regulatory (Treg) cells and Tfh cells and were able to suppress Tfh-cell and B-cell responses. Evidence has revealed that the dysregulation of Tfh and Tfr cells is positively associated with the pathogenic processes of autoimmune diseases. Herein, we briefly introduce the phenotype, differentiation, and function of Tfh and Tfr cells, and review their potential roles in autoimmune diseases. In addition, we discuss perspectives to develop novel therapies targeting Tfh/Tfr balance.
Collapse
Affiliation(s)
- Jingjing Qi
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Genhong Yao, ; Jingjing Qi,
| | - Chang Liu
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- *Correspondence: Genhong Yao, ; Jingjing Qi,
| |
Collapse
|