1
|
Zan X, Liu C, Wang X, Sun S, Li Z, Zhang W, Sun T, Hao J, Zhang L. Immunoglobulin G N-Glycosylation and Inflammatory Factors: Analysis of Biomarkers for the Diagnosis of Moyamoya Disease. J Inflamm Res 2025; 18:5447-5462. [PMID: 40297543 PMCID: PMC12036608 DOI: 10.2147/jir.s512707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/05/2025] [Indexed: 04/30/2025] Open
Abstract
Purpose N-glycosylation-modified immunoglobulin G (IgG) is crucial for managing the inflammatory response balance and significantly influences the progression of many inflammatory disorders. IgG N-glycosylation has been demonstrated to correlate with many risk factors for moyamoya disease (MMD), such as hypertension, diabetes, and dyslipidemia. This research aimed to evaluate the diagnostic efficacy of IgG N-glycosylation for MMD. Methods Ultra-high-performance liquid chromatography (UPLC) was employed to examine the properties of IgG N-glycans in blood samples from 116 patients with MMD and 126 controls, resulting in the quantitative determination of 24 initial glycan peaks (GP). Through the Lasso algorithm and multivariate logistic regression analysis, we constructed a diagnostic model based on initial glycans and related inflammatory factors to distinguish MMD patients from healthy individuals. Results After adjusting for potential confounding variables, including age, fasting blood glucose (FBG), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), neutrophil count (NEUT), and lymphocyte count (LYM), our study demonstrated significant differences in the characteristics of 6 initial glycans and 16 derived glycans between the MMD cohort and the healthy control group. Based on the above findings, we developed an MMD diagnostic model that combines initial glycans with related inflammatory factors. The curve of receiver operating characteristic (ROC) was utilized to evaluate the model's ability to distinguish MMD patients from healthy subjects. The findings indicated a robust area under the curve (AUC) of 0.963 (95% CI: 0.940, 0.987). Conclusion This study found that the occurrence and progression of MMD may be associated with decreased levels of sialylation, galactosylation, and fucosylation and increased bisecting GlcNAc. This may be involved in the occurrence of MMD by regulating the balance of inflammation. Therefore, the IgG N-glycosylation is expected to become a potential biomarker for the screening of MMD.
Collapse
Affiliation(s)
- Xu Zan
- School of Clinical Medicine, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Chao Liu
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, People’s Republic of China
| | - Xinyue Wang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Shuyu Sun
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Zhongchen Li
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, People’s Republic of China
| | - Wenyu Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Tanggui Sun
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, People’s Republic of China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, People’s Republic of China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, People’s Republic of China
| |
Collapse
|
2
|
Li X, Wang H, Li X, Zeng M, He Z, Song L, Chen Z, Tang X, Wang A. An antibody-dependent cellular phagocytosis-related gene signature predicts survival and response to immunotherapy in stomach adenocarcinoma. Medicine (Baltimore) 2025; 104:e42079. [PMID: 40193680 PMCID: PMC11977745 DOI: 10.1097/md.0000000000042079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 04/09/2025] Open
Abstract
Antibody-dependent cellular phagocytosis (ADCP) is an immune biological process and plays a biological role in the clearance of tumor cells and the response to immune checkpoint inhibitors. However, the effects of ADCP on stomach adenocarcinoma (STAD) remain unclear. Clinical and genomic data were extracted from multiple datasets. The ADCP-related signature was established using Cox least absolute shrinkage and selection operator regression. Expression of the C5a receptor also known as complement component 5a receptor 1 in the tumor and adjacent-normal tissues was calculated using immunohistochemistry staining. Validation of the signature was conducted in the training and validation cohorts by Cox regression and log-rank tests. Furthermore, the immune infiltrates, the tumor immune dysfunction and exclusion score, and tumor mutation burden score were calculated using the corresponding algorithms, and Mann-Whitney U tests were used to evaluate the differences between groups. Seventy-three hub genes with predictive performance were identified to establish an ADCP-related signature. Accordingly, a 27-gene signature was established, C5a receptor also known as complement component 5a receptor 1, one of the signature genes, had higher expression in tumors than adjacent-normal samples, and its predictive performance was validated in the GSE84437 and The Cancer Genome Atlas cohorts. We found that the ADCP-related signature is an excellent prognostic predictor of STAD. Moreover, the molecular characteristics and some indices of response to immunotherapy differed between the high- and low-risk groups. We constructed a 27-gene signature that is associated with the prognosis and response to STAD-based immunotherapy and provide insights into the biological mechanisms underlying this predictive function.
Collapse
Affiliation(s)
- Xiaochuan Li
- Department of Colorectal and Anorectal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Hongjian Wang
- General Surgery Department of Yunfu People’s Hospital, Yunfu, China
| | - Xiaofeng Li
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Miaoen Zeng
- Department of Gastroenterology, Fogang County People’s Hospital, Qingyuan, China
| | - Zhuguang He
- Department of Oncology, Zhaoqing First People’s Hospital, Zhaoqing, China
| | - Linjie Song
- Department of Colorectal and Anorectal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Zhiming Chen
- Department of Integrated Traditional Chinese and Western Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xinyue Tang
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ang Wang
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
3
|
Carreto-Binaghi LE, Sztein MB, Booth JS. Role of cellular effectors in the induction and maintenance of IgA responses leading to protective immunity against enteric bacterial pathogens. Front Immunol 2024; 15:1446072. [PMID: 39324143 PMCID: PMC11422102 DOI: 10.3389/fimmu.2024.1446072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
The mucosal immune system is a critical first line of defense to infectious diseases, as many pathogens enter the body through mucosal surfaces, disrupting the balanced interactions between mucosal cells, secretory molecules, and microbiota in this challenging microenvironment. The mucosal immune system comprises of a complex and integrated network that includes the gut-associated lymphoid tissues (GALT). One of its primary responses to microbes is the secretion of IgA, whose role in the mucosa is vital for preventing pathogen colonization, invasion and spread. The mechanisms involved in these key responses include neutralization of pathogens, immune exclusion, immune modulation, and cross-protection. The generation and maintenance of high affinity IgA responses require a delicate balance of multiple components, including B and T cell interactions, innate cells, the cytokine milieu (e.g., IL-21, IL-10, TGF-β), and other factors essential for intestinal homeostasis, including the gut microbiota. In this review, we will discuss the main cellular components (e.g., T cells, innate lymphoid cells, dendritic cells) in the gut microenvironment as mediators of important effector responses and as critical players in supporting B cells in eliciting and maintaining IgA production, particularly in the context of enteric infections and vaccination in humans. Understanding the mechanisms of humoral and cellular components in protection could guide and accelerate the development of more effective mucosal vaccines and therapeutic interventions to efficiently combat mucosal infections.
Collapse
Affiliation(s)
- Laura E. Carreto-Binaghi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Laboratorio de Inmunobiologia de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Waterman HR, Dufort MJ, Posso SE, Ni M, Li LZ, Zhu C, Raj P, Smith KD, Buckner JH, Hamerman JA. Lupus IgA1 autoantibodies synergize with IgG to enhance plasmacytoid dendritic cell responses to RNA-containing immune complexes. Sci Transl Med 2024; 16:eadl3848. [PMID: 38959329 PMCID: PMC11418372 DOI: 10.1126/scitranslmed.adl3848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Autoantibodies to nuclear antigens are hallmarks of systemic lupus erythematosus (SLE) where they contribute to pathogenesis. However, there remains a gap in our knowledge regarding how different isotypes of autoantibodies contribute to this autoimmune disease, including the production of the critical type I interferon (IFN) cytokines by plasmacytoid dendritic cells (pDCs) in response to immune complexes (ICs). We focused on IgA, which is the second-most prevalent isotype in serum and, along with IgG, is deposited in glomeruli in individuals with lupus nephritis. We show that individuals with SLE have serum IgA autoantibodies against most nuclear antigens, correlating with IgG against the same antigen. We investigated whether IgA autoantibodies against a major SLE autoantigen, Smith ribonucleoprotein (Sm/RNP), played a role in IC activation of pDCs. We found that pDCs expressed the IgA-specific Fc receptor, FcαR, and IgA1 autoantibodies synergized with IgG in RNA-containing ICs to generate robust primary blood pDC IFN-α responses in vitro. pDC responses to these ICs required both FcαR and FcγRIIa, showing synergy between these Fc receptors. Sm/RNP IC binding to and internalization by pDCs were greater when ICs contained both IgA1 and IgG. Circulating pDCs from individuals with SLE had higher binding of IgA1-containing ICs and higher expression of FcαR than pDCs from healthy control individuals. Although pDC FcαR expression correlated with the blood IFN-stimulated gene signature in SLE, Toll-like receptor 7 agonists, but not IFN-α, up-regulated pDC FcαR expression in vitro. Together, we show a mechanism by which IgA1 autoantibodies contribute to SLE pathogenesis.
Collapse
Affiliation(s)
- Hayley R. Waterman
- Molecular and Cell Biology Program, University of Washington; Seattle, 98195, USA
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, 98101, USA
| | - Matthew J. Dufort
- Center for Systems Immunology, Benaroya Research Institute; Seattle, 98101, USA
| | - Sylvia E. Posso
- Center for Translational Immunology, Benaroya Research Institute, 98101, USA
| | - Minjian Ni
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, 98101, USA
| | - Lucy Z. Li
- Molecular and Cell Biology Program, University of Washington; Seattle, 98195, USA
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, 98101, USA
| | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center; Dallas, 75390, USA
| | - Prithvi Raj
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center; Dallas, 75390, USA
| | - Kelly D. Smith
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, 98195, USA
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute, 98101, USA
| | - Jessica A. Hamerman
- Molecular and Cell Biology Program, University of Washington; Seattle, 98195, USA
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, 98101, USA
- Department of Immunology, University of Washington; Seattle, 98195, USA
| |
Collapse
|
5
|
Ogwang R, Murugu L, Nkumama IN, Nyamako L, Kai O, Mwai K, Murungi L, Idro R, Bejon P, Tuju J, Kinyanjui SM, Osier FHA. Bi-isotype immunoglobulins enhance antibody-mediated neutrophil activity against Plasmodium falciparum parasites. Front Immunol 2024; 15:1360220. [PMID: 38650925 PMCID: PMC11033408 DOI: 10.3389/fimmu.2024.1360220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background Malaria remains a major global health priority, and monoclonal antibodies (mAbs) are emerging as potential new tools to support efforts to control the disease. Recent data suggest that Fc-dependent mechanisms of immunity are important mediators of protection against the blood stages of the infection, but few studies have investigated this in the context of mAbs. We aimed to isolate mAbs agnostic to cognate antigens that target whole merozoites and simultaneously induce potent neutrophil activity measured by the level of reactive oxygen species (ROS) production using an antibody-dependent respiratory burst (ADRB) assay. Methods We used samples from semi-immune adults living in coastal Kenya to isolate mAbs that induce merozoite-specific ADRB activity. We then tested whether modifying the expressed IgG1 isotype to an IgG-IgA Fc region chimera would enhance the level of ADRB activity. Results We isolated a panel of nine mAbs with specificity to whole merozoites. mAb J31 induced ADRB activity in a dose-dependent fashion. Compared to IgG1, our modified antibody IgG-IgA bi-isotype induced higher ADRB activity across all concentrations tested. Further, we observed a negative hook effect at high IgG1 mAb concentrations (i.e., >200 µg/mL), but this was reversed by Fc modification. We identified MSP3.5 as the potential cognate target of mAb J31. Conclusions We demonstrate an approach to engineer mAbs with enhanced ADRB potency against blood-stage parasites.
Collapse
Affiliation(s)
- Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Lewis Murugu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Irene N. Nkumama
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Lydia Nyamako
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Oscar Kai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Linda Murungi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Richard Idro
- College of Health Sciences, Makerere University, Kampala, Uganda
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip Bejon
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Sam Muchina Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Faith H. A. Osier
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Waterman HR, Dufort MJ, Posso SE, Ni M, Li LZ, Zhu C, Raj P, Smith KD, Buckner JH, Hamerman JA. Lupus IgA1 autoantibodies synergize with IgG to enhance pDC responses to RNA-containing immune complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556743. [PMID: 37745328 PMCID: PMC10515763 DOI: 10.1101/2023.09.07.556743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Autoantibodies to nuclear antigens are hallmarks of the autoimmune disease systemic lupus erythematosus (SLE) where they contribute to pathogenesis. However, there remains a gap in our knowledge regarding how different isotypes of autoantibodies contribute to disease, including the production of the critical type I interferon (IFN) cytokines by plasmacytoid dendritic cells (pDCs) in response to immune complexes (ICs). We focused on IgA, which is the second most prevalent isotype in serum, and along with IgG is deposited in glomeruli in lupus nephritis. Here, we show that individuals with SLE have IgA autoantibodies against most nuclear antigens, correlating with IgG against the same antigen. We investigated whether IgA autoantibodies against a major SLE autoantigen, Smith ribonucleoproteins (Sm/RNPs), play a role in IC activation of pDCs. We found that pDCs express the IgA-specific Fc receptor, FcαR, and there was a striking ability of IgA1 autoantibodies to synergize with IgG in RNA-containing ICs to generate robust pDC IFNα responses. pDC responses to these ICs required both FcαR and FcγRIIa, showing a potent synergy between these Fc receptors. Sm/RNP IC binding to and internalization by pDCs were greater when ICs contained both IgA1 and IgG. pDCs from individuals with SLE had higher binding of IgA1-containing ICs and higher expression of FcαR than pDCs from healthy control individuals. Whereas pDC FcαR expression correlated with blood ISG signature in SLE, TLR7 agonists, but not IFNα, upregulated pDC FcαR expression in vitro. Together, we show a new mechanism by which IgA1 autoantibodies contribute to SLE pathogenesis.
Collapse
Affiliation(s)
- Hayley R. Waterman
- Molecular and Cell Biology Program, University of Washington; Seattle, USA
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, USA
| | - Matthew J. Dufort
- Center for Systems Immunology, Benaroya Research Institute; Seattle, USA
| | - Sylvia E. Posso
- Center for Translational Immunology, Benaroya Research Institute
| | - Minjian Ni
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, USA
| | - Lucy Z. Li
- Molecular and Cell Biology Program, University of Washington; Seattle, USA
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, USA
| | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center; Dallas, USA
| | - Prithvi Raj
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center; Dallas, USA
| | - Kelly D. Smith
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, USA
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute
| | - Jessica A. Hamerman
- Molecular and Cell Biology Program, University of Washington; Seattle, USA
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, USA
- Department of Immunology, University of Washington; Seattle, USA
| |
Collapse
|
7
|
Ng CL, Lim TS, Choong YS. Application of Computational Techniques in Antibody Fc-Fused Molecule Design for Therapeutics. Mol Biotechnol 2024; 66:568-581. [PMID: 37742298 DOI: 10.1007/s12033-023-00885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Since the advent of hybridoma technology in the year 1975, it took a decade to witness the first approved monoclonal antibody Orthoclone OKT39 (muromonab-CD3) in the year 1986. Since then, continuous strides have been made to engineer antibodies for specific desired effects. The engineering efforts were not confined to only the variable domains of the antibody but also included the fragment crystallizable (Fc) region that influences the immune response and serum half-life. Engineering of the Fc fragment would have a profound effect on the therapeutic dose, antibody-dependent cell-mediated cytotoxicity as well as antibody-dependent cellular phagocytosis. The integration of computational techniques into antibody engineering designs has allowed for the generation of testable hypotheses and guided the rational antibody design framework prior to further experimental evaluations. In this article, we discuss the recent works in the Fc-fused molecule design that involves computational techniques. We also summarize the usefulness of in silico techniques to aid Fc-fused molecule design and analysis for the therapeutics application.
Collapse
Affiliation(s)
- Chong Lee Ng
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia.
| |
Collapse
|
8
|
Abdeldaim DT, Schindowski K. Fc-Engineered Therapeutic Antibodies: Recent Advances and Future Directions. Pharmaceutics 2023; 15:2402. [PMID: 37896162 PMCID: PMC10610324 DOI: 10.3390/pharmaceutics15102402] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Monoclonal therapeutic antibodies have revolutionized the treatment of cancer and other diseases. Fc engineering aims to enhance the effector functions or half-life of therapeutic antibodies by modifying their Fc regions. Recent advances in the Fc engineering of modern therapeutic antibodies can be considered the next generation of antibody therapy. Various strategies are employed, including altering glycosylation patterns via glycoengineering and introducing mutations to the Fc region, thereby enhancing Fc receptor or complement interactions. Further, Fc engineering strategies enable the generation of bispecific IgG-based heterodimeric antibodies. As Fc engineering techniques continue to evolve, an expanding portfolio of Fc-engineered antibodies is advancing through clinical development, with several already approved for medical use. Despite the plethora of Fc-based mutations that have been analyzed in in vitro and in vivo models, we focus here in this review on the relevant Fc engineering strategies of approved therapeutic antibodies to finetune effector functions, to modify half-life and to stabilize asymmetric bispecific IgGs.
Collapse
Affiliation(s)
- Dalia T. Abdeldaim
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany;
| |
Collapse
|