1
|
Ding YE, Wong MTJ, Norazmi MN, Balakrishnan V, Tye GJ. Advancement in diagnostic approaches for latent tuberculosis: distinguishing recent from remote infections. ONE HEALTH OUTLOOK 2025; 7:19. [PMID: 40205610 PMCID: PMC11983811 DOI: 10.1186/s42522-025-00144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/27/2025] [Indexed: 04/11/2025]
Abstract
Tuberculosis (TB) remains as a significant global health threat to date, with latent TB infection (LTBI) serving as a major reservoir for future active disease cases. A practical approach to an effective control and eradication of TB hence, requires an explicit identification of infected patient whom are at high risk of progressing from latent to active TB, particularly in those recently infected individuals. Current diagnostic tools however, including Tuberculin Skin Test and Interferon-Gamma Release Assays, are still lacking for their ability to critically distinguish between recent and remote infections, leading to insufficiency in optimizing targeted preventive treatment strategies. This review examines the limitations of current diagnostic tools and explores novel biomarkers to enhance distinction within the infection timeline in LTBI diagnostics. Advancement in immune profiling, dormancy antigen, along with molecular and transcriptomic approaches holds great promise to develop a diagnostic tools with better accuracy to differentiate recent from remote infections, thereby optimizing targeted interventions to improve TB control strategies. These underscores the need for further research into these emerging diagnostic tools to facilitate an effective public health strategies and contribute to the united efforts in End TB Strategy.
Collapse
Affiliation(s)
- Yi En Ding
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Matthew Tze Jian Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Mohd Nor Norazmi
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43400, Kajang, Selangor, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia.
| |
Collapse
|
2
|
Giri S, Batra L. Memory Cells in Infection and Autoimmunity: Mechanisms, Functions, and Therapeutic Implications. Vaccines (Basel) 2025; 13:205. [PMID: 40006751 PMCID: PMC11860616 DOI: 10.3390/vaccines13020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Memory cells are central to the adaptive immune system's ability to remember and respond effectively to previously encountered pathogens. While memory cells provide robust protection against infections, they can also contribute to autoimmunity when regulation fails. Here, we review the roles of memory T and B cells in infection and autoimmunity, focusing on their differentiation, activation, effector functions, and underlying regulatory mechanisms. We elaborate on the precise mechanisms by which memory cells contribute to autoimmune diseases, highlighting insights from current research on how pathogenic memory responses are formed and sustained in autoimmunity. Finally, we explore potential therapeutic strategies aimed at modulating memory cells to prevent or treat autoimmune disorders, including B cell-depleting therapies (e.g., Rituximab), T cell-targeting agents (e.g., Abatacept), and cytokine inhibitors (e.g., IL-17 or IL-23 blockers) that are currently used in diseases such as rheumatoid arthritis, multiple sclerosis, and psoriasis.
Collapse
Affiliation(s)
- Shilpi Giri
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lalit Batra
- Center for Predictive Medicine for Biodefence and Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40222, USA;
| |
Collapse
|
3
|
Shey RA, Nchanji GT, Stong TYA, Yaah NE, Shintouo CM, Yengo BN, Nebangwa DN, Efeti MT, Chick JA, Ayuk AB, Gwei KY, Lemoge AA, Vanhamme L, Ghogomu SM, Souopgui J. One Health Approach to the Computational Design of a Lipoprotein-Based Multi-Epitope Vaccine Against Human and Livestock Tuberculosis. Int J Mol Sci 2025; 26:1587. [PMID: 40004053 PMCID: PMC11855821 DOI: 10.3390/ijms26041587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Tuberculosis (TB) remains a major cause of ill health and one of the leading causes of death worldwide, with about 1.25 million deaths estimated in 2023. Control measures have focused principally on early diagnosis, the treatment of active TB, and vaccination. However, the widespread emergence of anti-tuberculosis drug resistance remains the major public health threat to progress made in global TB care and control. Moreover, the Bacillus Calmette-Guérin (BCG) vaccine, the only licensed vaccine against TB in children, has been in use for over a century, and there have been considerable debates concerning its effectiveness in TB control. A multi-epitope vaccine against TB would be an invaluable tool to attain the Global Plan to End TB 2023-2030 target. A rational approach that combines several B-cell and T-cell epitopes from key lipoproteins was adopted to design a novel multi-epitope vaccine candidate. In addition, interactions with TLR4 were implemented to assess its ability to elicit an innate immune response. The conservation of the selected proteins suggests the possibility of cross-protection in line with the One Health approach to disease control. The vaccine candidate was predicted to be both antigenic and immunogenic, and immune simulation analyses demonstrated its ability to elicit both humoral and cellular immune responses. Protein-protein docking and normal-mode analyses of the vaccine candidate with TLR4 predicted efficient binding and stable interaction. This study provides a promising One Health approach for the design of multi-epitope vaccines against human and livestock tuberculosis. Overall, the designed vaccine candidate demonstrated immunogenicity and safety features that warrant further experimental validation in vitro and in vivo.
Collapse
Affiliation(s)
- Robert Adamu Shey
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
- Tropical Disease Interventions, Diagnostics, Vaccines and Therapeutics (TroDDIVaT) Initiative, Buea P.O. Box 1022, Cameroon;
| | - Gordon Takop Nchanji
- Tropical Disease Interventions, Diagnostics, Vaccines and Therapeutics (TroDDIVaT) Initiative, Buea P.O. Box 1022, Cameroon;
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
| | - Tangan Yanick Aqua Stong
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Ntang Emmaculate Yaah
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Cabirou Mounchili Shintouo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, 2900 W Queen Ln, Philadelphia, PA 19129, USA; (C.M.S.); (B.N.Y.)
| | - Bernis Neneyoh Yengo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, 2900 W Queen Ln, Philadelphia, PA 19129, USA; (C.M.S.); (B.N.Y.)
| | - Derrick Neba Nebangwa
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Mary Teke Efeti
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Joan Amban Chick
- Department of Computer and Information Sciences, College of Science and Technology, Covenant University, PMB 1023, Ota 112233, Ogun State, Nigeria;
| | - Abey Blessings Ayuk
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Ketura Yaje Gwei
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | | | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Gosselies, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Charleroi, Belgium; (L.V.); (J.S.)
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Gosselies, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Charleroi, Belgium; (L.V.); (J.S.)
| |
Collapse
|
4
|
López-Ruíz M, Barrios-Payán J, Maya-Hoyos M, Hernández-Pando R, Ocampo M, Soto CY, Mata-Espinosa D. The Plasma Membrane P-Type ATPase CtpA Is Required for Mycobacterium tuberculosis Virulence in Copper-Activated Macrophages in a Mouse Model of Progressive Tuberculosis. Biomedicines 2025; 13:439. [PMID: 40002852 PMCID: PMC11853030 DOI: 10.3390/biomedicines13020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objective: Finding new targets to attenuate Mycobacterium tuberculosis (Mtb) is key in the development of new TB vaccines. In this context, plasma membrane P-type ATPases are relevant for mycobacterial homeostasis and virulence. In this work, we investigate the role of the copper-transporting P-type ATPase CtpA in Mtb virulence. Methods: The impact of CtpA deletion on Mtb's capacity to overcome redox stress and proliferate in mouse alveolar macrophages (MH-S) was evaluated, as well as its effect on Mtb immunogenicity. Moreover, the influence of CtpA on the pathogenicity of Mtb in a mouse (BALB/c) model of progressive TB was examined. Results: We found that MH-S cells infected with wild-type (MtbH37Rv) or the mutant strain (MtbH37RvΔctpA) showed no difference in Mtb bacterial load. However, the same macrophages under copper activation (50 µM CuSO4) showed impaired replication of the mutant strain. Furthermore, the mutant MtbΔctpA strain showed an inability to control reactive oxygen species (ROS) induced by PMA addition during MH-S infection. These results, together with the high expression of the Nox2 mRNA observed in MH-S cells infected with the Mtb∆ctpA strain at 3 and 6 days post-infection, suggest a potential role for CtpA in overcoming redox stress under infection conditions. In addition, MtbΔctpA-infected BALB/c mice survived longer with significantly lower lung bacterial loads and tissue damage in their lungs than MtbH37Rv-infected mice. Conclusions: This suggests that CtpA is involved in Mtb virulence and that it may be a target for attenuation.
Collapse
Affiliation(s)
- Marcela López-Ruíz
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera 30 N° 45-03, Bogota 11321, Colombia; (M.L.-R.); (M.M.-H.)
| | - Jorge Barrios-Payán
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubirán”, Mexico City 14080, Mexico; (J.B.-P.); (R.H.-P.)
| | - Milena Maya-Hoyos
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera 30 N° 45-03, Bogota 11321, Colombia; (M.L.-R.); (M.M.-H.)
| | - Rogelio Hernández-Pando
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubirán”, Mexico City 14080, Mexico; (J.B.-P.); (R.H.-P.)
| | - Marisol Ocampo
- Chemistry Department, Faculty of Mathematical and Natural Sciences, Universidad Distrital Francisco José de Caldas, Carrera 3 N° 26A-40, Bogota 110311, Colombia;
| | - Carlos Y. Soto
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera 30 N° 45-03, Bogota 11321, Colombia; (M.L.-R.); (M.M.-H.)
| | - Dulce Mata-Espinosa
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubirán”, Mexico City 14080, Mexico; (J.B.-P.); (R.H.-P.)
| |
Collapse
|
5
|
Xie M, Tsai CY, Woo J, Nuritdinov F, Cristaldo M, Odjourian NM, Antilus-Sainte R, Dougher M, Gengenbacher M. BAFF and APRIL immunotherapy following Bacille Calmette-Guérin vaccination enhances protection against pulmonary tuberculosis in mice. Front Immunol 2025; 16:1551183. [PMID: 39981256 PMCID: PMC11839638 DOI: 10.3389/fimmu.2025.1551183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Bacille Calmette-Guérin (BCG), the only tuberculosis vaccine currently in clinical use, provides inadequate long-term protection. Administered at birth, BCG induces broad immune responses against a large number of antigens shared with Mycobacterium tuberculosis (Mtb), but protection wanes over time. We have previously shown that unconventional B cell subsets play a role in tuberculosis control. Methods High-dimensional flow cytometry and multiplex cytokine analysis were employed to investigate the effects of immunotherapy on BCG-vaccinated mice in an Mtb challenge model. Results In this study, we investigate the potential of recombinant cytokines targeting B cells - B-cell activating factor (BAFF) and A proliferation-inducing ligand (APRIL) - to modulate BCG immunity and improve protection in mice. Both cytokines play overlapping roles in B cell development and peripheral survival. Following subcutaneous BCG vaccination, immunotherapy with BAFF or APRIL resulted in an increased frequency of unconventional B cells potentially transitioning into antibody-producing plasma cells. Concurrently, we observed an increased frequency of central memory T cells, a subset critical for protective immunity. Changes in cellular immune responses were accompanied by reduced pro-inflammatory cytokine profiles and a contraction of the leukocyte population in lungs. Importantly, mice receiving BCG vaccination followed by BAFF or APRIL immunotherapy exhibited superior long-term protection against pulmonary tuberculosis relative to controls that received only BCG. Conclusion In summary, our findings demonstrate that combining BCG vaccination with B cell targeted immunomodulatory therapies can improve long-term protection against pulmonary tuberculosis, highlighting the continued relevance and underutilized potential of BCG as a vaccine platform.
Collapse
Affiliation(s)
- Min Xie
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Chen-Yu Tsai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Joshua Woo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Frank Nuritdinov
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Melissa Cristaldo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Narineh M. Odjourian
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | | | - Maureen Dougher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| |
Collapse
|
6
|
Naqvi N, Ahuja Y, Zarin S, Alam A, Ali W, Shariq M, Hasnain SE, Ehtesham NZ. BCG's role in strengthening immune responses: Implications for tuberculosis and comorbid diseases. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 127:105703. [PMID: 39667418 DOI: 10.1016/j.meegid.2024.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
The BCG vaccine represents a significant milestone in the prevention of tuberculosis (TB), particularly in children. Researchers have been developing recombinant BCG (rBCG) variants that can trigger lasting memory responses, thereby enhancing protection against TB in adults. The breakdown of immune surveillance is a key link between TB and other communicable and non-communicable diseases. Notably, TB is more prevalent among people with comorbidities such as HIV, diabetes, cancer, influenza, COVID-19, and autoimmune disorders. rBCG formulations have the potential to address both TB and HIV co-pandemics. TB increases the risk of lung cancer and immunosuppression caused by cancer can reactivate latent TB infections. Moreover, BCG's efficacy extends to bladder cancer treatment and blood glucose regulation in patients with diabetes and TB. Additionally, BCG provides cross-protection against unrelated pathogens, emphasizing the importance of BCG-induced trained immunity in COVID-19 and other respiratory diseases. Furthermore, BCG reduced the severity of pulmonary TB-induced influenza virus infections. Recent studies have proposed innovations in BCG delivery, revaccination, and attenuation techniques. Disease-centered research has highlighted the immunomodulatory effects of BCG on TB, HIV, cancer, diabetes, COVID-19, and autoimmune diseases. The complex relationship between TB and comorbidities requires a nuanced re-evaluation to understand the shared attributes regulated by BCG. This review assessed the interconnected relationships influenced by BCG administration in TB and related disorders, recommending the expanded use of rBCG in healthcare. Collaboration among vaccine research stakeholders is vital to enhance BCG's efficacy against global health challenges.
Collapse
Affiliation(s)
- Nilofer Naqvi
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Yashika Ahuja
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Sheeba Zarin
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Anwar Alam
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Waseem Ali
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Mohd Shariq
- GITAM School of Science, GITAM University, Rudraram, Hyderabad Campus, Telangana 502329, India
| | - Seyed E Hasnain
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi 110 016, India..
| | - Nasreen Z Ehtesham
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India.
| |
Collapse
|
7
|
Yang B, Guo X, Shi C, Liu G, Qin X, Chen S, Gan L, Liang D, Shao K, Xu R, Zhong J, Mo Y, Li H, Luo D. Alterations in purine and pyrimidine metabolism associated with latent tuberculosis infection: insights from gut microbiome and metabolomics analyses. mSystems 2024; 9:e0081224. [PMID: 39436103 PMCID: PMC11575419 DOI: 10.1128/msystems.00812-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Individuals with latent tuberculosis infection (LTBI) account for almost 30% of the population worldwide and have the potential to develop active tuberculosis (ATB). Despite this, the current understanding of the pathogenesis of LTBI is limited. The gut microbiome can be altered in tuberculosis patients, and an understanding of the changes associated with the progression from good health to LTBI to ATB can provide novel perspectives for understanding the pathogenesis of LTBI by identifying microbial and molecular biomarkers associated therewith. In this study, fecal samples from healthy controls (HC), individuals with LTBI and ATB patients were collected for gut microbiome and metabolomics analyses. Compared to HC and LTBI subjects, participants with ATB showed a significant decrease in gut bacterial α-diversity. Additionally, there were significant differences in gut microbial communities and metabolism among the HC, LTBI, and ATB groups. PICRUSt2 analysis revealed that microbiota metabolic pathways involving the degradation of purine and pyrimidine metabolites were upregulated in LTBI and ATB individuals relative to HCs. Metabolomic profiling similarly revealed that purine and pyrimidine metabolite levels were decreased in LTBI and ATB samples relative to those from HCs. Further correlation analyses revealed that the levels of purine and pyrimidine metabolites were negatively correlated with those of gut microbial genera represented by Ruminococcus_gnavus_group (R. gnavus), and the levels of R. gnavus were also positively correlated with adenosine nucleotide degradation II, which is a purine degradation pathway. Moreover, a combined signature including hypoxanthine and xanthine was found to effectively distinguish between LTBI and HC samples (area under the curve [AUC] of training set = 0.796; AUC of testing set = 0.924). Therefore, through gut microbiome and metabolomic analyses, these findings provide valuable clues regarding how alterations in gut purine and pyrimidine metabolism are linked to the pathogenesis of LTBI.IMPORTANCEThis study provides valuable insight into alterations in the gut microbiome and metabolomic profiles in a cohort of adults with LTBI and ATB. Perturbed gut purine and pyrimidine metabolism in LTBI was associated with the compositional alterations of gut microbiota, which may be an impetus for developing novel diagnostic strategies and interventions targeting LTBI.
Collapse
Affiliation(s)
- Boyi Yang
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- The First Clinical College, Guangxi Medical University, Nanning, China
| | - Xiaojing Guo
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Chongyu Shi
- Molecular Biology Laboratory of Respiratory Disease, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Gang Liu
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaoling Qin
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Shiyi Chen
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Li Gan
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Dongxu Liang
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Kai Shao
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Ruolan Xu
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Jieqing Zhong
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Yujie Mo
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Hai Li
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China
| | - Dan Luo
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China
| |
Collapse
|
8
|
Ssekamatte P, Nabatanzi R, Sitenda D, Nakibuule M, Bagaya BS, Kibirige D, Kyazze AP, Kateete DP, Sande OJ, van Crevel R, Cose S, Biraro IA. Impaired Mycobacterium tuberculosis-specific T-cell memory phenotypes and functional profiles among adults with type 2 diabetes mellitus in Uganda. Front Immunol 2024; 15:1480739. [PMID: 39430752 PMCID: PMC11486641 DOI: 10.3389/fimmu.2024.1480739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Background Efforts to eradicate tuberculosis (TB) are threatened by diabetes mellitus (DM), which confers a 3-fold increase in the risk of TB disease. The changes in the memory phenotypes and functional profiles of Mycobacterium tuberculosis (Mtb)-specific T cells in latent TB infection (LTBI)-DM participants remain poorly characterised. We, therefore, assessed the effect of DM on T-cell phenotype and function in LTBI and DM clinical groups. Methods We compared the memory phenotypes and function profiles of Mtb-specific CD4+ and CD8+ T cells among participants with LTBI-DM (n=21), LTBI-only (n=17) and DM-only (n=16). Peripheral blood mononuclear cells (PBMCs) were stimulated with early secretory antigenic 6 kDa (ESAT-6) and culture filtrate protein 10 (CFP-10) peptide pools or phytohemagglutinin (PHA). The memory phenotypes (CCR7/CD45RA), and functional profiles (HLA-DR, PD-1, CD107a, IFN-γ, IL-2, TNF, IL-13, IL-17A) of Mtb-specific CD4+ and CD8+ T cells were characterised by flow cytometry. Results Naïve CD4+ T cells were significantly decreased in the LTBI-DM compared to the LTBI-only participants [0.47 (0.34-0.69) vs 0.91 (0.59-1.05); (p<0.001)]. Similarly, CD8+ HLA-DR expression was significantly decreased in LTBI-DM compared to LTBI-only participants [0.26 (0.19-0.33) vs 0.52 (0.40-0.64); (p<0.0001)], whereas CD4+ and CD8+ PD-1 expression was significantly upregulated in the LTBI-DM compared to the LTBI-only participants [0.61 (0.53-0.77) vs 0.19 (0.10-0.28); (p<0.0001) and 0.41 (0.37-0.56) vs 0.29 (0.17-0.42); (p=0.007)] respectively. CD4+ and CD8+ IFN-γ production was significantly decreased in the LTBI-DM compared to the LTBI-only participants [0.28 (0.19-0.38) vs 0.39 (0.25-0.53); (p=0.030) and 0.36 (0.27-0.49) vs 0.55 (0.41-0.88); (p=0.016)] respectively. CD4+ TNF and CD8+ IL-17A production were significantly decreased in participants with LTBI-DM compared to those with LTBI-only [0.38 (0.33-0.50) vs 0.62 (0.46-0.87); (p=0.004) and 0.29 (0.16-0.42) vs 0.47 (0.29-0.52); (0.017)] respectively. LTBI-DM participants had significantly lower dual-functional (IFN-γ+IL-2+ and IL-2+TNF+) and mono-functional (IFN-γ+ and TNF+) CD4+ responses than LTBI-only participants. LTBI-DM participants had significantly decreased dual-functional (IFN-γ+IL-2+, IFN-γ+ TNF+ and IL-2+TNF+) and mono-functional (IFN-γ+, IL-2+ and TNF+) central and effector memory CD4+ responses compared to LTBI-only participants. Conclusion Type 2 DM impairs the memory phenotypes and functional profiles of Mtb-specific CD4+ and CD8+ T cells, potentially indicating underlying immunopathology towards increased active TB disease risk.
Collapse
Affiliation(s)
- Phillip Ssekamatte
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
| | - Rose Nabatanzi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Diana Sitenda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Marjorie Nakibuule
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
| | - Bernard Ssentalo Bagaya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Davis Kibirige
- Department of Medicine, Uganda Martyrs Lubaga Hospital, Kampala, Uganda
| | - Andrew Peter Kyazze
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Obondo James Sande
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Stephen Cose
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
| | - Irene Andia Biraro
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
9
|
Fazeli P, Kalani M, Mahdavi M, Hosseini M. The significance of stem cell-like memory T cells in viral and bacterial vaccines: A mini review. Int Immunopharmacol 2024; 137:112441. [PMID: 38852525 DOI: 10.1016/j.intimp.2024.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Vaccination has become a widely used method to induce immune protection against microbial pathogens, including viral and bacterial microorganisms. Both humoral and cellular immunity serve a critical role in neutralizing and eliminating these pathogens. An effective vaccine should be able to induce a long-lasting immune memory response. Recent investigations on different subsets of T cells have identified a new subset of T cells using multi-parameter flow cytometry, which possess stem cell-like properties and the ability to mount a rapid immune response upon re-exposure to antigens known as stem cell-like memory T cells (TSCM). One of the major challenges with current vaccines is their limited ability to maintain long-term memory in the adaptive immune system. Recent evidence suggests that a specific subgroup of memory T cells has the unique ability to retain their longevity for up to 25 years, as observed in the case of the yellow fever vaccine. Therefore, in this study, we tried to explore and discuss the potential role of this new T cell memory subset in the development of viral and bacterial vaccines.
Collapse
Affiliation(s)
- Pooria Fazeli
- Truama Research Center, Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Kalani
- Department of Immunology, Prof. Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Hosseini
- Truama Research Center, Emtiaz Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Lu C, Li H, Chen W, Li H, Ma J, Peng P, Yan Y, Dong W, Jin Y, Pan S, Shang S, Gu J, Zhou J. Immunological characteristics of a recombinant alphaherpesvirus with an envelope-embedded Cap protein of circovirus. Front Immunol 2024; 15:1438371. [PMID: 39081314 PMCID: PMC11286414 DOI: 10.3389/fimmu.2024.1438371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Variant pseudorabies virus (PRV) is a newly emerged zoonotic pathogen that can cause human blindness. PRV can take advantage of its large genome and multiple non-essential genes to construct recombinant attenuated vaccines carrying foreign genes. However, a major problem is that the foreign genes in recombinant PRV are only integrated into the genome for independent expression, rather than assembled on the surface of virion. Methods We reported a recombinant PRV with deleted gE/TK genes and an inserted porcine circovirus virus 2 (PCV2) Cap gene into the extracellular domain of the PRV gE gene using the Cre-loxP recombinant system combined with the CRISPR-Cas9 gene editing system. This recombinant PRV (PRV-Cap), with the envelope-embedded Cap protein, exhibits a similar replication ability to its parental virus. Results An immunogenicity assay revealed that PRV-Cap immunized mice have 100% resistance to lethal PRV and PCV2 attacks. Neutralization antibody and ELISPOT detections indicated that PRV-Cap can enhance neutralizing antibodies to PRV and produce IFN-γ secreting T cells specific for both PRV and PCV2. Immunological mechanistic investigation revealed that initial immunization with PRV-Cap stimulates significantly early activation and expansion of CD69+ T cells, promoting the activation of CD4 Tfh cell dependent germinal B cells and producing effectively specific effector memory T and B cells. Booster immunization with PRV-Cap recalled the activation of PRV-specific IFN-γ+IL-2+CD4+ T cells and IFN-γ+TNF-α+CD8+ T cells, as well as PCV2-specific IFN-γ+TNF-α+CD8+ T cells. Conclusion Collectively, our data suggested an immunological mechanism in that the recombinant PRV with envelope-assembled PCV2 Cap protein can serve as an excellent vaccine candidate for combined immunity against PRV and PCV2, and provided a cost-effective method for the production of PRV- PCV2 vaccine.
Collapse
Affiliation(s)
- Chenhe Lu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Haimin Li
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Wenjing Chen
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Hui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiayu Ma
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Peng Peng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Shiyue Pan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Li F, Dang W, Du Y, Xu X, He P, Zhou Y, Zhu B. Tuberculosis Vaccines and T Cell Immune Memory. Vaccines (Basel) 2024; 12:483. [PMID: 38793734 PMCID: PMC11125691 DOI: 10.3390/vaccines12050483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB) remains a major infectious disease partly due to the lack of an effective vaccine. Therefore, developing new and more effective TB vaccines is crucial for controlling TB. Mycobacterium tuberculosis (M. tuberculosis) usually parasitizes in macrophages; therefore, cell-mediated immunity plays an important role. The maintenance of memory T cells following M. tuberculosis infection or vaccination is a hallmark of immune protection. This review analyzes the development of memory T cells during M. tuberculosis infection and vaccine immunization, especially on immune memory induced by BCG and subunit vaccines. Furthermore, the factors affecting the development of memory T cells are discussed in detail. The understanding of the development of memory T cells should contribute to designing more effective TB vaccines and optimizing vaccination strategies.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Wenrui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yunjie Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Xiaonan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Pu He
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yuhe Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Bingdong Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
- College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
12
|
Cao X, Fu YX, Peng H. Promising Cytokine Adjuvants for Enhancing Tuberculosis Vaccine Immunity. Vaccines (Basel) 2024; 12:477. [PMID: 38793728 PMCID: PMC11126114 DOI: 10.3390/vaccines12050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (M. tuberculosis), remains a formidable global health challenge, affecting a substantial portion of the world's population. The current tuberculosis vaccine, bacille Calmette-Guérin (BCG), offers limited protection against pulmonary tuberculosis in adults, underscoring the critical need for innovative vaccination strategies. Cytokines are pivotal in modulating immune responses and have been explored as potential adjuvants to enhance vaccine efficacy. The strategic inclusion of cytokines as adjuvants in tuberculosis vaccines holds significant promise for augmenting vaccine-induced immune responses and strengthening protection against M. tuberculosis. This review delves into promising cytokines, such as Type I interferons (IFNs), Type II IFN, interleukins such as IL-2, IL-7, IL-15, IL-12, and IL-21, alongside the use of a granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjuvant, which has shown effectiveness in boosting immune responses and enhancing vaccine efficacy in tuberculosis models.
Collapse
Affiliation(s)
- Xuezhi Cao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China;
- Guangzhou National Laboratory, Bio-Island, Guangzhou 510005, China
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hua Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China;
- Guangzhou National Laboratory, Bio-Island, Guangzhou 510005, China
| |
Collapse
|
13
|
Kwon KW, Choi HG, Choi HH, Choi E, Kim H, Kim HJ, Shin SJ. Immunogenicity and protective efficacy of RipA, a peptidoglycan hydrolase, against Mycobacterium tuberculosis Beijing outbreak strains. Vaccine 2024; 42:1941-1952. [PMID: 38368223 DOI: 10.1016/j.vaccine.2024.02.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/11/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Given that individuals with latent tuberculosis (TB) infection represent the major reservoir of TB infection, latency-associated antigens may be promising options for development of improved multi-antigenic TB subunit vaccine. Thus, we selected RipA, a peptidoglycan hydrolase required for efficient cell division of Mycobacterium tuberculosis (Mtb), as vaccine candidate. We found that RipA elicited activation of dendritic cells (DCs) by induction of phenotypic maturation, increased production of inflammatory cytokines, and prompt stimulation of MAPK and NF-κB signaling pathways. In addition, RipA-treated DCs promoted Th1-polarzied immune responses of naïve CD4+ T cells with increased proliferation and activated T cells from Mtb-infected mice, which conferred enhanced control of mycobacterial growth inside macrophages. Moreover, mice immunized with RipA formulated in GLA-SE adjuvant displayed remarkable generation of Ag-specific polyfunctional CD4+ T cells in both lung and spleen. Following an either conventional or ultra-low dose aerosol challenges with 2 Mtb Beijing clinical strains, RipA/GLA-SE-immunization was not inferior to BCG by mediating protection as single Ag. Collectively, our findings highlighted that RipA could be a novel candidate as a component of multi-antigenic TB subunit vaccines.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea; Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul 03722, South Korea; Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, South Korea
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Hong-Hee Choi
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Eunsol Choi
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Hagyu Kim
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea; Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul 03722, South Korea.
| |
Collapse
|