1
|
Kirsche L, He J, Müller A, Leary P. MARMOT: A multifaceted R pipeline for analysing spectral flow cytometry data from subcutaneously growing murine gastric organoids. J Immunol Methods 2025; 540:113854. [PMID: 40122453 DOI: 10.1016/j.jim.2025.113854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
The analysis of murine immune cell types is a critical component of immunological research, necessitating precise and reproducible methodologies. Here, we present a comprehensive protocol and pipeline designed to streamline the process from murine gastric organoid transplant sample preparation to figure generation. This pipeline includes a detailed staining panel tailored for murine immune cells, ensuring accurate and comprehensive identification of various cell types. Additionally, it integrates an R-based analysis script (MARMOT Pipeline), encompassing data processing and visualisation. A key feature of this pipeline is its ability to produce publication-quality figures with minimal direct R coding, thus making advanced data analysis accessible to researchers with limited programming experience. Additionally, figures can be customised using a provided Shiny application. This approach both enhances the efficiency of data analysis and enables the reproducibility required for high-quality scientific research.
Collapse
Affiliation(s)
- Lydia Kirsche
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Jiazhuo He
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Comprehensive Cancer Center Zürich, Zürich, Switzerland
| | - Peter Leary
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Functional Genomics Center Zürich, University of Zürich/ETHZ, Zürich, Switzerland.
| |
Collapse
|
2
|
Seo ES, Lee SK, Son YM. Multifaceted functions of tissue-resident memory T cells in tumorigenesis and cancer immunotherapy. Cancer Immunol Immunother 2025; 74:184. [PMID: 40285796 PMCID: PMC12033165 DOI: 10.1007/s00262-025-04035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Tissue-resident memory T (TRM) cells are well reported as a strong protective first line of defense against foreign antigens in non-lymphoid tissues. Moreover, TRM cells have demonstrated critical protective roles in antitumor immunity, contributing to enhanced survival and tumor growth inhibition across various cancer types. However, surprisingly, recent studies suggest that TRM cells can exhibit paradoxical effects, potentially promoting tumor progression under certain conditions and leading to adverse outcomes during antitumor immune responses. Understanding the complexities of TRM cell functions will enable us to harness their potential in advancing cancer immunotherapy more effectively. Therefore, this review comprehensively investigates the dual roles of TRM cells in different tumor contexts, highlighting their protective functions in combating cancers and their unfavorable potential to exacerbate tumor development. Additionally, we explore the implications of TRM cell behaviors for future cancer treatment strategies, emphasizing the need for further research to optimize the therapeutic exploitation of TRM cells while mitigating their deleterious effects.
Collapse
Affiliation(s)
- Eun Sang Seo
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sung-Kyu Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
3
|
Li X, Deng J, Liu X, Zhou Y, Bi T, Chen J, Wang J. Tissue-resident immune cells in cervical cancer: emerging roles and therapeutic implications. Front Immunol 2025; 16:1541950. [PMID: 40330461 PMCID: PMC12053169 DOI: 10.3389/fimmu.2025.1541950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
The favorable prognosis of "hot" tumors is widely acknowledged in oncology. Recently, the concept of tertiary lymphoid structures (TLS) has renewed appreciation for local immune cells within tumor tissues. Tissue-resident immune cells, a newly identified subset of tumor-infiltrating lymphocytes, are emerging as potential key players in tumor infiltration and TLS formation, due to their ability to reside indefinitely within tissues and mount effective responses to local antigens. Cervical cancer (CC), the fourth most common cause of cancer-related mortality among women globally, has experienced comparatively limited progress in delineating its tumor immune microenvironment compared to other malignancies. Notably, the role of tissue-resident immune cells within the CC milieu remains inadequately characterized. This comprehensive review aims to synthesize current knowledge and critically evaluate the putative roles of these cells in CC pathogenesis, providing new insights on the intricate dynamics of the local tumor microenvironment.
Collapse
Affiliation(s)
- Xidie Li
- Department of Obstetrics and Gynecology, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Juan Deng
- Department of Obstetrics and Gynecology, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Xiaoping Liu
- Department of Obstetrics and Gynecology, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Yan Zhou
- Department of Obstetrics and Gynecology, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Tingting Bi
- Department of Obstetrics and Gynecology, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Jingjing Chen
- Department of Breast Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Jinjin Wang
- Department of Obstetrics and Gynecology, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| |
Collapse
|
4
|
Wu ZX, Da TT, Huang C, Wang XQ, Li L, Zhao ZB, Yin TT, Ma HQ, Lian ZX, Long J, Wang F, Cao J. CD69 +CD103 +CD8 + tissue-resident memory T cells possess stronger anti-tumor activity and predict better prognosis in colorectal cancer. Cell Commun Signal 2024; 22:608. [PMID: 39696312 DOI: 10.1186/s12964-024-01990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. Despite advancements in therapeutic methodologies, it still causes a high rate of patient mortality. CD8+ tissue-resident memory T (TRM) cells are strategically positioned to mediate effective anti-tumor responses. However, the characteristic surface molecules and functions of CD8+ TRM cells exhibit significant heterogeneity. METHODS The roles and anti-tumor biological functions of different CD8+ TRM subsets in CRC were determined by clinical CRC samples, bioinformatics analysis, and in vitro experiments including co-culture experiments and transwell migration assays. The signaling pathways that synergistically regulate the differentiation of CD8+ TRM cells were identified by in vitro CD8+ T cell activation and inhibition assays, and the functioning transcription factors were predicted using the UCSC and JASPAR databases. RESULTS We found that different CD8+ TRM subsets existed in CRC tumor tissues, which were identified as CD69-CD103-CD8+ TRM, CD69+CD103-CD8+ TRM (SP CD8+ TRM), and CD69+CD103+CD8+ TRM (DP CD8+ TRM) subsets. Compared with SP CD8+ TRM cells, increased infiltration of DP CD8+ TRM cells predicted better prognosis and played a protective role mainly in tumor invasion and lymph node metastasis of CRC. DP CD8+ TRM cells expressed higher levels of effector molecules and exerted stronger anti-tumor effects in a FAS/FASL pathway-dependent manner. Additionally, DP CD8+ TRM cells secreted higher levels of CXCL13 and recruited B cells into tumor tissues through the CXCL13/CXCR5 signaling axis to form tertiary lymphoid structures, participating in anti-tumor immune responses. Notch and TGF-β signaling pathways synergistically regulate the differentiation of DP CD8+ TRM cells. CONCLUSIONS We clarified the roles and mechanisms of different CD8+ TRM subsets in CRC and identified that DP CD8+ TRM cells exert stronger anti-tumor effects and predict better prognosis, which provides ideas for developing new clinically available therapeutic targets.
Collapse
Affiliation(s)
- Zi-Xin Wu
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Tian-Tian Da
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Chuan Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Xiao-Qing Wang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Zhi-Bin Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Ting-Ting Yin
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Hai-Qing Ma
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Zhe-Xiong Lian
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Jie Long
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Fei Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
| |
Collapse
|
5
|
Zhang C, Dong HK, Gao JM, Zeng QQ, Qiu JT, Wang JJ. Advances in the diagnosis and treatment of MET-variant digestive tract tumors. World J Gastrointest Oncol 2024; 16:4338-4353. [PMID: 39554732 PMCID: PMC11551650 DOI: 10.4251/wjgo.v16.i11.4338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
The receptor tyrosine kinase encoded by the MET gene plays an important role in various cellular processes such as growth, survival, migration and angiogenesis, and its abnormal activation is closely related to the occurrence and development of various tumors. This article reviews the recent advances in diagnosis and treatment of MET-variant digestive tract tumors. In terms of diagnosis, the application of next-generation sequencing technology and liquid biopsy technology makes the detection of MET variants more accurate and efficient, providing a reliable basis for individualized treatment. In terms of treatment, MET inhibitors such as crizotinib and cabotinib have shown good efficacy in clinical trials. In addition, the combination of immunotherapy and MET inhibitors also demonstrated potential synergies, further improving the therapeutic effect. However, the complexity and heterogeneity of drug resistance mechanisms are still one of the difficulties in current research. In the future, it is necessary to further deepen the understanding of the mechanism of MET variation and explore new combination treatment strategies to improve the overall survival rate and quality of life of patients. The diagnosis and treatment of MET-variant digestive tract tumors are moving towards precision and individualization, and have broad application prospects.
Collapse
Affiliation(s)
- Chen Zhang
- The First Department of Radiation Oncology, Lu’an Hospital of Traditional Chinese Medicine of Anhui Province, Lu’an 237000, Anhui Province, China
| | - Hu-Ke Dong
- The Fourth Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Jian-Ming Gao
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230000, Anhui Province, China
| | - Qi-Qi Zeng
- Department of Gastroenterology, Nanjing University Affiliated Gulou Hospital, Nanjing 210008, Jiangsu Province, China
| | - Jiang-Tao Qiu
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, Beijing 100084, China
| | - Jia-Jia Wang
- Ultrasound of Medicine Department, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| |
Collapse
|
6
|
Sato H, Meng S, Hara T, Tsuji Y, Arao Y, Sasaki K, Kobayashi S, di Luccio E, Hirotsu T, Satoh T, Doki Y, Eguchi H, Ishii H. Tissue-Resident Memory T Cells in Gastrointestinal Cancers: Prognostic Significance and Therapeutic Implications. Biomedicines 2024; 12:1342. [PMID: 38927549 PMCID: PMC11202222 DOI: 10.3390/biomedicines12061342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Gastrointestinal cancers, which include a variety of esophageal and colorectal malignancies, present a global health challenge and require effective treatment strategies. In the evolving field of cancer immunotherapy, tissue-resident memory T cells (Trm cells) have emerged as important players in the immune response within nonlymphoid tissues. In this review, we summarize the characteristics and functions of Trm cells and discuss their profound implications for patient outcomes in gastrointestinal cancers. Positioned strategically in peripheral tissues, Trm cells have functions beyond immune surveillance, affecting tumor progression, prognosis, and response to immunotherapy. Studies indicate that Trm cells are prognostic markers and correlate positively with enhanced survival. Their presence in the tumor microenvironment has sparked interest in their therapeutic potential, particularly with respect to immune checkpoint inhibitors, which may improve cancer treatment. Understanding how Trm cells work will not only help to prevent cancer spread through effective treatment but will also contribute to disease prevention at early stages as well as vaccine development. The role of Trm cells goes beyond just cancer, and they have potential applications in infectious and autoimmune diseases. This review provides a thorough analysis of Trm cells in gastrointestinal cancers, which may lead to personalized and effective cancer therapies.
Collapse
Affiliation(s)
- Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Kazuki Sasaki
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Eric di Luccio
- Hirotsu Bio Science Inc., Chiyoda-Ku, Tokyo 102-0094, Japan
| | | | - Taroh Satoh
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| |
Collapse
|
7
|
Zeng A, Yin Y, Xu Z, Abuduwayiti A, Yang F, Shaik MS, Wang C, Chen K, Wang C, Fang X, Dai J. Down-regulated HHLA2 enhances neoadjuvant immunotherapy efficacy in patients with non-small cell lung cancer (NSCLC) with chronic obstructive pulmonary disease (COPD). BMC Cancer 2024; 24:396. [PMID: 38553708 PMCID: PMC10979619 DOI: 10.1186/s12885-024-12137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/17/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Emerging data suggested a favorable outcome in advanced non-small cell lung cancer (NSCLC) with chronic obstructive pulmonary disease (COPD) patients treated by immunotherapy. The objective of this study was to investigate the effectiveness of neoadjuvant immunotherapy among NSCLC with COPD versus NSCLC without COPD and explore the potential mechanistic links. PATIENTS AND METHODS Patients with NSCLC receiving neoadjuvant immunotherapy and surgery at Shanghai Pulmonary Hospital between November 2020 and January 2023 were reviewed. The assessment of neoadjuvant immunotherapy's effectiveness was conducted based on the major pathologic response (MPR). The gene expression profile was investigated by RNA sequencing data. Immune cell proportions were examined using flow cytometry. The association between gene expression, immune cells, and pathologic response was validated by immunohistochemistry and single-cell data. RESULTS A total of 230 NSCLC patients who received neoadjuvant immunotherapy were analyzed, including 60 (26.1%) with COPD. Multivariate logistic regression demonstrated that COPD was a predictor for MPR after neoadjuvant immunotherapy [odds ratio (OR), 2.490; 95% confidence interval (CI), 1.295-4.912; P = 0.007]. NSCLC with COPD showed a down-regulation of HERV-H LTR-associating protein 2 (HHLA2), which was an immune checkpoint molecule, and the HHLA2low group demonstrated the enrichment of CD8+CD103+ tissue-resident memory T cells (TRM) compared to the HHLA2high group (11.9% vs. 4.2%, P = 0.013). Single-cell analysis revealed TRM enrichment in the MPR group. Similarly, NSCLC with COPD exhibited a higher proportion of CD8+CD103+TRM compared to NSCLC without COPD (11.9% vs. 4.6%, P = 0.040). CONCLUSIONS The study identified NSCLC with COPD as a favorable lung cancer type for neoadjuvant immunotherapy, offering a new perspective on the multimodality treatment of this patient population. Down-regulated HHLA2 in NSCLC with COPD might improve the MPR rate to neoadjuvant immunotherapy owing to the enrichment of CD8+CD103+TRM. TRIAL REGISTRATION Approval for the collection and utilization of clinical samples was granted by the Ethics Committee of Shanghai Pulmonary Hospital (Approval number: K23-228).
Collapse
Affiliation(s)
- Ao Zeng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Yanze Yin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Zhilong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Abudumijiti Abuduwayiti
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Fujun Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | | | - Chao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Keyi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Chao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Xinyun Fang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Jie Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China.
| |
Collapse
|