1
|
Zhao Y, Dai Z, Lang Y, Li R, Zheng H, Mi J, He X, Liu J, Xiang R, Mei X, Liu Y, Wang Y, Guo H, Yang Q, Ren K, Yang T. Screening of Fecal Bacteroides Strains and Discovery of Bacteroides eggerthii S13-F8 with Protective Effects Against Chemotherapy-Induced Diarrhea. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10595-2. [PMID: 40423879 DOI: 10.1007/s12602-025-10595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2025] [Indexed: 05/28/2025]
Abstract
Chemotherapy-induced diarrhea (CID) is a frequent gastrointestinal side effect in cancer patients, particularly associated with the use of 5-fluorouracil (5-FU). This study aimed to isolate multiple Bacteroides strains from the feces of healthy individuals and identify Bacteroides eggerthii (B. eggerthii) S13-F8 as the optimal candidate for alleviating CID. Whole-genome sequencing of B. eggerthii S13-F8 was conducted to uncover its functional characteristics and explore the potential mechanisms underlying its protective effects against CID. The anti-CID efficacy of B. eggerthii S13-F8 was assessed using multiple parameters, including diarrhea severity, food intake, and body weight changes. Comprehensive analyses, including blood tests, intestinal histopathology, colon transcriptomics, and fecal metagenomics, were performed to elucidate its underlying mechanisms. In a 5-FU-induced mouse model, B. eggerthii S13-F8 significantly alleviated weight loss and diarrhea. Histological examination revealed that B. eggerthii S13-F8 preserved the villus height-to-crypt depth (V/C) ratio and protected goblet cells in colonic tissues. Gene expression analysis showed that B. eggerthii S13-F8 upregulated protective markers, such as Aqp8, Slc26a3, and mucin-related genes (TFF3, FCGBP, and Muc2), while downregulating pro-inflammatory mediators, including IL-1α, IL-22, and Cxcl2. Furthermore, B. eggerthii S13-F8 modulated gut microbiota composition by suppressing pathogenic bacteria (Pseudomonas aeruginosa, Salmonella, γ-Proteobacteria, and Shigella) and enriching beneficial taxa, such as Lactobacillus and Akkermansia muciniphila. In conclusion, B. eggerthii S13-F8 demonstrates significant potential in mitigating severe diarrhea caused by 5-FU chemotherapy, providing a strong foundation for its development as a live biotherapeutic for CID treatment.
Collapse
Affiliation(s)
- Yi Zhao
- School of Pharmacy, Chengdu Medical College, Sichuan Province, Chengdu, China
| | - Zhengqun Dai
- School of Pharmacy, Chengdu Medical College, Sichuan Province, Chengdu, China
| | - Yanmei Lang
- School of Pharmacy, Chengdu Medical College, Sichuan Province, Chengdu, China
| | - Rui Li
- School of Pharmacy, Chengdu Medical College, Sichuan Province, Chengdu, China
| | - Hongyu Zheng
- School of Pharmacy, Chengdu Medical College, Sichuan Province, Chengdu, China
| | - Jiajia Mi
- School of Pharmacy, Chengdu Medical College, Sichuan Province, Chengdu, China
| | - Xiu He
- School of Pharmacy, Chengdu Medical College, Sichuan Province, Chengdu, China
| | - Jin Liu
- School of Pharmacy, Chengdu Medical College, Sichuan Province, Chengdu, China
| | - Rong Xiang
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueran Mei
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yang Liu
- Scientific Research Center, Chengdu Medical College, Sichuan Province, Chengdu, China
| | - Yantang Wang
- Scientific Research Center, Chengdu Medical College, Sichuan Province, Chengdu, China
| | - Huijie Guo
- Scientific Research Center, Chengdu Medical College, Sichuan Province, Chengdu, China
| | - Qian Yang
- School of Pharmacy, Chengdu Medical College, Sichuan Province, Chengdu, China
| | - Ke Ren
- School of Laboratory Medicine, Chengdu Medical College, Sichuan Province, Chengdu, China.
| | - Tai Yang
- School of Pharmacy, Chengdu Medical College, Sichuan Province, Chengdu, China.
| |
Collapse
|
2
|
Westermann S, Radtke D, Kramer L, Wirtz S, Voehringer D. Activation of STAT6 in Intestinal Epithelial Cells Predisposes to Gut Inflammation. Eur J Immunol 2025; 55:e202451394. [PMID: 39670708 PMCID: PMC11830386 DOI: 10.1002/eji.202451394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) often associated with a Type 2 immune response. Although previous reports hint at a role for signal transducer and activator of transcription (STAT) 6 signaling in non-immune cells, the contribution of STAT6-activation particularly in intestinal epithelial cells (IECs) is still unknown. Dextran sodium sulfate (DSS)-induced colitis is a model for UC in mice that we applied here on animals with expression of a constitutively active version of STAT6 in IECs (VillinCre_STAT6vt mice). We report increased pathology and mortality due to enhanced and systemic inflammation in these mice. Bulk RNA sequencing of colonic tissue from naïve VillinCre_STAT6vt mice showed differential expression of more than 140 genes compared to control mice. Gene set enrichment analysis revealed STAT6-regulated expression of the unfolded protein response, MTORC- and MYC-signaling, and protein secretion pathways. A comparison of gene expression in the colon of naïve VillinCre_STAT6vt mice and a human single-cell RNA sequencing dataset of a patient cohort with IBD revealed overlapping changes in the epithelial and macrophage compartment compared to corresponding controls. In conclusion, we found that activation of STAT6 in the intestinal epithelium predisposes to exacerbated colitis and gut inflammation.
Collapse
Affiliation(s)
- Stefanie Westermann
- Department of Infection BiologyUniversity Hospital Erlangen and Friedrich‐Alexander University Erlangen‐Nuremberg (FAU)ErlangenGermany
| | - Daniel Radtke
- Department of Infection BiologyUniversity Hospital Erlangen and Friedrich‐Alexander University Erlangen‐Nuremberg (FAU)ErlangenGermany
| | - Lisa Kramer
- Department of Infection BiologyUniversity Hospital Erlangen and Friedrich‐Alexander University Erlangen‐Nuremberg (FAU)ErlangenGermany
| | - Stefan Wirtz
- Department of Medicine 1University Hospital Erlangen and Friedrich‐Alexander University Erlangen‐Nuremberg (FAU)ErlangenGermany
| | - David Voehringer
- Department of Infection BiologyUniversity Hospital Erlangen and Friedrich‐Alexander University Erlangen‐Nuremberg (FAU)ErlangenGermany
| |
Collapse
|
3
|
Ehrencrona E, Gallego P, Trillo‐Muyo S, Garcia‐Bonete M, Recktenwald CV, Hansson GC, Johansson MEV. The structure of FCGBP is formed as a disulfide-mediated homodimer between its C-terminal domains. FEBS J 2025; 292:582-601. [PMID: 39754272 PMCID: PMC11796319 DOI: 10.1111/febs.17383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 01/06/2025]
Abstract
Mucus in the colon is crucial for intestinal homeostasis by forming a barrier that separates microbes from the epithelium. This is achieved by the structural arrangement of the major mucus proteins, such as MUC2 and FCGBP, both of which are comprised of several von Willebrand D domains (vWD) and assemblies. Numerous disulfide bonds stabilise these domains, and intermolecular bonds generate multimers of MUC2. The oligomeric nature of FCGBP is not known. Human hFCGBP contains 13 vWD domains whereas mouse mFCGBP consists of only 7. We found unpaired cysteines in the vWD1 (human and mouse) and vWD5 (mouse)/vWD11 (human) assemblies which were not involved in disulfide bonds. However, the most C-terminal vWD domains, vWD7 (mouse)/vWD13 (human), formed disulfide-linked dimers. The intermolecular bond between C5284 and C5403 of human hFCGBP was observed by using mass spectrometry to generate the dimer. Cryo-EM structure analysis of recombinant mouse mFCGBP revealed a compact dimer with two symmetric intermolecular disulfide bonds between C2462 and C2581, corresponding to the dimerising cysteines in the human hFCGBP. This compact conformation involves interactions between the vWD assemblies, but although the domains involved at the interface are the same, the nature of the interactions differ. Mouse mFCGBP was also found to exist in a semi-extended conformation. These different interactions offer insights into the dynamic nature of the FCGBP homodimer.
Collapse
Affiliation(s)
- Erik Ehrencrona
- Department of Medical Biochemistry and Cell BiologyInstitute of Biomedicine, University of GothenburgSweden
| | - Pablo Gallego
- Department of Medical Biochemistry and Cell BiologyInstitute of Biomedicine, University of GothenburgSweden
| | - Sergio Trillo‐Muyo
- Department of Medical Biochemistry and Cell BiologyInstitute of Biomedicine, University of GothenburgSweden
| | - Maria‐Jose Garcia‐Bonete
- Department of Medical Biochemistry and Cell BiologyInstitute of Biomedicine, University of GothenburgSweden
| | - Christian V. Recktenwald
- Department of Medical Biochemistry and Cell BiologyInstitute of Biomedicine, University of GothenburgSweden
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell BiologyInstitute of Biomedicine, University of GothenburgSweden
| | - Malin E. V. Johansson
- Department of Medical Biochemistry and Cell BiologyInstitute of Biomedicine, University of GothenburgSweden
| |
Collapse
|
4
|
Balbuena E, Milhem F, Kiremitci BZ, Williams TI, Collins L, Shu Q, Eroglu A. The biochemical effects of carotenoids in orange carrots on the colonic proteome in a mouse model of diet-induced obesity. Front Nutr 2024; 11:1492380. [PMID: 39588046 PMCID: PMC11587903 DOI: 10.3389/fnut.2024.1492380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Carotenoids are naturally occurring pigments in plants and are responsible for the orange, yellow, and red color of fruits and vegetables. Carrots are one of the primary dietary sources of carotenoids. The biological activities of carotenoids in higher organisms, including their immunomodulatory activities, are well documented in most tissues but not the large intestine. The gastrointestinal barrier acts as a line of defense against the systemic invasion of pathogenic bacteria, especially at the colonic level. Methods To test whether carotenoids in orange carrots can alleviate obesity-associated gut inflammation and strengthen the intestinal barrier function, male C57BL/6J mice were randomized to one of four experimental diets for 20 weeks (n = 20 animals/group): Low-fat diet (LFD, 10% calories from fat), high-fat diet (HFD, 45% calories from fat), HFD with white carrot powder (HFD+WC), or HFD with orange carrot powder (HFD + OC). Colon tissues were harvested to analyze the biochemical effects of carotenoids in carrots. The distal sections were subjected to isobaric labeling-based quantitative proteomics in which tryptic peptides were labeled with tandem mass tags, followed by fractionation and LC-MS/MS analysis in an Orbitrap Eclipse Tribrid instrument. Results High-performance liquid chromatography results revealed that the HFD+WC pellets were carotenoid-deficient, and the HFD+OC pellets contained high concentrations of provitamin A carotenoids, specifically α-carotene and β-carotene. As a result of the quantitative proteomics, a total of 4410 differentially expressed proteins were identified. Intestinal barrier-associated proteins were highly upregulated in the HFD+OC group, particularly mucin-2 (MUC-2). Upon closer investigation into mucosal activity, other proteins related to MUC-2 functionality and tight junction management were upregulated by the HFD+OC dietary intervention. Discussion Collectively, our findings suggest that carotenoid-rich foods can prevent high-fat diet-induced intestinal barrier disruption by promoting colonic mucus synthesis and secretion in mammalian organisms. Data are available via ProteomeXchange with identifier PXD054150.
Collapse
Affiliation(s)
- Emilio Balbuena
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Fadia Milhem
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Buse Zeren Kiremitci
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Taufika Islam Williams
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Leonard Collins
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Qingbo Shu
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
5
|
Wang M, Zhang J, Qiao C, Yan S, Wu G. Comparative analysis of human and mouse transcriptomes during skin wound healing. Front Cell Dev Biol 2024; 12:1486493. [PMID: 39534398 PMCID: PMC11554618 DOI: 10.3389/fcell.2024.1486493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Skin wound healing is a complex process which involves multiple molecular events and the underlying mechanism is not fully understood. We presented a comparative transcriptomic analysis of skin wound healing in humans and mice to identify shared molecular mechanisms across species. We analyzed transcriptomes from three distinct stages of the healing process and constructed protein-protein interaction networks to elucidate commonalities in the healing process. A substantial number of differentially expressed genes (DEGs) were identified in human transcriptomes, particularly upregulated genes before and after wound injury, and enriched in processes related to extracellular matrix organization and leukocyte migration. Similarly, the mouse transcriptome revealed thousands of DEGs, with shared biological processes and enriched KEGG pathways, highlighting a conserved molecular signature in skin wound healing. A total of 21 common DEGs were found across human comparisons, and 591 in mouse comparisons, with four genes (KRT2, MARCKSL1, MMP1, and TNC) consistently differentially expressed in both species, suggesting critical roles in mammalian skin wound healing. The expression trends of these genes were consistent, indicating their potential as therapeutic targets. The molecular network analysis identified five subnetworks associated with collagen synthesis, immunity, cell-cell adhesion, and extracellular matrix, with hub genes such as COL4A1, TLR7, TJP3, MMP13, and HIF1A exhibited significant expression changes before and after wound injury in humans and mice. In conclusion, our study provided a detailed molecular network for understanding the healing process in humans and mice, revealing conserved mechanisms that could help the development of targeted therapies across species.
Collapse
Affiliation(s)
- Maochun Wang
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | - Guoping Wu
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Ghobashi AH, Lanzloth R, Ladaika CA, Masood A, O’Hagan HM. Single-Cell Profiling Reveals the Impact of Genetic Alterations on the Differentiation of Inflammation-Induced Murine Colon Tumors. Cancers (Basel) 2024; 16:2040. [PMID: 38893159 PMCID: PMC11171101 DOI: 10.3390/cancers16112040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Genetic mutations and chronic inflammation of the colon contribute to the development of colorectal cancer (CRC). Using a murine model of inflammation-induced colon tumorigenesis, we determined how genetic mutations alter colon tumor cell differentiation. Inflammation induced by enterotoxigenic Bacteroides fragilis (ETBF) colonization of multiple intestinal neoplasia (MinApcΔ716/+) mice triggers loss of heterozygosity of Apc causing colon tumor formation. Here, we report that the addition of BRAFV600E mutation (BRAFF-V600ELgr5tm1(Cre/ERT2)CleMinApcΔ716/+, BLM) or knocking out Msh2 (Msh2LoxP/LoxPVil1-creMinApcΔ716/+, MSH2KO) in the Min model altered colon tumor differentiation. Using single-cell RNA sequencing, we uncovered the differences between BLM, Min, and MSH2KO tumors at a single-cell resolution. BLM tumors showed an increase in differentiated tumor epithelial cell lineages and a reduction in the tumor stem cell population. Interestingly, the tumor stem cell population of BLM tumors had revival colon stem cell characteristics with low WNT signaling and an increase in RevCSC marker gene expression. In contrast, MSH2KO tumors were characterized by an increased tumor stem cell population that had higher WNT signaling activity compared to Min tumors. Furthermore, overall BLM tumors had higher expression of transcription factors that drive differentiation, such as Cdx2, than Min tumors. Using RNA velocity, we identified additional potential regulators of BLM tumor differentiation such as NDRG1. The role of CDX2 and NDRG1 as putative regulators for BLM tumor cell differentiation was verified using organoids derived from BLM tumors. Our results demonstrate the critical connections between genetic mutations and cell differentiation in inflammation-induced colon tumorigenesis. Understanding such roles will deepen our understanding of inflammation-associated colon cancer.
Collapse
Affiliation(s)
- Ahmed H. Ghobashi
- Genome, Cell, and Developmental Biology Graduate Program, Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Rosie Lanzloth
- Genome, Cell, and Developmental Biology Graduate Program, Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Christopher A. Ladaika
- Genome, Cell, and Developmental Biology Graduate Program, Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Ashiq Masood
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heather M. O’Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Hensel IV, Éliás S, Steinhauer M, Stoll B, Benfatto S, Merkt W, Krienke S, Lorenz HM, Haas J, Wildemann B, Resnik-Docampo M. SLE serum induces altered goblet cell differentiation and leakiness in human intestinal organoids. EMBO Mol Med 2024; 16:547-574. [PMID: 38316934 PMCID: PMC10940301 DOI: 10.1038/s44321-024-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Human intestinal epithelial cells are the interface between luminal content and basally residing immune cells. They form a tight monolayer that constantly secretes mucus creating a multilayered protective barrier. Alterations in this barrier can lead to increased permeability which is common in systemic lupus erythematosus (SLE) patients. However, it remains unexplored how the barrier is affected. Here, we present an in vitro model specifically designed to examine the effects of SLE on epithelial cells. We utilize human colon organoids that are stimulated with serum from SLE patients. Combining transcriptomic with functional analyses revealed that SLE serum induced an expression profile marked by a reduction of goblet cell markers and changed mucus composition. In addition, organoids exhibited imbalanced cellular composition along with enhanced permeability, altered mitochondrial function, and an interferon gene signature. Similarly, transcriptomic analysis of SLE colon biopsies revealed a downregulation of secretory markers. Our work uncovers a crucial connection between SLE and intestinal homeostasis that might be promoted in vivo through the blood, offering insights into the causal connection of barrier dysfunction and autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Wolfgang Merkt
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Krienke
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
8
|
Ghobashi AH, Lanzloth R, Ladaika CA, O'Hagan HM. Single-cell profiling reveals the impact of genetic alterations on the differentiation of inflammation-induced colon tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569463. [PMID: 38077052 PMCID: PMC10705473 DOI: 10.1101/2023.11.30.569463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Genetic mutations and chronic inflammation of the colon contribute to the development of colorectal cancer (CRC). Using a murine model of inflammation-induced colon tumorigenesis, we determined how genetic mutations alter colon tumor cell differentiation. Inflammation induced by enterotoxigenic Bacteroides fragilis (ETBF) colonization of multiple intestinal neoplasia (Min ApcΔ716/+ ) mice triggers loss of heterozygosity of Apc causing colon tumor formation. Here, we report that the addition of BRAF V600E mutation ( BRAF FV600E Lgr5 tm1(Cre/ERT2)Cle Min ApcΔ716/+ , BLM) or knocking out Msh2 ( Msh2 LoxP/LoxP Vil1-cre Min ApcΔ716/+ , MSH2KO) in the Min model altered colon tumor differentiation. Using single cell RNA-sequencing, we uncovered the differences between BLM, Min, and MSH2KO tumors at a single cell resolution. BLM tumors showed an increase in differentiated tumor epithelial cell lineages and a reduction in the stem cell population. In contrast, MSH2KO tumors were characterized by an increased stem cell population that had higher WNT signaling activity compared to Min tumors. Additionally, comparative analysis of single-cell transcriptomics revealed that BLM tumors had higher expression of transcription factors that drive differentiation, such as Cdx2, than Min tumors. Using RNA velocity, we were able to identify additional potential regulators of BLM tumor differentiation such as NDRG1. The role of CDX2 and NDRG1 as putative regulators for BLM tumor cell differentiation was verified using organoids derived from BLM tumors. Our results demonstrate the critical connections between genetic mutations and cell differentiation in inflammation-induced colon tumorigenesis. Understanding such roles will deepen our understanding of inflammation-associated colon cancer.
Collapse
|
9
|
Thorne AM, Wolters JC, Lascaris B, Bodewes SB, Lantinga VA, van Leeuwen OB, de Jong IEM, Ustyantsev K, Berezikov E, Lisman T, Kuipers F, Porte RJ, de Meijer VE. Bile proteome reveals biliary regeneration during normothermic preservation of human donor livers. Nat Commun 2023; 14:7880. [PMID: 38036513 PMCID: PMC10689461 DOI: 10.1038/s41467-023-43368-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
Normothermic machine perfusion (NMP) after static cold storage is increasingly used for preservation and assessment of human donor livers prior to transplantation. Biliary viability assessment during NMP reduces the risk of post-transplant biliary complications. However, understanding of molecular changes in the biliary system during NMP remains incomplete. We performed an in-depth, unbiased proteomics analysis of bile collected during sequential hypothermic machine perfusion, rewarming and NMP of 55 human donor livers. Longitudinal analysis during NMP reveals proteins reflective of cellular damage at early stages, followed by upregulation of secretory and immune response processes. Livers with bile chemistry acceptable for transplantation reveal protein patterns implicated in regenerative processes, including cellular proliferation, compared to livers with inadequate bile chemistry. These findings are reinforced by detection of regenerative gene transcripts in liver tissue before machine perfusion. Our comprehensive bile proteomics and liver transcriptomics data sets provide the potential to further evaluate molecular mechanisms during NMP and refine viability assessment criteria.
Collapse
Affiliation(s)
- Adam M Thorne
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Bianca Lascaris
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Silke B Bodewes
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Veerle A Lantinga
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Otto B van Leeuwen
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Iris E M de Jong
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Kirill Ustyantsev
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Ton Lisman
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- Erasmus MC Transplant Institute, Department of Surgery, Division of HPB and Transplant Surgery, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vincent E de Meijer
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands.
| |
Collapse
|
10
|
Arnesen H, Markussen T, Birchenough G, Birkeland S, Nyström EEL, Hansson GC, Carlsen H, Boysen P. Microbial experience through housing in a farmyard-type environment alters intestinal barrier properties in mouse colons. Sci Rep 2023; 13:13701. [PMID: 37607995 PMCID: PMC10444815 DOI: 10.1038/s41598-023-40640-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
To close the gap between ultra-hygienic research mouse models and the much more environmentally exposed conditions of humans, we have established a system where laboratory mice are raised under a full set of environmental factors present in a naturalistic, farmyard-type habitat-a process we have called feralization. In previous studies we have shown that feralized (Fer) mice were protected against colorectal cancer when compared to conventionally reared laboratory mice (Lab). However, the protective mechanisms remain to be elucidated. Disruption of the protective intestinal barrier is an acknowledged player in colorectal carcinogenesis, and in the current study we assessed colonic mucosal barrier properties in healthy, feralized C57BL/6JRj male mice. While we found no effect of feralization on mucus layer properties, higher expression of genes encoding the mucus components Fcgbp and Clca1 still suggested mucus enforcement due to feralization. Genes encoding other proteins known to be involved in bacterial defense (Itln1, Ang1, Retnlb) and inflammatory mechanisms (Zbp1, Gsdmc2) were also higher expressed in feralized mice, further suggesting that the Fer mice have an altered intestinal mucosal barrier. These findings demonstrate that microbial experience conferred by housing in a farmyard-type environment alters the intestinal barrier properties in mice possibly leading to a more robust protection against disease. Future studies to unravel regulatory roles of feralization on intestinal barrier should aim to conduct proteomic analyses and in vivo performance of the feralized mice intestinal barrier.
Collapse
Affiliation(s)
- Henriette Arnesen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Turhan Markussen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - George Birchenough
- Mucin Biology Group, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Signe Birkeland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Elisabeth E L Nyström
- Mucin Biology Group, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C Hansson
- Mucin Biology Group, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Preben Boysen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|