1
|
Geltz A, Geltz J, Kasprzak A. Regulation and Function of Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): The Role of the SRIF System in Macrophage Regulation. Int J Mol Sci 2025; 26:5336. [PMID: 40508145 PMCID: PMC12155148 DOI: 10.3390/ijms26115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/16/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
Colorectal cancer (CRC) remains the leading cause of morbidity and mortality for both men and women worldwide. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) of solid tumors, including CRC. These macrophages are found in the pro-inflammatory M1 and anti-inflammatory M2 forms, with the latter increasingly recognized for its tumor-promoting phenotypes. Many signaling molecules and pathways, including AMPK, EGFR, STAT3/6, mTOR, NF-κB, MAPK/ERK, and HIFs, are involved in regulating TAM polarization. Consequently, researchers are investigating several potential predictive and prognostic markers, and novel TAM-based therapeutic targets, especially in combination therapies for CRC. Macrophages of the gastrointestinal tract, including the normal colon and rectum, produce growth hormone-releasing inhibitory peptide/somatostatin (SRIF/SST) and five SST receptors (SSTRs, SST1-5). While the immunosuppressive function of the SRIF system is primarily known for various tissues, its role within CRC-associated TAMs remains underexplored. This review focuses on the following three aspects of TAMs: first, the role of macrophages in the normal colon and rectum within the broader context of macrophage biology; second, the various bioactive factors and signaling pathways associated with TAM function, along with potential strategies targeting TAMs in CRC; and third, the interaction between the SRIF system and macrophages in both normal tissues and the CRC microenvironment.
Collapse
Affiliation(s)
- Agnieszka Geltz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, Bukowska Street 70, 60-812 Poznan, Poland;
| | - Jakub Geltz
- Doctoral School, Poznan University of Medical Sciences, Bukowska Street 70, 60-812 Poznan, Poland;
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland
| | - Aldona Kasprzak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland;
| |
Collapse
|
2
|
Jia H, Li J, Chen X, Liu Z, Wu C, Liu C, Zhang J, Luo M, Huang M, Huang S, Cai M, Gao L. ErTao decoction alleviates liver fibrosis by suppressing STING-mediated macrophages and NLRP3 inflammasome activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156489. [PMID: 39954622 DOI: 10.1016/j.phymed.2025.156489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Liver fibrosis (LF) is a common pathological process in the progression of multiple chronic liver diseases to cirrhosis, affecting millions of people worldwide annually. The incomplete understanding of its mechanisms has led to a lack of clinically effective therapeutic options. ErTao decoction (ETD, ), a derivative combining the components of Erchen Decoction and Taohong Siwu Decoction, is rooted in the traditional Chinese medicine theory of "phlegm-dampness-blood stasis". However, the precise mechanism by which ETD exerts its therapeutic effects in LF remains unclear. PURPOSE The purpose of study was to investigate the protective effect of ETD and elucidate its underlying molecular mechanism on LF. METHODS In this study, we employed a multifaceted approach to evaluate the effects of ETD on LF. We used H&E staining, Sirius red staining, immunofluorescence, immunohistochemical analysis, and Western blotting to assess the protective effects of ETD in a CCl4-induced fibrosis mouse model. In vitro validation was conducted using macrophages and hepatic stellate cells to further elucidate the mechanisms involved. STING-deficient mice were used to assess its regulatory effects on liver injury, inflammatory and activation through immunohistochemical staining and Western blotting. Furthermore, UHPLCHRMS detection and computer-aided drug analysis were employed to identify and validate potential effective components of ETD for responsible for its therapeutic effects in treating LF. RESULTS In our in vivo and in vitro experiments, we found that ETD effectively reduced collagen fiber deposition and alleviated LF pathological changes by inhibiting macrophage inflammatory activation and suppressing NLRP3 and STING signaling. Notably, STING deficiency exhibited a protective effect against liver tissue injury and inhibited inflammatory activation of hepatic macrophages in LF model mice. Additionally, comprehensive analysis of the active ingredients in ETD strongly suggested that Naringin served as a pivotal bioactive constituent within ETD responsible for modulating STING signaling. CONCLUSIONS Our study highlighted the protective effects of ETD on LF by inhibiting STING-mediated macrophage activation and NLRP3 inflammasome signaling. Notably, Naringin might serve as a promising novel STING inhibitor to effectively counteract the progression of LF. These findings represented significant advances in LF research and paved the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hui Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Junjie Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoting Chen
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zepeng Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaofeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Luo
- The Second Nanning People's Hospital, Nanning, Guangxi, China
| | - Manping Huang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Min Cai
- Hainan Provincial Hospital of Chinese Medicine, Haikou, Hainan, China.
| | - Lei Gao
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Li S, Hao L, Hu X. Biological Roles and Clinical Therapeutic Applications of Tumor-Associated Macrophages in Colorectal Liver Metastasis. J Inflamm Res 2024; 17:8429-8443. [PMID: 39529996 PMCID: PMC11552512 DOI: 10.2147/jir.s493656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Colorectal cancer (CRC) commonly metastasizes to the liver, and this poses a significant clinical challenge. Tumor-associated macrophages (TAMs), key players within the TME, play a significant role in promoting CRC metastasis by secreting various chemokines, growth factors, and cytokines. This review not only aims to enhance our knowledge of TAMs' functions in CRC progression and metastasis but also examines innovative therapeutic strategies to address the clinical problem of colorectal liver metastasis (CLM). By targeting TAMs, we may be able to develop more effective treatments and offer hope to patients suffering from this devastating disease.
Collapse
Affiliation(s)
- Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
4
|
Bareham B, Dibble M, Parsons M. Defining and modeling dynamic spatial heterogeneity within tumor microenvironments. Curr Opin Cell Biol 2024; 90:102422. [PMID: 39216233 PMCID: PMC11846781 DOI: 10.1016/j.ceb.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Many solid tumors exhibit significant genetic, cellular, and biophysical heterogeneity which dynamically evolves during disease progression and after treatment. This constant flux in cell composition, phenotype, spatial relationships, and tissue properties poses significant challenges in accurately diagnosing and treating patients. Much of the complexity lies in unraveling the molecular changes in different tumor compartments, how they influence one another in space and time and where vulnerabilities exist that might be appropriate to target therapeutically. Recent advances in spatial profiling tools and technologies are enabling new insight into the underlying biology of complex tumors, creating a greater understanding of the intricate relationship between cell types, states, and the microenvironment. Here we reflect on some recent discoveries in this area, where the key knowledge and technology gaps lie, and the advancements in spatial measurements and in vitro models for the study of spatial intratumoral heterogeneity.
Collapse
Affiliation(s)
- Bethany Bareham
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Matthew Dibble
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
5
|
Choi Y, Lee D, Kim NY, Seo I, Park NJY, Chong GO. Role of Tumor-Associated Macrophages in Cervical Cancer: Integrating Classical Perspectives with Recent Technological Advances. Life (Basel) 2024; 14:443. [PMID: 38672714 PMCID: PMC11051155 DOI: 10.3390/life14040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in the tumor microenvironment, influencing cancer progression and contributing to poor prognosis. However, in cervical cancer (CC), their significance and involvement are relatively less studied than in other gynecological cancers such as ovarian and endometrial cancer. This review aims to provide an overview of TAMs, covering their origins and phenotypes and their impact on CC progression, along with major TAM-targeted therapeutic approaches. Furthermore, we advocate for the integration of cutting-edge research methodologies, such as single-cell RNA sequencing and spatial RNA sequencing, to enable in-depth and comprehensive investigations into TAMs in CC, which would be beneficial in leading to more personalized and effective immunotherapy strategies for patients with CC.
Collapse
Affiliation(s)
- Yeseul Choi
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (D.L.); (N.Y.K.)
| | - Donghyeon Lee
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (D.L.); (N.Y.K.)
| | - Na Young Kim
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (D.L.); (N.Y.K.)
| | - Incheol Seo
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea;
| | - Nora Jee-Young Park
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea;
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Gun Oh Chong
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea;
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| |
Collapse
|