1
|
Laeremans T, Janssens A, Aerts JL. From natural defenders to therapeutic warriors: NK cells in HIV immunotherapy. Immunotherapy 2025; 17:133-145. [PMID: 39905963 PMCID: PMC11901454 DOI: 10.1080/1750743x.2025.2460965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells both play essential roles in controlling viral infections by eliminating virus-infected cells. Unlike CTLs, which require priming and activation by antigen-presenting cells, NK cells possess a remarkable capacity to mount a rapid antiviral immune response immediately after infection. Additionally, they can bolster the adaptive immune system by secreting cytokines and directly interacting with other immune cells. However, during chronic human immunodeficiency virus (HIV) infection, various immune cells, including NK cells, experience functional impairments. This has led to the exploration of NK cell-based immunotherapy as a promising strategy to reverse these dysfunctions and contribute to the pursuit of a functional cure for HIV. Building on the success of NK cell therapies in cancer treatment, these approaches offer significant potential for transforming the HIV cure field. This review provides a comprehensive overview of the latest advances in NK cell-based immunotherapy for HIV, outlining the progress made and the key challenges that must be overcome to achieve a functional cure for people living with HIV.
Collapse
Affiliation(s)
- Thessa Laeremans
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Faculty of Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Amber Janssens
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Faculty of Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Joeri L. Aerts
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Faculty of Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
2
|
Giacomoni J, Sabatier JM. Renin-Angiotensin System Dysregulation: ADAM17 Activation Consequences Related to SARS-CoV-2. Infect Disord Drug Targets 2025; 25:e290424229522. [PMID: 38685806 DOI: 10.2174/0118715265299597240422102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Affiliation(s)
- Julien Giacomoni
- Independent Researcher, 245 Chemin du Château, 13119 Saint Savournin, France
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), CNRS UMR 7051, 27 Bd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
3
|
O’Donnell KL, Henderson CW, Anhalt H, Fusco J, Erasmus JH, Lambe T, Marzi A. Vaccine Platform Comparison: Protective Efficacy against Lethal Marburg Virus Challenge in the Hamster Model. Int J Mol Sci 2024; 25:8516. [PMID: 39126087 PMCID: PMC11313278 DOI: 10.3390/ijms25158516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Marburg virus (MARV), a filovirus, was first identified in 1967 in Marburg, Germany, and Belgrade, former Yugoslavia. Since then, MARV has caused sporadic outbreaks of human disease with high case fatality rates in parts of Africa, with the largest outbreak occurring in 2004/05 in Angola. From 2021 to 2023, MARV outbreaks occurred in Guinea, Ghana, New Guinea, and Tanzania, emphasizing the expansion of its endemic area into new geographical regions. There are currently no approved vaccines or therapeutics targeting MARV, but several vaccine candidates have shown promise in preclinical studies. We compared three vaccine platforms simultaneously by vaccinating hamsters with either a single dose of an adenovirus-based (ChAdOx-1 MARV) vaccine, an alphavirus replicon-based RNA (LION-MARV) vaccine, or a recombinant vesicular stomatitis virus-based (VSV-MARV) vaccine, all expressing the MARV glycoprotein as the antigen. Lethal challenge with hamster-adapted MARV 4 weeks after vaccination resulted in uniform protection of the VSV-MARV and LION-MARV groups and 83% of the ChAdOx-1 MARV group. Assessment of the antigen-specific humoral response and its functionality revealed vaccine-platform-dependent differences, particularly in the Fc effector functions.
Collapse
Affiliation(s)
- Kyle L. O’Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Corey W. Henderson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Hanna Anhalt
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Joan Fusco
- Public Health Vaccines Inc., Cambridge, MA 02412, USA
| | | | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7BN, UK
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|
4
|
Mele D, Ottolini S, Lombardi A, Conteianni D, Bandera A, Oliviero B, Mantovani S, Cassaniti I, Baldanti F, Gori A, Mondelli MU, Varchetta S. Long-term dynamics of natural killer cells in response to SARS-CoV-2 vaccination: Persistently enhanced activity postvaccination. J Med Virol 2024; 96:e29585. [PMID: 38566585 DOI: 10.1002/jmv.29585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Natural Killer (NK) cells play a significant role in the early defense against virus infections and cancer. Recent studies have demonstrated the involvement of NK cells in both the induction and effector phases of vaccine-induced immunity in various contexts. However, their role in shaping immune responses following SARS-CoV-2 vaccination remains poorly understood. To address this matter, we conducted a comprehensive analysis of NK cell phenotype and function in SARS-CoV-2 unexposed individuals who received the BNT162b2 vaccine. We employed a longitudinal study design and utilized a panel of 53 15-mer overlapping peptides covering the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein to assess NK cell function at 0 and 20 days following the first vaccine, and 30 and 240 days following booster. Additionally, we evaluated the levels of total IgG anti-Spike antibodies and their potential neutralizing ability. Our findings revealed an increased NK cell activity upon re-exposure to RBD when combined with IL12 and IL18 several months after booster. Concurrently, we observed that the frequencies of NKG2A + NK cells declined over the course of the follow-up period, while NKG2C increased only in CMV positive subjects. The finding that NK cell functions are inducible 9 months after vaccination upon re-exposure to RBD and cytokines, sheds light on the role of NK cells in contributing to SARS-CoV-2 vaccine-induced immune protection and pave the way to further studies in the field.
Collapse
Affiliation(s)
- Dalila Mele
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sabrina Ottolini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Andrea Lombardi
- Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Daniela Conteianni
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandra Bandera
- Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Barbara Oliviero
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania Mantovani
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Irene Cassaniti
- Department of Microbiology and Virology, Molecular Virology Unit, Fondazione IRCCS, Policlinico S. Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Fausto Baldanti
- Department of Microbiology and Virology, Molecular Virology Unit, Fondazione IRCCS, Policlinico S. Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Gori
- Department of Clinical Sciences, Infectious Diseases and Immunopathology, L. Sacco Hospital, Università di Milano, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milano, Italy
| | - Mario U Mondelli
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Stefania Varchetta
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|