1
|
Joshi H, Anaya E, Addanki A, Almgren-Bell A, Todd EM, Morley SC. Mechanosensitivity of macrophage polarization: comparing small molecule leukadherin-1 to substrate stiffness. Front Immunol 2025; 16:1420325. [PMID: 40114914 PMCID: PMC11922956 DOI: 10.3389/fimmu.2025.1420325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Macrophages sustain tissue homeostasis through host defense and wound repair. To promote host defense, macrophages upregulate surface markers associated with antigen processing and secrete pro-inflammatory mediators such as IL-6 and IL-1β. After pathogen clearance, macrophages shift phenotype to promote wound repair. Shifts in phenotypes are termed "polarization" and have historically been modeled by exposure to soluble mediators such as LPS+IFNγ (host defense) or IL-4+IL-13 (tissue repair). Greater emphasis is now being placed on understanding how the mechanical environment of macrophages, such as tissue compliance, regulates macrophages responses. Here, we compare incubation of primary macrophages on collagen-coated silica gels of varying stiffness to treatment with the small molecule integrin activator, leukadherin-1 (LA1), to examine how substrate stiffness alters macrophage polarization in response to multiple stimuli. LA1 was developed as an immunomodulator to treat inflammatory diseases by impairing trafficking of inflammatory cells. A recent clinical trial examining LA1 as an immunomodulator in solid tumors was terminated early because no benefit was observed. We hypothesized that LA1 treatment may exert additional, unexpected effects on macrophage polarization by replicating mechanotransduction. Specifically, we hypothesized that LA1 would mimic effects of incubation on stiffer substrates, as both conditions would be predicted to activate integrins. Our results show that soft substrate (0.2 kPa) trends towards upregulation of host defense molecules, in contrast to prior reports using different experimental systems. We further show that soft substrates enhance NLRP3-mediated IL-1β production, compared to stiff, in both primary mouse and human macrophages. LA1 mimicked incubation on stiff substrates in inhibiting NLRP3 activation and in regulating expression of several surface markers but differed by reducing IL-6 production. Our results show that macrophage inflammatory responses are regulated by adhesion-based, integrin-mediated mechanical signaling. Modulation of NLRP3-mediated IL-1β production by LA1 supports the possibility of repurposing LA1 to treat NLRP3-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Hemant Joshi
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Edgar Anaya
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Anvitha Addanki
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Alison Almgren-Bell
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Elizabeth M. Todd
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Sharon Celeste Morley
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
- Division of Immunobiology, Department of Pathology and Immunology, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
2
|
Gottschalk TA, Hall P, Tsantikos E, L’Estrange-Stranieri E, Hickey MJ, Hibbs ML. Loss of CD11b Accelerates Lupus Nephritis in Lyn-Deficient Mice Without Disrupting Glomerular Leukocyte Trafficking. Front Immunol 2022; 13:875359. [PMID: 35634296 PMCID: PMC9134083 DOI: 10.3389/fimmu.2022.875359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex, heterogeneous autoimmune disease. A common manifestation, lupus nephritis, arises from immune complex deposition in the kidney microvasculature promoting leukocyte activation and infiltration, which triggers glomerular damage and renal dysfunction. CD11b is a leukocyte integrin mainly expressed on myeloid cells, and aside from its well-ascribed roles in leukocyte trafficking and phagocytosis, it can also suppress cytokine production and autoreactivity. Genome-wide association studies have identified loss-of-function polymorphisms in the CD11b-encoding gene ITGAM that are strongly associated with SLE and lupus nephritis; however, it is not known whether these polymorphisms act alone to induce disease or in concert with other risk alleles. Herein we show using Itgam-/- mice that loss of CD11b led to mild inflammatory traits, which were insufficient to trigger autoimmunity or glomerulonephritis. However, deficiency of CD11b in autoimmune-prone Lyn-deficient mice (Lyn-/-Itgam-/-) accelerated lupus-like disease, driving early-onset immune cell dysregulation, autoantibody production and glomerulonephritis, impacting survival. Migration of leukocytes to the kidney in Lyn-/- mice was unhindered by lack of CD11b. Indeed, kidney inflammatory macrophages were further enriched, neutrophil retention in glomerular capillaries was increased and kidney inflammatory cytokine responses were enhanced in Lyn-/-Itgam-/- mice. These findings indicate that ITGAM is a non-monogenic autoimmune susceptibility gene, with loss of functional CD11b exacerbating disease without impeding glomerular leukocyte trafficking when in conjunction with other pre-disposing genetic mutations. This highlights a primarily protective role for CD11b in restraining inflammation and autoimmune disease and provides a potential therapeutic avenue for lupus treatment.
Collapse
Affiliation(s)
- Timothy A. Gottschalk
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Pamela Hall
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Evelyn Tsantikos
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Elan L’Estrange-Stranieri
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Michael J. Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Margaret L. Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- *Correspondence: Margaret L. Hibbs,
| |
Collapse
|
3
|
DeNardo DG, Galkin A, Dupont J, Zhou L, Bendell J. GB1275, a first-in-class CD11b modulator: rationale for immunotherapeutic combinations in solid tumors. J Immunother Cancer 2021; 9:jitc-2021-003005. [PMID: 34452928 PMCID: PMC8404448 DOI: 10.1136/jitc-2021-003005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Resistance to immune checkpoint inhibitors (ICI) and other anticancer therapies is often associated with the accumulation of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME). Therefore, targeting MDSC recruitment or function is of significant interest as a strategy to treat patients with ICI-resistant cancer. The migration and recruitment of MDSCs to the TME is mediated in part by the CD11b/CD18 integrin heterodimer (Mac-1; αMβ2), expressed on both MDSCs and TAMs. However, inhibition or blockade of CD11b/CD18 has had limited success in clinical trials to date, likely since saturation of CD11b requires doses that are not clinically tolerable with the agents tested so far. Interestingly, activation of CD11b with leukadherin-1 was found to reduce macrophage and neutrophil migration in animal models of inflammatory conditions. Preclinical studies with GB1275, a salt form of leukadherin-1, demonstrated that activation of CD11b improves the antitumor immune response and enhances the response to immunotherapy in mouse models of pancreatic adenocarcinoma, breast cancer and lung cancer. Based on the promising results from preclinical studies, a phase 1/2 clinical study (NCT04060342) of GB1275 in patients with advanced solid tumor types known to be resistant or less likely responsive to immuno-oncology therapies, including pancreatic, breast, prostate, and microsatellite-stable colorectal cancer, is ongoing. In this review, we examine targeting MDSCs as a therapeutic approach in cancer therapy, with a special focus on GB1275 preclinical studies laying the rationale for the phase 1/2 clinical study.
Collapse
Affiliation(s)
- David G DeNardo
- Department of Medicine, ICCE Institute, Department of Pathology and Immunology, Siteman Cancer Center, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | | | | | - Lei Zhou
- Gossamer Bio, San Diego, California, USA
| | - Johanna Bendell
- Sarah Cannon Research Institute, Tennessee Oncology, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Lamers C, Plüss CJ, Ricklin D. The Promiscuous Profile of Complement Receptor 3 in Ligand Binding, Immune Modulation, and Pathophysiology. Front Immunol 2021; 12:662164. [PMID: 33995387 PMCID: PMC8118671 DOI: 10.3389/fimmu.2021.662164] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
The β2-integrin receptor family has a broad spectrum of physiological functions ranging from leukocyte adhesion, cell migration, activation, and communication to the phagocytic uptake of cells and particles. Among the members of this family, complement receptor 3 (CR3; CD11b/CD18, Mac-1, αMβ2) is particularly promiscuous in its functional profile and ligand selectivity. There are close to 100 reported structurally unrelated ligands for CR3, and while many ligands appear to cluster at the αMI domain, molecular details about binding modes remain largely elusive. The versatility of CR3 is reflected in its functional portfolio, which includes prominent roles in the removal of invaders and cell debris, induction of tolerance and synaptic pruning, and involvement in the pathogenesis of numerous autoimmune and chronic inflammatory pathologies. While CR3 is an interesting therapeutic target for immune modulation due to these known pathophysiological associations, drug development efforts are limited by concerns of potential interference with host defense functions and, most importantly, an insufficient molecular understanding of the interplay between ligand binding and functional impact. Here, we provide a systematic summary of the various interaction partners of CR3 with a focus on binding mechanisms and functional implications. We also discuss the roles of CR3 as an immune receptor in health and disease, as an activation marker in research and diagnostics, and as a therapeutic target.
Collapse
Affiliation(s)
- Christina Lamers
- Molecular Pharmacy Unit, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
5
|
Zhang H, Li Z, Li W. M2 Macrophages Serve as Critical Executor of Innate Immunity in Chronic Allograft Rejection. Front Immunol 2021; 12:648539. [PMID: 33815407 PMCID: PMC8010191 DOI: 10.3389/fimmu.2021.648539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Allograft functional failure due to acute or chronic rejection has long been a major concern in the area of solid organ transplantation for decades. As critical component of innate immune system, the macrophages are unlikely to be exclusive for driving acute or chronic sterile inflammation against allografts. Traditionally, macrophages are classified into two types, M1 and M2 like macrophages, based on their functions. M1 macrophages are involved in acute rejection for triggering sterile inflammation thus lead to tissue damage and poor allograft survival, while M2 macrophages represent contradictory features, playing pivotal roles in both anti-inflammation and development of graft fibrosis and resulting in chronic rejection. Macrophages also contribute to allograft vasculopathy, but the phenotypes remain to be identified. Moreover, increasing evidences are challenging traditional identification and classification of macrophage in various diseases. Better understanding the role of macrophage in chronic rejection is fundamental to developing innovative strategies for preventing late graft loss. In this review, we will update the recent progress in our understanding of diversity of macrophage-dominated innate immune response, and reveal the roles of M2 macrophages in chronic allograft rejection as well.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuonan Li
- Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Martinez L, Li X, Ramos-Echazabal G, Faridi H, Zigmond ZM, Santos Falcon N, Hernandez DR, Shehadeh SA, Velazquez OC, Gupta V, Vazquez-Padron RI. A Genetic Model of Constitutively Active Integrin CD11b/CD18. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2545-2553. [PMID: 32938725 PMCID: PMC7577938 DOI: 10.4049/jimmunol.1901402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/23/2020] [Indexed: 01/31/2023]
Abstract
Pharmacological activation of integrin CD11b/CD18 (αMβ2, Mac-1, and CR3) shows anti-inflammatory benefits in a variety of animal models of human disease, and it is a novel therapeutic strategy. Reasoning that genetic models can provide an orthogonal and direct system for the mechanistic study of CD11b agonism, we present in this study, to our knowledge, a novel knock-in model of constitutive active CD11b in mice. We genetically targeted the Itgam gene (which codes for CD11b) to introduce a point mutation that results in the I332G substitution in the protein. The I332G mutation in CD11b promotes an active, higher-affinity conformation of the ligand-binding I/A-domain (CD11b αA-domain). In vitro, this mutation increased adhesion of knock-in neutrophils to fibrinogen and decreased neutrophil chemotaxis to a formyl-Met-Leu-Phe gradient. In vivo, CD11bI332G animals showed a reduction in recruitment of neutrophils and macrophages in a model of sterile peritonitis. This genetic activation of CD11b also protected against development of atherosclerosis in the setting of hyperlipidemia via reduction of macrophage recruitment into atherosclerotic lesions. Thus, our animal model of constitutive genetic activation of CD11b can be a useful tool for the study of integrin activation and its potential contribution to modulating leukocyte recruitment and alleviating different inflammatory diseases.
Collapse
Affiliation(s)
- Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Xiaobo Li
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Gioser Ramos-Echazabal
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Hafeez Faridi
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL 60612; and
| | - Zachary M Zigmond
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Nieves Santos Falcon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Diana R Hernandez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Serene A Shehadeh
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Omaida C Velazquez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Vineet Gupta
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612;
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136;
| |
Collapse
|
7
|
Hemmati S, Sadeghi MA, Yousefi-Manesh H, Eslamiyeh M, Vafaei A, Foroutani L, Donyadideh G, Dehpour A, Rezaei N. Protective Effects of Leukadherin1 in a Rat Model of Targeted Experimental Autoimmune Encephalomyelitis (EAE): Possible Role of P47phox and MDA Downregulation. J Inflamm Res 2020; 13:411-420. [PMID: 32821147 PMCID: PMC7423460 DOI: 10.2147/jir.s258991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Reactive oxygen and nitrogen species (ROS and RNS) are involved in pathologic mechanisms underlying demyelination and exacerbation in multiple sclerosis (MS) lesions. P47phox is the most important subunit of an ROS-producing enzyme (NADPH oxidase) which is reportedly upregulated in MS plaques due to the intense activity of infiltrated immune cells and resident microglia. Leukadherin1 is a specific CD11b/CD18 agonist that inhibits signaling and transmigration of inflammatory cells to sites of injury. Based on this mechanism, we evaluated therapeutic effects of leukadherin1 in an animal model of targeted experimental autoimmune encephalomyelitis (EAE) through focal injection of inflammatory cytokines to the spinal cord. METHODS For model induction, Lewis rats were first immunized with 15µg MOG 1-125 emulsion. Twenty days later, animals were subjected to stereotaxic injection of IFNγ and TNFα to the specific spinal area (T8). One day after injection, all animals presented EAE clinical signs, and their behaviors were monitored for eight days through open-field locomotion and grid-walking tests. Leukadherin1-treated animals received daily intraperitoneal injections of 1mg/kg of the drug. The specific spinal tissues were extracted on day 5 in order to measure nitric oxide (NO), malon di-aldehyde (MDA), and TNFα concentrations alongside P47phox real-time PCR analysis. In addition, spinal sections were prepared for immunohistochemical (IHC) observation of infiltrated leukocytes and activated microglia. RESULTS Leukadherin1 exhibited promising improvements in EAE clinical scores and behavioral tests. Demyelination, CD45+ leukocyte infiltration, and Iba1+ microglia activation were reduced in spinal tissues of leukadherin1-treated animals. Furthermore, P47phox expression levels, MDA, and NO amounts were decreased in treated animals. However, TNFα concentrations did not differ following treatment. CONCLUSION Based on our results, we suggest that leukadherin1 may be used as a novel therapeutic agent in tackling the clinical challenge of multiple sclerosis, especially during the acute phase of the disease. This effect was possibly mediated through decreased leukocyte infiltration and oxidative stress.
Collapse
Affiliation(s)
- Sara Hemmati
- Molecular Medicine Interest Group (MMIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Sadeghi
- Molecular Medicine Interest Group (MMIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Yousefi-Manesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Vafaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Foroutani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - AhmadReza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
8
|
Panni RZ, Herndon JM, Zuo C, Hegde S, Hogg GD, Knolhoff BL, Breden MA, Li X, Krisnawan VE, Khan SQ, Schwarz JK, Rogers BE, Fields RC, Hawkins WG, Gupta V, DeNardo DG. Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci Transl Med 2020; 11:11/499/eaau9240. [PMID: 31270275 DOI: 10.1126/scitranslmed.aau9240] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Although checkpoint immunotherapies have revolutionized the treatment of cancer, not all tumor types have seen substantial benefit. Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy in which very limited responses to immunotherapy have been observed. Extensive immunosuppressive myeloid cell infiltration in PDAC tissues has been postulated as a major mechanism of resistance to immunotherapy. Strategies concomitantly targeting monocyte or granulocyte trafficking or macrophage survival, in combination with checkpoint immunotherapies, have shown promise in preclinical studies, and these studies have transitioned into ongoing clinical trials for the treatment of pancreatic and other cancer types. However, compensatory actions by untargeted monocytes, granulocytes, and/or tissue resident macrophages may limit the therapeutic efficacy of such strategies. CD11b/CD18 is an integrin molecule that is highly expressed on the cell surface of these myeloid cell subsets and plays an important role in their trafficking and cellular functions in inflamed tissues. Here, we demonstrate that the partial activation of CD11b by a small-molecule agonist (ADH-503) leads to the repolarization of tumor-associated macrophages, reduction in the number of tumor-infiltrating immunosuppressive myeloid cells, and enhanced dendritic cell responses. These actions, in turn, improve antitumor T cell immunity and render checkpoint inhibitors effective in previously unresponsive PDAC models. These data demonstrate that molecular agonism of CD11b reprograms immunosuppressive myeloid cell responses and potentially bypasses the limitations of current clinical strategies to overcome resistance to immunotherapy.
Collapse
Affiliation(s)
- Roheena Z Panni
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John M Herndon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chong Zuo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samarth Hegde
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Graham D Hogg
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brett L Knolhoff
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcus A Breden
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaobo Li
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Varintra E Krisnawan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samia Q Khan
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Julie K Schwarz
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA.,Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Buck E Rogers
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA.,Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan C Fields
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. .,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Bednarczyk M, Stege H, Grabbe S, Bros M. β2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease. Int J Mol Sci 2020; 21:E1402. [PMID: 32092981 PMCID: PMC7073085 DOI: 10.3390/ijms21041402] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
β2 integrins are heterodimeric surface receptors composed of a variable α (CD11a-CD11d) and a constant β (CD18) subunit and are specifically expressed by leukocytes. The α subunit defines the individual functional properties of the corresponding β2 integrin, but all β2 integrins show functional overlap. They mediate adhesion to other cells and to components of the extracellular matrix (ECM), orchestrate uptake of extracellular material like complement-opsonized pathogens, control cytoskeletal organization, and modulate cell signaling. This review aims to delineate the tremendous role of β2 integrins for immune functions as exemplified by the phenotype of LAD-I (leukocyte adhesion deficiency 1) patients that suffer from strong recurrent infections. These immune defects have been largely attributed to impaired migratory and phagocytic properties of polymorphonuclear granulocytes. The molecular base for this inherited disease is a functional impairment of β2 integrins due to mutations within the CD18 gene. LAD-I patients are also predisposed for autoimmune diseases. In agreement, polymorphisms within the CD11b gene have been associated with autoimmunity. Consequently, β2 integrins have received growing interest as targets in the treatment of autoimmune diseases. Moreover, β2 integrin activity on leukocytes has been implicated in tumor development.
Collapse
Affiliation(s)
| | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (H.S.); (S.G.)
| |
Collapse
|
10
|
Yao X, Dong G, Zhu Y, Yan F, Zhang H, Ma Q, Fu X, Li X, Zhang Q, Zhang J, Shi H, Ning Z, Dai J, Li Z, Li C, Wang B, Ming J, Yang Y, Hong F, Meng X, Xiong H, Si C. Leukadherin-1-Mediated Activation of CD11b Inhibits LPS-Induced Pro-inflammatory Response in Macrophages and Protects Mice Against Endotoxic Shock by Blocking LPS-TLR4 Interaction. Front Immunol 2019; 10:215. [PMID: 30809230 PMCID: PMC6379471 DOI: 10.3389/fimmu.2019.00215] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/24/2019] [Indexed: 01/04/2023] Open
Abstract
Dysregulation of macrophage has been demonstrated to contribute to aberrant immune responses and inflammatory diseases. CD11b, expressed on macrophages, plays a critical role in regulating pathogen recognition, phagocytosis, and cell survival. In the present study, we explored the effect of leukadherin-1 (LA1), an agonist of CD11b, on regulating LPS-induced pro-inflammatory response in macrophages and endotoxic shock. Intriguingly, we found that LA1 could significantly reduce mortalities of mice and alleviated pathological injury of liver and lung in endotoxic shock. In vivo studies showed that LA1-induced activation of CD11b significantly inhibited the LPS-induced pro-inflammatory response in macrophages of mice. Moreover, LA1-induced activation of CD11b significantly inhibited LPS/IFN-γ-induced pro-inflammatory response in macrophages by inhibiting MAPKs and NF-κB signaling pathways in vitro. Furthermore, the mice injected with LA1-treated BMDMs showed fewer pathological lesions than those injected with vehicle-treated BMDMs in endotoxic shock. In addition, we found that activation of TLR4 by LPS could endocytose CD11b and activation of CD11b by LA1 could endocytose TLR4 in vitro and in vivo, subsequently blocking the binding of LPS with TLR4. Based on these findings, we concluded that LA1-induced activation of CD11b negatively regulates LPS-induced pro-inflammatory response in macrophages and subsequently protects mice from endotoxin shock by partially blocking LPS-TLR4 interaction. Our study provides a new insight into the role of CD11b in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoying Yao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Yuzhen Zhu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Xingqin Fu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Xuehui Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - QingQing Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Hui Shi
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Bo Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Jiankuo Ming
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Yonghong Yang
- Department of Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Feng Hong
- Department of Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Huabao Xiong
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, United States
| | - Chuanping Si
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| |
Collapse
|
11
|
Yao X, Dong G, Zhu Y, Yan F, Zhang H, Ma Q, Fu X, Li X, Zhang Q, Zhang J, Shi H, Ning Z, Dai J, Li Z, Li C, Wang B, Ming J, Yang Y, Hong F, Meng X, Xiong H, Si C. Leukadherin-1-Mediated Activation of CD11b Inhibits LPS-Induced Pro-inflammatory Response in Macrophages and Protects Mice Against Endotoxic Shock by Blocking LPS-TLR4 Interaction. Front Immunol 2019. [PMID: 30809230 DOI: 10.3389/fimmu.2019.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Dysregulation of macrophage has been demonstrated to contribute to aberrant immune responses and inflammatory diseases. CD11b, expressed on macrophages, plays a critical role in regulating pathogen recognition, phagocytosis, and cell survival. In the present study, we explored the effect of leukadherin-1 (LA1), an agonist of CD11b, on regulating LPS-induced pro-inflammatory response in macrophages and endotoxic shock. Intriguingly, we found that LA1 could significantly reduce mortalities of mice and alleviated pathological injury of liver and lung in endotoxic shock. In vivo studies showed that LA1-induced activation of CD11b significantly inhibited the LPS-induced pro-inflammatory response in macrophages of mice. Moreover, LA1-induced activation of CD11b significantly inhibited LPS/IFN-γ-induced pro-inflammatory response in macrophages by inhibiting MAPKs and NF-κB signaling pathways in vitro. Furthermore, the mice injected with LA1-treated BMDMs showed fewer pathological lesions than those injected with vehicle-treated BMDMs in endotoxic shock. In addition, we found that activation of TLR4 by LPS could endocytose CD11b and activation of CD11b by LA1 could endocytose TLR4 in vitro and in vivo, subsequently blocking the binding of LPS with TLR4. Based on these findings, we concluded that LA1-induced activation of CD11b negatively regulates LPS-induced pro-inflammatory response in macrophages and subsequently protects mice from endotoxin shock by partially blocking LPS-TLR4 interaction. Our study provides a new insight into the role of CD11b in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoying Yao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Yuzhen Zhu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Xingqin Fu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Xuehui Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - QingQing Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Hui Shi
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Bo Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Jiankuo Ming
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Yonghong Yang
- Department of Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Feng Hong
- Department of Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Huabao Xiong
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, United States
| | - Chuanping Si
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| |
Collapse
|
12
|
Dickinson CM, LeBlanc BW, Edhi MM, Heffernan DS, Faridi MH, Gupta V, Cioffi WG, O'Brien X, Reichner JS. Leukadherin-1 ameliorates endothelial barrier damage mediated by neutrophils from critically ill patients. J Intensive Care 2018; 6:19. [PMID: 29568527 PMCID: PMC5855997 DOI: 10.1186/s40560-018-0289-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
Background Multi-organ failure occurs during critical illness and is mediated in part by destructive neutrophil-to-endothelial interactions. The β2 integrin receptor, CR3 (complement receptor 3; Mac-1; CD11b/CD18), which binds endothelial intercellular adhesion molecule-1 (ICAM-1), plays a key role in promoting the adhesion of activated neutrophils to inflamed endothelia which, when prolonged and excessive, can cause vascular damage. Leukadherin-1 (LA-1) is a small molecule allosteric activator of CR3 and has been shown to promote adhesion of blood neutrophils to inflamed endothelium and restrict tissue infiltration. Therefore, LA-1 offers a novel mechanism of anti-inflammatory action by activation, rather than inhibition, of the neutrophil CR3 integrin. However, whether promotion of neutrophil-to-endothelial interaction by this novel therapeutic is of benefit or detriment to endothelial barrier function is not known. Methods Critically ill septic and trauma patients were prospectively enrolled from the surgical and the trauma ICU. Blood was collected from these patients and healthy volunteers. Neutrophils were isolated by dextran sedimentation and adhered to TNF-α (tumor necrosis factor-α)-activated human umbilical vein endothelial (HUVEC) monolayers in the presence or absence of fMLP (formylmethionine-leucine-phenylalanine) and/or LA-1. Electric cell-substrate impedance sensing (ECIS) and exposure of underlying collagen were used to quantify endothelial barrier function and permeability. Results Neutrophils from critically ill trauma and septic patients caused similar degrees of endothelial barrier disruption which exceeded that caused by cells obtained from healthy controls both kinetically and quantitatively. LA-1 protected barrier function in the absence and presence of fMLP which served as a secondary stimulant to cause maximal loss of barrier function. LA-1 protection was also observed by quantifying collagen exposure underlying endothelial cells challenged with fMLP-stimulated neutrophils. LA-1 treatment resulted in decreased migration dynamics of neutrophils crawling on an endothelial monolayer with reduced speed (μm/s = 0.25 ± 0.01 vs. 0.06 ± 0.01, p < 0.05), path length (μm = 199.5 ± 14.3 vs. 42.1 ± 13.0, p < 0.05), and displacement (μm = 65.2 ± 4.7 vs. 10.4 ± 1.3; p < 0.05). Conclusion Neutrophils from patients with trauma or sepsis cause endothelial barrier disruption to a similar extent relative to each other. The CR3 agonist LA-1 protects endothelial barrier function from damage caused by neutrophils obtained from both populations of critically ill patients even when exposed to secondary stimulation.
Collapse
Affiliation(s)
- Catherine M Dickinson
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Brian W LeBlanc
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Muhammad M Edhi
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Daithi S Heffernan
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Mohd Hafeez Faridi
- 2College of Pharmacy, Chicago State University, Chicago, IL USA.,3Rush University Medical Center, Chicago, IL USA
| | - Vineet Gupta
- 3Rush University Medical Center, Chicago, IL USA
| | - William G Cioffi
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Xian O'Brien
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Jonathan S Reichner
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| |
Collapse
|
13
|
Tolomelli A, Galletti P, Baiula M, Giacomini D. Can Integrin Agonists Have Cards to Play against Cancer? A Literature Survey of Small Molecules Integrin Activators. Cancers (Basel) 2017; 9:cancers9070078. [PMID: 28678151 PMCID: PMC5532614 DOI: 10.3390/cancers9070078] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022] Open
Abstract
The ability of integrins to activate and integrate intracellular communication illustrates the potential of these receptors to serve as functional distribution hubs in a bi-directional signal transfer outside-in and inside-out of the cells. Tight regulation of the integrin signaling is paramount for normal physiological functions such as migration, proliferation, and differentiation, and misregulated integrin activity could be associated with several pathological conditions. Because of the important roles of integrins and their ligands in biological development, immune responses, leukocyte traffic, haemostasis, and cancer, their potential as therapeutic tools is now widely recognized. Nowadays extensive efforts have been made to discover and develop small molecule ligands as integrin antagonists, whereas less attention has been payed to agonists. In recent years, it has been recognized that integrin agonists could open up novel opportunities for therapeutics, which gain benefits to increase rather than decrease integrin-dependent adhesion and transductional events. For instance, a significant factor in chemo-resistance in melanoma is a loss of integrin-mediated adhesion; in this case, stimulation of integrin signaling by agonists significantly improved the response to chemotherapy. In this review, we overview results about small molecules which revealed an activating action on some integrins, especially those involved in cancer, and examine from a medicinal chemistry point of view, their structure and behavior.
Collapse
Affiliation(s)
- Alessandra Tolomelli
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Paola Galletti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Daria Giacomini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
14
|
Kopec AK, Joshi N, Cline-Fedewa H, Wojcicki AV, Ray JL, Sullivan BP, Froehlich JE, Johnson BF, Flick MJ, Luyendyk JP. Fibrin(ogen) drives repair after acetaminophen-induced liver injury via leukocyte α Mβ 2 integrin-dependent upregulation of Mmp12. J Hepatol 2017; 66:787-797. [PMID: 27965156 PMCID: PMC5362307 DOI: 10.1016/j.jhep.2016.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/31/2016] [Accepted: 12/02/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Acetaminophen (APAP)-induced liver injury is coupled with activation of the blood coagulation cascade and fibrin(ogen) accumulation within APAP-injured livers of experimental mice. We sought to define the role of fibrin(ogen) deposition in APAP-induced liver injury and repair. METHODS Wild-type, fibrinogen-deficient mice, mutant mice with fibrin(ogen) incapable of binding leukocyte αMβ2 integrin (Fibγ390-396A mice) and matrix metalloproteinase 12 (Mmp12)-deficient mice were fasted, injected with 300mg/kg APAP i.p. and evaluated at a range of time-points. Plasma and liver tissue were analyzed. Rescue of Fibγ390-396A mice was carried out with exogenous Mmp12. To examine the effect of the allosteric leukocyte integrin αMβ2 activator leukadherin-1 (LA-1), APAP-treated mice were injected with LA-1. RESULTS In wild-type mice, APAP overdose increased intrahepatic levels of high molecular weight cross-linked fibrin(ogen). Anticoagulation reduced early APAP hepatotoxicity (6h), but increased hepatic injury at 24h, implying a protective role for coagulation at the onset of repair. Complete fibrin(ogen) deficiency delayed liver repair after APAP overdose, evidenced by a reduction of proliferating hepatocytes (24h) and unresolved hepatocellular necrosis (48 and 72h). Fibγ390-396A mice had decreased hepatocyte proliferation and increased multiple indices of liver injury, suggesting a mechanism related to fibrin(ogen)-leukocyte interaction. Induction of Mmp12, was dramatically reduced in APAP-treated Fibγ390-396A mice. Mice lacking Mmp12 displayed exacerbated APAP-induced liver injury, resembling Fibγ390-396A mice. In contrast, administration of LA-1 enhanced hepatic Mmp12 mRNA and reduced necrosis in APAP-treated mice. Further, administration of recombinant Mmp12 protein to APAP-treated Fibγ390-396A mice restored hepatocyte proliferation. CONCLUSIONS These studies highlight a novel pathway of liver repair after APAP overdose, mediated by fibrin(ogen)-αMβ2 integrin engagement, and demonstrate a protective role of Mmp12 expression after APAP overdose. LAY SUMMARY Acetaminophen overdose leads to activation of coagulation cascade and deposition of high molecular weight cross-linked fibrin(ogen) species in the liver. Fibrin(ogen) is required for stimulating liver repair after acetaminophen overdose. The mechanism whereby fibrin(ogen) drives liver repair after acetaminophen overdose requires engagement of leukocyte αMβ2 integrin and subsequent induction of matrix metalloproteinase 12.
Collapse
Affiliation(s)
- Anna K Kopec
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Nikita Joshi
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Holly Cline-Fedewa
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Anna V Wojcicki
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Jessica L Ray
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Bradley P Sullivan
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA; Current affiliation: Pfizer Inc., Lake Forest, IL, USA
| | - John E Froehlich
- Michigan State University-Department of Energy Plant Research Laboratory, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Brendan F Johnson
- Michigan State University-Department of Energy Plant Research Laboratory, USA
| | - Matthew J Flick
- Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
15
|
Baiula M, Galletti P, Martelli G, Soldati R, Belvisi L, Civera M, Dattoli SD, Spampinato SM, Giacomini D. New β-Lactam Derivatives Modulate Cell Adhesion and Signaling Mediated by RGD-Binding and Leukocyte Integrins. J Med Chem 2016; 59:9721-9742. [PMID: 27726366 DOI: 10.1021/acs.jmedchem.6b00576] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel series of β-lactam derivatives that was designed and synthesized to target RGD-binding and leukocyte integrins is reported. The compound library was evaluated by investigating the effects on integrin-mediated cell adhesion and cell signaling in cell lines expressing αvβ3, αvβ5, αvβ6, α5β1, αIIbβ3, α4β1, and αLβ2 integrins. SAR analysis of the new series of azetidinones enabled the recognition of structural elements associated with integrin selectivity. We obtained selective and potent agonists that could induce cell adhesion and promote cell signaling mediated by αvβ3, αvβ5, α5β1, or α4β1 integrin, and antagonists for the integrins αvβ3 and α5β1, as well as α4β1 and αLβ2, preventing the effects elicited by the respective endogenous agonists.
Collapse
Affiliation(s)
- Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna , Via Irnerio 48, 40126, Bologna, Italy
| | - Paola Galletti
- Department of Chemistry "G. Ciamician", University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Giulia Martelli
- Department of Chemistry "G. Ciamician", University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Roberto Soldati
- Department of Chemistry "G. Ciamician", University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Laura Belvisi
- Department of Chemistry, University of Milan , Via Golgi 19, 20133 Milan, Italy
| | - Monica Civera
- Department of Chemistry, University of Milan , Via Golgi 19, 20133 Milan, Italy
| | - Samantha Deianira Dattoli
- Department of Pharmacy and Biotechnology, University of Bologna , Via Irnerio 48, 40126, Bologna, Italy
| | - Santi Mario Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna , Via Irnerio 48, 40126, Bologna, Italy
| | - Daria Giacomini
- Department of Chemistry "G. Ciamician", University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
16
|
Roberts AL, Fürnrohr BG, Vyse TJ, Rhodes B. The complement receptor 3 (CD11b/CD18) agonist Leukadherin-1 suppresses human innate inflammatory signalling. Clin Exp Immunol 2016; 185:361-71. [PMID: 27118513 PMCID: PMC4991522 DOI: 10.1111/cei.12803] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/14/2023] Open
Abstract
Complement receptor 3 (CR3, CD11b/CD18) is a multi‐functional receptor expressed predominantly on myeloid and natural killer (NK) cells. The R77H variant of CD11b, encoded by the ITGAM rs1143679 polymorphism, is associated robustly with development of the autoimmune disease systemic lupus erythematosus (SLE) and impairs CR3 function, including its regulatory role on monocyte immune signalling. The role of CR3 in NK cell function is unknown. Leukadherin‐1 is a specific small‐molecule CR3 agonist that has shown therapeutic promise in animal models of vascular injury and inflammation. We show that Leukadherin‐1 pretreatment reduces secretion of interferon (IFN)‐γ, tumour necrosis factor (TNF) and macrophage inflammatory protein (MIP)‐1β by monokine‐stimulated NK cells. It was associated with a reduction in phosphorylated signal transducer and activator of transcription (pSTAT)‐5 following interleukin (IL)‐12 + IL‐15 stimulation (P < 0·02) and increased IL‐10 secretion following IL‐12 + IL‐18 stimulation (P < 0·001). Leukadherin‐1 pretreatment also reduces secretion of IL‐1β, IL‐6 and TNF by Toll‐like receptor (TLR)‐2 and TLR‐7/8‐stimulated monocytes (P < 0·01 for all). The R77H variant did not affect NK cell response to Leukadherin‐1 using ex‐vivo cells from homozygous donors; nor did the variant influence CR3 expression by these cell types, in contrast to a recent report. These data extend our understanding of CR3 biology by demonstrating that activation potently modifies innate immune inflammatory signalling, including a previously undocumented role in NK cell function. We discuss the potential relevance of this to the pathogenesis of SLE. Leukadherin‐1 appears to mediate its anti‐inflammatory effect irrespective of the SLE‐risk genotype of CR3, providing further evidence to support its evaluation of Leukadherin‐1 as a potential therapeutic for autoimmune disease.
Collapse
Affiliation(s)
- A L Roberts
- Division of Genetics and Molecular Medicine and Division of Infection, Immunity and Inflammatory Disease, King's College London, London, UK
| | - B G Fürnrohr
- Division of Genetics and Molecular Medicine and Division of Infection, Immunity and Inflammatory Disease, King's College London, London, UK.,Division of Biological Chemistry, Innrain 80/IV, Medical University Innsbruck, Innsbruck, Austria
| | - T J Vyse
- Division of Genetics and Molecular Medicine and Division of Infection, Immunity and Inflammatory Disease, King's College London, London, UK
| | - B Rhodes
- Division of Genetics and Molecular Medicine and Division of Infection, Immunity and Inflammatory Disease, King's College London, London, UK.,Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
17
|
Woods LT, Camden JM, El-Sayed FG, Khalafalla MG, Petris MJ, Erb L, Weisman GA. Increased Expression of TGF-β Signaling Components in a Mouse Model of Fibrosis Induced by Submandibular Gland Duct Ligation. PLoS One 2015; 10:e0123641. [PMID: 25955532 PMCID: PMC4425516 DOI: 10.1371/journal.pone.0123641] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/21/2015] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is a multi-functional cytokine with a well-described role in the regulation of tissue fibrosis and regeneration in the liver, kidney and lung. Submandibular gland (SMG) duct ligation and subsequent deligation in rodents is a classical model for studying salivary gland damage and regeneration. While previous studies suggest that TGF-β may contribute to salivary gland fibrosis, the expression of TGF-β signaling components has not been investigated in relation to mouse SMG duct ligation-induced fibrosis and regeneration following ductal deligation. Following a 7 day SMG duct ligation, TGF-β1 and TGF-β3 were significantly upregulated in the SMG, as were TGF-β receptor 1 and downstream Smad family transcription factors in salivary acinar cells, but not in ductal cells. In acinar cells, duct ligation also led to upregulation of snail, a Smad-activated E-cadherin repressor and regulator of epithelial-mesenchymal transition, whereas in ductal cells upregulation of E-cadherin was observed while snail expression was unchanged. Upregulation of these TGF-β signaling components correlated with upregulation of fibrosis markers collagen 1 and fibronectin, responses that were inhibited by administration of the TGF-β receptor 1 inhibitors SB431542 or GW788388. After SMG regeneration following a 28 day duct deligation, TGF-β signaling components and epithelial-mesenchymal transition markers returned to levels similar to non-ligated controls. The results from this study indicate that increased TGF-β signaling contributes to duct ligation-induced changes in salivary epithelium that correlate with glandular fibrosis. Furthermore, the reversibility of enhanced TGF-β signaling in acinar cells of duct-ligated mouse SMG after deligation indicates that this is an ideal model for studying TGF-β signaling mechanisms in salivary epithelium as well as mechanisms of fibrosis initiation and their resolution.
Collapse
Affiliation(s)
- Lucas T. Woods
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Jean M. Camden
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Farid G. El-Sayed
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Mahmoud G. Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Michael J. Petris
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Nutritional Sciences and Exercise Physiology, University of Missouri, Columbia, Missouri, United States of America
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Gary A. Weisman
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|