1
|
Hollingshead BD, Radi ZA. Human Relevance of Pharmaceutical Drug-Induced Thyroid Tumors in Rats, Labeling Implications, and Carcinogenicity Study Requirements. J Appl Toxicol 2025. [PMID: 40083171 DOI: 10.1002/jat.4779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
In rats, thyroid tumors are common age-related findings with reported incidence rates up to 8.1% and 11.86% for follicular and C-cell adenomas, respectively. Increases of thyroid follicular neoplasms in rodents via the induction of hepatic UDP-glucuronosyltransferase (UGT) enzymes, resulting in elevated thyroid hormone (TH) metabolism, excretion, and subsequent follicular cell proliferation are generally accepted to have little or no relevance to humans due to species differences in sensitivity to this pathophysiologic process. In this analysis, we reviewed approved drugs that resulted in thyroid tumors in 2-year rat carcinogenicity studies and summarized the positioning of these findings in product labeling language and human risk assessments in the United States and Europe. Overall, although thyroid follicular cell tumors are commonly observed, the labels reviewed listed no suspected human risk or directly state the absence of human relevance for these findings. Like follicular cell tumors, thyroid C-cell tumors are common background findings in rats but comparatively are not as commonly increased in frequency as drug-related findings in 2-year rodent carcinogenicity studies. These findings are most notably observed with GLP-1 agonists and their human relevance is a topic of ongoing clinical safety surveillance analysis. Thyroid follicular cell hyperplasia, when specifically occurring through hepatic enzyme induction and/or enhanced TH clearance, should be evaluated for anticipated human translational relevance using nonclinical and clinical data. If no human relevance is anticipated, this rationale should be incorporated into a weight of evidence approach for carcinogenicity studies as outlined in the ICH S1B addendum.
Collapse
Affiliation(s)
- B D Hollingshead
- Research and Development, Drug Safety R&D, Pfizer, Cambridge, Massachusetts, USA
| | - Z A Radi
- Research and Development, Drug Safety R&D, Pfizer, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Cohen SM, Boobis AR, Jacobson-Kram D, Schoeny R, Rosol TJ, Williams GM, Kaminski NE, Eichenbaum GM, Guengerich FP, Nash JF. Mode of action approach supports a lack of carcinogenic potential of six organic UV filters. Crit Rev Toxicol 2025; 55:248-284. [PMID: 40208192 DOI: 10.1080/10408444.2025.2462642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 04/11/2025]
Abstract
Ultraviolet (UV) filters, the active ingredients in sunscreens, have been used for several decades to reduce the risk of acute and chronic damage to the skin from solar UV radiation, which can lead to skin cancer. Based on recent clinical studies showing that certain UV filters are absorbed systemically at low levels in humans, the US Food and Drug Administration (FDA) has requested supplementing existing safety data with preclinical studies including oral and dermal 2-year rodent carcinogenicity studies. Although the conduct of 2-year rodent carcinogenicity studies has been the standard approach for evaluating the carcinogenic potential of chemicals and new drugs for approximately 6 decades, there are multiple examples showing that such studies are not predictive of human cancer risk. Given these concerns with 2-year rodent carcinogenicity studies, we have developed and applied an alternative approach for supplementing existing data related to carcinogenic potential for six of the most commonly used UV filters in sunscreen products (i.e. avobenzone, ensulizole, homosalate, octinoxate, octisalate, and octocrylene). This approach evaluates their mode of action (MOA) based on in vivo, in vitro, and in silico data combined with an assessment of exposure margins. This approach is based on the substantial progress in understanding the MOAs that are responsible for tumor induction in humans. It is consistent with those being developed by the International Council for Harmonization (ICH) and other health authorities to replace 2-year carcinogenicity studies given their limitations and questionable biological relevance to humans. The available data for the six UV filters show that they are not genotoxic and show no evidence of biologically relevant carcinogenic MOAs. Furthermore, their systemic exposure levels in humans fall well below concentrations at which they have biologic activity. In conclusion, these data support the continued safe use of these six filters in sunscreen products.
Collapse
Affiliation(s)
- Samuel M Cohen
- Department of Pathology, Immunology, and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alan R Boobis
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | | | - Thomas J Rosol
- Histology Core Facility and Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Gary M Williams
- Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Norbert E Kaminski
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | | | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J F Nash
- Procter & Gamble, Mason, OH, USA
| |
Collapse
|
3
|
Le NQK, Tran TX, Nguyen PA, Ho TT, Nguyen VN. Recent progress in machine learning approaches for predicting carcinogenicity in drug development. Expert Opin Drug Metab Toxicol 2024; 20:621-628. [PMID: 38742542 DOI: 10.1080/17425255.2024.2356162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION This review explores the transformative impact of machine learning (ML) on carcinogenicity prediction within drug development. It discusses the historical context and recent advancements, emphasizing the significance of ML methodologies in overcoming challenges related to data interpretation, ethical considerations, and regulatory acceptance. AREAS COVERED The review comprehensively examines the integration of ML, deep learning, and diverse artificial intelligence (AI) approaches in various aspects of drug development safety assessments. It explores applications ranging from early-phase compound screening to clinical trial optimization, highlighting the versatility of ML in enhancing predictive accuracy and efficiency. EXPERT OPINION Through the analysis of traditional approaches such as in vivo rodent bioassays and in vitro assays, the review underscores the limitations and resource intensity associated with these methods. It provides expert insights into how ML offers innovative solutions to address these challenges, revolutionizing safety assessments in drug development.
Collapse
Affiliation(s)
- Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- AIBioMed Research Group, Taipei Medical University, Taipei, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Thi-Xuan Tran
- University of Economics and Business Administration, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Phung-Anh Nguyen
- Clinical Data Center, Office of Data Science, Taipei Medical University, Taipei, Vietnam
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Vietnam
| | - Trang-Thi Ho
- Department of Computer Science and Information Engineering, TamKang University, New Taipei, Taiwan
| | - Van-Nui Nguyen
- University of Information and Communication Technology, Thai Nguyen University, Thai Nguyen, Vietnam
| |
Collapse
|
4
|
Bourcier T, McGovern T, Cavaliero T, Ebere G, Nishikawa A, Nishimura J, Ogawa K, Pasanen M, Vespa A, Van der Laan JW. ICH S1 prospective evaluation study: weight of evidence approach to predict outcome and value of 2-year rat carcinogenicity studies. A report from the regulatory authorities subgroup. FRONTIERS IN TOXICOLOGY 2024; 6:1353783. [PMID: 38665214 PMCID: PMC11043531 DOI: 10.3389/ftox.2024.1353783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction: The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) initiated a process in 2012 to revise the S1B Guideline "Testing for Carcinogenicity of Pharmaceuticals". Previous retrospective analysis indicated the importance of histopathological risk factors in chronic toxicity studies, evidence of endocrine perturbation, and positive genetic toxicology results as potentially predictive indicators of carcinogenic risk. In addition, a relationship between pharmacodynamic activity and carcinogenicity outcome in long-term rodent studies has been reported. It was postulated that these factors could be evaluated in a Weight-of-Evidence (WoE) approach to predict the outcome of a 2-year rat study. Methods: The ICH S1B(R1) Expert Working Group (EWG) conducted a Prospective Evaluation Study (PES) to determine the regulatory feasibility of this WoE approach. Drug Regulatory Authorities (DRAs) evaluated 49 Carcinogenicity Assessment Documents (CADs), which describe the WoE for submitted pharmaceutical compounds. Each compound was categorized into a carcinogenic risk category including a statement of the value of the 2-year rat study. The outcome of the completed 2-year rat studies was evaluated in relation to the prospective CAD to determine the accuracy of predictions. Results: Based on the results of the PES, the EWG concluded that the evaluation process for assessing human carcinogenic risk of pharmaceuticals described in ICH S1B could be expanded to include a WoE approach. Approximately 27% of 2-year rat studies could be avoided in cases where DRAs and sponsors unanimously agreed that such a study would not add value. Discussion: Key factors supporting a WoE assessment were identified: data that inform carcinogenic potential based on drug target biology and the primary pharmacologic mechanism of the parent compound and major human metabolites; results from secondary pharmacology screens for this compound and major human metabolites that inform carcinogenic risk; histopathology data from repeated-dose toxicity studies; evidence for hormonal perturbation; genotoxicity data; and evidence of immune modulation. The outcome of the PES indicates that a WoE approach can be used in place of conducting a 2-year rat study for some pharmaceuticals. These data were used by the ICH S1B(R1) EWG to write the R1 Addendum to the S1B Guideline published in August 2022.
Collapse
Affiliation(s)
- Todd Bourcier
- Food and Drug Administration, Silver Spring, MD, United States
| | | | - Tania Cavaliero
- Swissmedic, Swiss Agency for Therapeutic Products, Bern, Switzerland
| | - Geoffrey Ebere
- Health Canada, Pharmaceutical Drugs Directorate, Ottawa, ON, Canada
| | | | | | - Kumiko Ogawa
- National Institute of Health Sciences, Kanagawa, Japan
| | - Markku Pasanen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Alisa Vespa
- Health Canada, Pharmaceutical Drugs Directorate, Ottawa, ON, Canada
| | | |
Collapse
|
5
|
Yadav J, Ahsan F, Panda P, Mahmood T, Ansari VA, Shamim A. Empagliflozin-A Sodium Glucose Co-transporter-2 Inhibitor: Overview ofits Chemistry, Pharmacology, and Toxicology. Curr Diabetes Rev 2024; 20:e230124226010. [PMID: 38265382 DOI: 10.2174/0115733998271026231127051545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Empagliflozin is a sodium glucose co-transporter-2 (SGLT2) inhibitor that has gained significant attention in the treatment of type 2 diabetes mellitus. Understanding its chemistry, pharmacology, and toxicology is crucial for the safe and effective use of this medication. OBJECTIVE This review aims to provide a comprehensive overview of the chemistry, pharmacology, and toxicology of empagliflozin, synthesizing the available literature to present a concise summary of its properties and implications for clinical practice. METHODS A systematic search of relevant databases was conducted to identify studies and articles related to the chemistry, pharmacology, and toxicology of empagliflozin. Data from preclinical and clinical studies, as well as post-marketing surveillance reports, were reviewed to provide a comprehensive understanding of the topic. RESULTS Empagliflozin is a selective SGLT2 inhibitor that works by constraining glucose reabsorption in the kidneys, causing increased urinary glucose elimination. Its unique mechanism of action provides glycemic control, weight reduction, and blood pressure reduction. The drug's chemistry is characterized by its chemical structure, solubility, and stability. Pharmacologically, empagliflozin exhibits favorable pharmacokinetic properties with rapid absorption, extensive protein binding, and renal elimination. Clinical studies have demonstrated its efficacy in improving glycemic control, reducing cardiovascular risks, and preserving renal function. However, adverse effects, for instance, urinary tract infections, genital infections, and diabetic ketoacidosis have been reported. Toxicological studies indicate low potential for organ toxicity, mutagenicity, or carcinogenicity. CONCLUSION Empagliflozin is a promising SGLT2 inhibitor that offers an innovative approach to the treatment of type 2 diabetes mellitus. Its unique action mechanism and favorable pharmacokinetic profile contribute to its efficacy in improving glycemic control and reducing cardiovascular risks. While the drug's safety profile is generally favorable, clinicians should be aware of potential adverse effects and monitor patients closely. More study is required to determine the longterm safety and explore potential benefits in other patient populations. Overall, empagliflozin represents a valuable addition to the armamentarium of antidiabetic medications, offering significant benefits to patients suffering from type 2 diabetes mellitus. This study covers all aspects of empagliflozin, including its history, chemistry, pharmacology, and various clinical studies, case reports, and case series.
Collapse
Affiliation(s)
- Jyoti Yadav
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Farogh Ahsan
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Prabhudatta Panda
- Department of Pharmacy, Institute of Technology & Management, Gorakhpur (U.P.), 226026, India
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Vaseem Ahamad Ansari
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Arshiya Shamim
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| |
Collapse
|
6
|
Rethinking agrochemical safety assessment: A perspective. Regul Toxicol Pharmacol 2021; 127:105068. [PMID: 34678328 DOI: 10.1016/j.yrtph.2021.105068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 11/20/2022]
Abstract
Agrochemical safety assessment has traditionally relied on the use of animals for toxicity testing, based on scientific understanding and test guidelines developed in the 1980s. However, since then, there have been significant advances in the toxicological sciences that have improved our understanding of mechanisms underpinning adverse human health effects. The time is ripe to 'rethink' approaches used for human safety assessments of agrochemicals to ensure they reflect current scientific understanding and increasingly embrace new opportunities to improve human relevance and predictivity, and to reduce the reliance on animals. Although the ultimate aim is to enable a paradigm shift and an overhaul of global regulatory data requirements, there is much that can be done now to ensure new opportunities and approaches are adopted and implemented within the current regulatory frameworks. This commentary reviews current initiatives and emerging opportunities to embrace new approaches to improve agrochemical safety assessment for humans, and considers various endpoints and initiatives (including acute toxicity, repeat dose toxicity studies, carcinogenicity, developmental and reproductive toxicity, exposure-driven approaches, inhalation toxicity, and data modelling). Realistic aspirations to improve safety assessment, incorporate new technologies and reduce reliance on animal testing without compromising protection goals are discussed.
Collapse
|
7
|
Mistry P, McInnes EF, Beevers C, Wolf D, Currie RA, Salimraj R, Parsons P. An evaluation of carcinogenicity predictors from short-term and sub chronic repeat-dose studies of agrochemicals in rats: Opportunities to refine and reduce animal use. Toxicol Lett 2021; 351:18-27. [PMID: 34364947 DOI: 10.1016/j.toxlet.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The aim of this study was to examine whether short term, repeat dose, rat studies provide sufficient information about potential carcinogenicity to enable predictions about the carcinogenic potential of agrochemicals to be made earlier in compound development. This study aimed to identify any correlations between toxicity findings obtained for short term rat studies (28 day and 90 day) and neoplastic findings obtained from 24 month rat carcinogenicity studies for agrochemical compounds (18 compounds) tested in Han Wistar and Sprague Dawley rats. The macroscopic pathology, microscopic pathology, hematology, biochemistry, organ weights, estrogen receptor activation and genotoxicity results were examined. Seven out of 18 non genotoxic compounds developed tumors in treated rats in the carcinogenicity study and of these, two compounds showed no preneoplastic findings in the affected tissues (false positives). Of the remaining five true positives, correlations were noted between corneal opacity and keratitis (90 day study) as early indicators of squamous cell carcinoma and papilloma of the cornea of the eye (compound 1, a hydroxyphenylpyruvate dioxygenase inhibitor) and inflammation of the stomach and kidney (90 day study) and gastric squamous cell papilloma and squamous cell carcinoma and renal tubular adenoma and carcinoma, respectively (compound 12, a fungicide with multisite activity). Minor decreases in uterine weight and increases in estradiol hydroxylation activity at 28 days were associated with endometrial adenocarcinoma (compound 18, a mitochondrial complex II electron transport inhibitor). Early liver weight increases and hepatocellular centrilobular hypertrophy (28 day study) were associated with thyroid follicular adenomas (compound 11, a succinate dehydrogenase inhibitor) in female animals only. Hepatic centrilobular hypertrophy (28 day studies) correlated with thyroid adenomas in males in carcinogenicity studies (compound 2, a hydroxyphenylpyruvate dioxygenase inhibitor). In contrast, treatment related, nasopharynx tumors (compound 3, an elongase inhibitor) and uterine adenocarcinoma (compound 9, a succinate dehydrogenase inhibitor) could not be correlated with findings from the short term studies examined. Eleven compounds displayed preneoplastic findings with no tumors (false negatives) and there were no compounds with no preneoplastic findings and no tumors (true negatives). This work indicates the value of examining historical, short term studies for specific, nonneoplastic findings which correlate with tumors in carcinogenicity studies, which may obviate the need for further animal carcinogenicity studies.
Collapse
Affiliation(s)
- Pratibha Mistry
- The Lenz, Hornbeam Park, Harrogate, North Yorkshire, HG2 8RE, United Kingdom
| | | | - Carol Beevers
- The Lenz, Hornbeam Park, Harrogate, North Yorkshire, HG2 8RE, United Kingdom
| | - Douglas Wolf
- Syngenta, Jealotts Hill, Bracknell, Berks, RG426EY, United Kingdom
| | - Richard A Currie
- Syngenta, Jealotts Hill, Bracknell, Berks, RG426EY, United Kingdom
| | - Rejin Salimraj
- Delphic HSE Solutions Ltd, Building B, Watchmoor Park, Camberley, Surrey, GU15 3YL, United Kingdom
| | - Paul Parsons
- The Lenz, Hornbeam Park, Harrogate, North Yorkshire, HG2 8RE, United Kingdom
| |
Collapse
|
8
|
Batke M, Afrapoli FM, Kellner R, Rathman JF, Yang C, Cronin MTD, Escher SE. Threshold of Toxicological Concern—An Update for Non-Genotoxic Carcinogens. FRONTIERS IN TOXICOLOGY 2021; 3:688321. [PMID: 35295144 PMCID: PMC8915827 DOI: 10.3389/ftox.2021.688321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022] Open
Abstract
The Threshold of Toxicological Concern (TTC) concept can be applied to organic compounds with the known chemical structure to derive a threshold for exposure, below which a toxic effect on human health by the compound is not expected. The TTC concept distinguishes between carcinogens that may act as genotoxic and non-genotoxic compounds. A positive prediction of a genotoxic mode of action, either by structural alerts or experimental data, leads to the application of the threshold value for genotoxic compounds. Non-genotoxic substances are assigned to the TTC value of their respective Cramer class, even though it is recognized that they could test positive in a rodent cancer bioassay. This study investigated the applicability of the Cramer classes specifically to provide adequate protection for non-genotoxic carcinogens. For this purpose, benchmark dose levels based on tumor incidence were compared with no observed effect levels (NOELs) derived from non-, pre- or neoplastic lesions. One key aspect was the categorization of compounds as non-genotoxic carcinogens. The recently finished CEFIC LRI project B18 classified the carcinogens of the Carcinogenicity Potency DataBase (CPDB) as either non-genotoxic or genotoxic compounds based on experimental or in silico data. A detailed consistency check resulted in a dataset of 137 non-genotoxic organic compounds. For these 137 compounds, NOEL values were derived from high quality animal studies with oral exposure and chronic duration using well-known repositories, such as RepDose, ToxRef, and COSMOS DB. Further, an effective tumor dose (ETD10) was calculated and compared with the lower confidence limit on benchmark dose levels (BMDL10) derived by model averaging. Comparative analysis of NOEL/EDT10/BMDL10 values showed that potentially bioaccumulative compounds in humans, as well as steroids, which both belong to the exclusion categories, occur predominantly in the region of the fifth percentiles of the distributions. Excluding these 25 compounds resulted in significantly higher but comparable fifth percentile chronic NOEL and BMDL10 values, while the fifth percentile EDT10 value was slightly higher but not statistically significant. The comparison of the obtained distributions of NOELs with the existing Cramer classes and their derived TTC values supports the application of Cramer class thresholds to all non-genotoxic compounds, such as non-genotoxic carcinogens.
Collapse
Affiliation(s)
- Monika Batke
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | | | - Rupert Kellner
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - James F. Rathman
- Altamira, LLC, Columbus, OH, United States
- Molecular Networks GmbH, Nuremberg, Germany
| | - Chihae Yang
- Altamira, LLC, Columbus, OH, United States
- Molecular Networks GmbH, Nuremberg, Germany
| | - Mark T. D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Sylvia E. Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- *Correspondence: Sylvia E. Escher
| |
Collapse
|
9
|
Neha R, Adithya S, Jayaraman RS, Gopinath KP, M P, L P, Arun J. Nano-adsorbents an effective candidate for removal of toxic pharmaceutical compounds from aqueous environment: A critical review on emerging trends. CHEMOSPHERE 2021; 272:129852. [PMID: 33581563 DOI: 10.1016/j.chemosphere.2021.129852] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 05/12/2023]
Abstract
Advancements in medical research has resulted in the modernization of healthcare facilities, subsequently leading to a higher level of production and usage of pharmaceuticals to sustain better quality of life. Pharmaceutical active compounds (PhACs) possess high genotoxicity and eco-toxicity thus presenting numerous side effects to living beings on long-term exposure. The fate and toxicity of PhACs were explored in detail, aiming to elucidate their occurrence and transmission in wastewater treatment systems (WWTPs). Adsorption of pharmaceutical compounds using Nano-adsorbents has gained momentum in recent years owing to their low-cost, high surface area and effectiveness. This review has been conducted in order to widen the utilization of Nano adsorbents in the adsorption of pharmaceutical compounds with a focus on the aqueous environment. The synthesis routes and properties of Nano-adsorbents for removal of PhACs were assessed in a comprehensive way. The recovery and reuse ability of nano-adsorbents also forms an integral part of its application in the removal of PhACs and has hence been delineated.
Collapse
Affiliation(s)
- Rajendran Neha
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Srikanth Adithya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Ramesh Sai Jayaraman
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Pandimadevi M
- Department of Biotechnology, School of Bioengineering, SRM-Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Praburaman L
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|
10
|
Heusinkveld H, Braakhuis H, Gommans R, Botham P, Corvaro M, van der Laan JW, Lewis D, Madia F, Manou I, Schorsch F, Wolterink G, Woutersen R, Corvi R, Mehta J, Luijten M. Towards a mechanism-based approach for the prediction of nongenotoxic carcinogenic potential of agrochemicals. Crit Rev Toxicol 2020; 50:725-739. [DOI: 10.1080/10408444.2020.1841732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Harm Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hedwig Braakhuis
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Robin Gommans
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | | | | | | | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Irene Manou
- European Partnership for Alternative Approaches to Animal Testing (EPAA), Brussels, Belgium
| | | | - Gerrit Wolterink
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ruud Woutersen
- TNO Quality of Life, Zeist, and Wageningen University & Research, Wageningen, the Netherlands
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
11
|
Luijten M, Corvi R, Mehta J, Corvaro M, Delrue N, Felter S, Haas B, Hewitt NJ, Hilton G, Holmes T, Jacobs MN, Jacobs A, Lamplmair F, Lewis D, Madia F, Manou I, Melching-Kollmuss S, Schorsch F, Schütte K, Sewell F, Strupp C, van der Laan JW, Wolf DC, Wolterink G, Woutersen R, Zvonar Z, Heusinkveld H, Braakhuis H. A comprehensive view on mechanistic approaches for cancer risk assessment of non-genotoxic agrochemicals. Regul Toxicol Pharmacol 2020; 118:104789. [PMID: 33035627 DOI: 10.1016/j.yrtph.2020.104789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/14/2020] [Accepted: 10/04/2020] [Indexed: 11/28/2022]
Abstract
Currently the only methods for non-genotoxic carcinogenic hazard assessment accepted by most regulatory authorities are lifetime carcinogenicity studies. However, these involve the use of large numbers of animals and the relevance of their predictive power and results has been scientifically challenged. With increased availability of innovative test methods and enhanced understanding of carcinogenic processes, it is believed that tumour formation can now be better predicted using mechanistic information. A workshop organised by the European Partnership on Alternative Approaches to Animal Testing brought together experts to discuss an alternative, mechanism-based approach for cancer risk assessment of agrochemicals. Data from a toolbox of test methods for detecting modes of action (MOAs) underlying non-genotoxic carcinogenicity are combined with information from subchronic toxicity studies in a weight-of-evidence approach to identify carcinogenic potential of a test substance. The workshop included interactive sessions to discuss the approach using case studies. These showed that fine-tuning is needed, to build confidence in the proposed approach, to ensure scientific correctness, and to address different regulatory needs. This novel approach was considered realistic, and its regulatory acceptance and implementation can be facilitated in the coming years through continued dialogue between all stakeholders and building confidence in alternative approaches.
Collapse
Affiliation(s)
- Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands.
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Nathalie Delrue
- Organisation for Economic Cooperation and Development (OECD), Paris, France
| | | | - Bodo Haas
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | | | - Gina Hilton
- PETA International Science Consortium Ltd, London, UK
| | | | - Miriam N Jacobs
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England, UK
| | | | - Franz Lamplmair
- European Commission, DG Internal Market, Industry, Entrepreneurship and SMEs, Brussels, Belgium
| | | | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Irene Manou
- EPAA Industry Secretariat, Brussels, Belgium
| | | | | | | | - Fiona Sewell
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| | | | | | - Douglas C Wolf
- Syngenta Crop Protection, LLC, Greensboro, North Carolina, USA
| | - Gerrit Wolterink
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Bilthoven, the Netherlands
| | - Ruud Woutersen
- TNO Innovation for Life, Zeist; Wageningen University and Research, Wageningen, the Netherlands
| | | | - Harm Heusinkveld
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| |
Collapse
|
12
|
Suarez-Torres JD, Jimenez-Orozco FA, Ciangherotti CE. The 2-year rodent bioassay in drug and chemical carcinogenesis testing: Sensitivity, according to the framework of carcinogenic action. Toxicol Mech Methods 2020; 30:462-475. [PMID: 32338171 DOI: 10.1080/15376516.2020.1760986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The long-term rodent bioassay (RCB) has been the gold-standard for the pre-marketing prediction of chemical and drug carcinogenicity to humans. Nonetheless, the validity of this toxicity test has remained elusive for several decades. In the quest to uncover the performance of the RCB, its sensitivity (SEN) was charted as the first step. This appraisal was based on (a) chemicals with sufficient epidemiological evidence of carcinogenicity, and (b) other substances with limited epidemiological evidence, or remarkable classifications of carcinogenicity based on mechanistic or pharmacological data. In the present study, chemicals evaluated for their carcinogenicity to humans in IARC Monographs volumes 1-123, U.S. EPA IRIS Assessments, and U.S. NTP RoC were considered. This investigation gathered additional evidence supporting that, in hazard identification, the RCB is unwarranted for mutagenic or direct-acting genotoxicants. However, for purposes of risk assessment or management, the RCB might be justified whenever there is a lack of reliable and/or comprehensive epidemiological data. The RCB exhibited a significantly different SEN for threshold-based human carcinogens compared to non-threshold-based ones. With threshold-based chemicals, to increase the SEN of the testing from 80% (rat-RCB) to 90%, the 2-species RCB might be warranted. Nevertheless, the resolve would depend on the viewpoint, and on the future analysis of the overall performance of the RCB. In terms of SEN, and cancer hazard identification, the comparison between the RCB and alternative methods (e.g. rasH2 mouse, Tg.AC mouse) is now enabled.
Collapse
Affiliation(s)
- Jose D Suarez-Torres
- Department of Pharmacy, Universidad Nacional de Colombia, Bogotá, Colombia.,Department of Toxicology, Universidad Nacional de Colombia, Bogotá, Colombia.,Institute of Pharmaceutical Research, School of Pharmacy, Universidad Central de Venezuela, Caracas, Venezuela
| | - Fausto A Jimenez-Orozco
- Department of Pharmacology, Faculty of Medicine, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Carlos E Ciangherotti
- Institute of Pharmaceutical Research, School of Pharmacy, Universidad Central de Venezuela, Caracas, Venezuela.,Laboratory of Neuropeptides, School of Pharmacy, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
13
|
Suarez-Torres J, Ciangherotti C, Jimenez-Orozco F. Insights into toxicology, safety pharmacology, and drug dependence testing: The performance and predictive values of nonclinical tests. J Pharmacol Toxicol Methods 2020; 103:106684. [DOI: 10.1016/j.vascn.2020.106684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/27/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
|
14
|
Felter SP, Boobis AR, Botham PA, Brousse A, Greim H, Hollnagel HM, Sauer UG. Hazard identification, classification, and risk assessment of carcinogens: too much or too little? - Report of an ECETOC workshop. Crit Rev Toxicol 2020; 50:72-95. [PMID: 32133908 DOI: 10.1080/10408444.2020.1727843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) organized a workshop "Hazard Identification, Classification and Risk Assessment of Carcinogens: Too Much or Too Little?" to explore the scientific limitations of the current binary carcinogenicity classification scheme that classifies substances as either carcinogenic or not. Classification is often based upon the rodent 2-year bioassay, which has scientific limitations and is not necessary to predict whether substances are likely human carcinogens. By contrast, tiered testing strategies founded on new approach methodologies (NAMs) followed by subchronic toxicity testing, as necessary, are useful to determine if a substance is likely carcinogenic, by which mode-of-action effects would occur and, for non-genotoxic carcinogens, the dose levels below which the key events leading to carcinogenicity are not affected. Importantly, the objective is not for NAMs to mimic high-dose effects recorded in vivo, as these are not relevant to human risk assessment. Carcinogenicity testing at the "maximum tolerated dose" does not reflect human exposure conditions, but causes major disturbances of homeostasis, which are very unlikely to occur at relevant human exposure levels. The evaluation of findings should consider biological relevance and not just statistical significance. Using this approach, safe exposures to non-genotoxic substances can be established.
Collapse
Affiliation(s)
| | | | | | - Alice Brousse
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), Brussels, Belgium
| | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| |
Collapse
|
15
|
Yauk CL, Harrill AH, Ellinger-Ziegelbauer H, van der Laan JW, Moggs J, Froetschl R, Sistare F, Pettit S. A cross-sector call to improve carcinogenicity risk assessment through use of genomic methodologies. Regul Toxicol Pharmacol 2020; 110:104526. [PMID: 31726190 PMCID: PMC7891877 DOI: 10.1016/j.yrtph.2019.104526] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/25/2019] [Accepted: 11/08/2019] [Indexed: 12/30/2022]
Abstract
Robust genomic approaches are now available to realize improvements in efficiencies and translational relevance of cancer risk assessments for drugs and chemicals. Mechanistic and pathway data generated via genomics provide opportunities to advance beyond historical reliance on apical endpoints of uncertain human relevance. Published research and regulatory evaluations include many examples for which genomic data have been applied to address cancer risk assessment as a health protection endpoint. The alignment of mature, robust, reproducible, and affordable technologies with increasing demands for reduced animal testing sets the stage for this important transition. We present our shared vision for change from leading scientists from academic, government, nonprofit, and industrial sectors and chemical and pharmaceutical safety applications. This call to action builds upon a 2017 workshop on "Advances and Roadblocks for Use of Genomics in Cancer Risk Assessment." The authors propose a path for implementation of innovative cancer risk assessment including incorporating genomic signatures to assess mechanistic relevance of carcinogenicity and enhanced use of genomics in benchmark dose and point of departure evaluations. Novel opportunities for the chemical and pharmaceutical sectors to combine expertise, resources, and objectives to achieve a common goal of improved human health protection are identified.
Collapse
Affiliation(s)
| | - Alison H Harrill
- National Institute of Environmental Health Sciences, Research Triangle, Park, NC, 27709, USA.
| | | | | | | | - Roland Froetschl
- BfArM Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | | | - Syril Pettit
- Health and Environmental Sciences Institute, Washington, DC, USA
| |
Collapse
|
16
|
Sacaan A, Thibault S, Khan KN. Central nervous system tumors in 2-year rat carcinogenicity studies: perspectives on human risk assessment. J Toxicol Sci 2019; 44:643-655. [PMID: 31588056 DOI: 10.2131/jts.44.643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rodent in vivo carcinogenicity bioassays are required for human risk assessment and have been utilized in this capacity for decades. Accordingly, there is an abundance of data that could be accessed and analyzed to better understand the translatability of xenobiotic-induced rodent tumors to human risk assessment. In the past decade, various groups have published assessments of the value garnered by these life-time rodent studies. Results and recommendations from the International Council for Harmonization Expert Working Group (ICH-S1 EWG) on the predictability of the current testing paradigm and proposal for an integrated approach to human carcinogenicity risk assessment are pending. Central nervous system (CNS) tumors in rats are rare and translatability to human remains unknown. This review focuses on microglial cell tumors (MCT) of the CNS in rats including its classification, nomenclature, incidence and translatability to human risk assessment. Based on emerging immunohistochemistry (IHC) characterization, glial tumors previously thought of astrocytic origin are more likely MCTs. These may be considered rodent specific and glucose dysregulation may be one component contributing to their formation. Based on review of the literature, MCTs are rarely diagnosed in humans, thus this tumor type may be rat-specific. We propose to include MCTs as a tumor type in revised International Harmonization of Nomenclature and Diagnostic Criteria (INHAND) classification and all glial tumors to be classified as MCTs unless proven otherwise by IHC.
Collapse
Affiliation(s)
- Aida Sacaan
- Pfizer Inc. Drug Safety Research and Development
| | | | - K Nasir Khan
- Pfizer Inc. Drug Safety Research and Development
| |
Collapse
|
17
|
Cohen SM, Boobis AR, Dellarco VL, Doe JE, Fenner-Crisp PA, Moretto A, Pastoor TP, Schoeny RS, Seed JG, Wolf DC. Chemical carcinogenicity revisited 3: Risk assessment of carcinogenic potential based on the current state of knowledge of carcinogenesis in humans. Regul Toxicol Pharmacol 2019; 103:100-105. [DOI: 10.1016/j.yrtph.2019.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/27/2023]
|
18
|
Braakhuis HM, Slob W, Olthof ED, Wolterink G, Zwart EP, Gremmer ER, Rorije E, van Benthem J, Woutersen R, van der Laan JW, Luijten M. Is current risk assessment of non-genotoxic carcinogens protective? Crit Rev Toxicol 2018; 48:500-511. [PMID: 29745287 DOI: 10.1080/10408444.2018.1458818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Non-genotoxic carcinogens (NGTXCs) do not cause direct DNA damage but induce cancer via other mechanisms. In risk assessment of chemicals and pharmaceuticals, carcinogenic risks are determined using carcinogenicity studies in rodents. With the aim to reduce animal testing, REACH legislation states that carcinogenicity studies are only allowed when specific concerns are present; risk assessment of compounds that are potentially carcinogenic by a non-genotoxic mode of action is usually based on subchronic toxicity studies. Health-based guidance values (HBGVs) of NGTXCs may therefore be based on data from carcinogenicity or subchronic toxicity studies depending on the legal framework that applies. HBGVs are usually derived from No-Observed-Adverse-Effect-Levels (NOAELs). Here, we investigate whether current risk assessment of NGTXCs based on NOAELs is protective against cancer. To answer this question, we estimated Benchmark doses (BMDs) for carcinogenicity data of 44 known NGTXCs. These BMDs were compared to the NOAELs derived from the same carcinogenicity studies, as well as to the NOAELs derived from the associated subchronic studies. The results lead to two main conclusions. First, a NOAEL derived from a subchronic study is similar to a NOAEL based on cancer effects from a carcinogenicity study, supporting the current practice in REACH. Second, both the subchronic and cancer NOAELs are, on average, associated with a cancer risk of around 1% in rodents. This implies that for those chemicals that are potentially carcinogenic in humans, current risk assessment of NGTXCs may not be completely protective against cancer. Our results call for a broader discussion within the scientific community, followed by discussions among risk assessors, policy makers, and other stakeholders as to whether or not the potential cancer risk levels that appear to be associated with currently derived HBGVs of NGXTCs are acceptable.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Wout Slob
- b Centre for Nutrition, Prevention and Health services , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Evelyn D Olthof
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Gerrit Wolterink
- b Centre for Nutrition, Prevention and Health services , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Edwin P Zwart
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Eric R Gremmer
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Emiel Rorije
- c Centre for Safety of Substances and Products , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Jan van Benthem
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Ruud Woutersen
- d Netherlands Organization for Applied Scientific Research (TNO) , Zeist , The Netherlands
| | | | - Mirjam Luijten
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| |
Collapse
|
19
|
Changing the field of carcinogenicity testing of human pharmaceuticals by emphasizing mode of action. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
van den Brink W, Emerenciana A, Bellanti F, Della Pasqua O, van der Laan JW. Prediction of thyroid C-cell carcinogenicity after chronic administration of GLP1-R agonists in rodents. Toxicol Appl Pharmacol 2017; 320:51-59. [PMID: 28213092 DOI: 10.1016/j.taap.2017.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/07/2017] [Accepted: 02/12/2017] [Indexed: 01/03/2023]
Abstract
Increased incidence of C-cell carcinogenicity has been observed for glucagon-like-protein-1 receptor (GLP-1r) agonists in rodents. It is suggested that the duration of exposure is an indicator of carcinogenic potential in rodents of the different products on the market. Furthermore, the role of GLP-1-related mechanisms in the induction of C-cell carcinogenicity has gained increased attention by regulatory agencies. This study proposes an integrative pharmacokinetic/pharmacodynamic (PKPD) framework to identify explanatory factors and characterize differences in carcinogenic potential of the GLP-1r agonist products. PK models for four products (exenatide QW (once weekly), exenatide BID (twice daily), liraglutide and lixisenatide) were developed using nonlinear mixed effects modelling. Predicted exposure was subsequently linked to GLP-1r stimulation using in vitro GLP-1r potency data. A logistic regression model was then applied to exenatide QW and liraglutide data to assess the relationship between GLP-1r stimulation and thyroid C-cell hyperplasia incidence as pre-neoplastic predictor of a carcinogenic response. The model showed a significant association between predicted GLP-1r stimulation and C-cell hyperplasia after 2years of treatment. The predictive performance of the model was evaluated using lixisenatide, for which hyperplasia data were accurately described during the validation step. The use of a model-based approach provided insight into the relationship between C-cell hyperplasia and GLP-1r stimulation for all four products, which is not possible with traditional data analysis methods. It can be concluded that both pharmacokinetics (exposure) and pharmacodynamics (potency for GLP-1r) factors determine C-cell hyperplasia incidence in rodents. Our work highlights the pharmacological basis for GLP-1r agonist-induced C-cell carcinogenicity. The concept is promising for application to other drug classes.
Collapse
Affiliation(s)
- Willem van den Brink
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Medicines Evaluation Board, Utrecht, The Netherlands
| | - Annette Emerenciana
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Medicines Evaluation Board, Utrecht, The Netherlands
| | - Francesco Bellanti
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Oscar Della Pasqua
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Stockley Park, Uxbridge, United Kingdom; Clinical Pharmacology & Therapeutics, UCL, School of Life and Medical Sciences, London, United Kingdom
| | - Jan Willem van der Laan
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Medicines Evaluation Board, Utrecht, The Netherlands.
| |
Collapse
|