1
|
Pandolfi S, Chirumbolo S, Franzini M, Tirelli U, Valdenassi L. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Med Gas Res 2025; 15:36-43. [PMID: 39217427 PMCID: PMC11515079 DOI: 10.4103/mgr.medgasres-d-23-00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/08/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) represent a major concern for human health worldwide. Emergencies in this field include wide repertories of studies dealing primarily with CVD prevention. In addition to dietary habits and lifestyles, medical knowledge is fully needed to improve public educational programs toward cardiovascular risk factors and to enrich the endowment of pharmaceutical options and therapies to address CVDs, particularly for ischemic damage due to an impairment in the endothelial-myocardial relationship. Because ozone is a stimulator of the endothelial nitric oxide synthase/nitric oxide pathway, ozone therapy has been widely demonstrated to have the ability to counteract endothelial-cardiac disorders, providing a novel straightforward opportunity to reduce the impact of CVDs, including atrial fibrillation. In this review, we attempt to establish a state-of-the-art method for the use of ozone in CVD, suggesting that future remarks be addressed to provide fundamental insights into this issue. The purpose of this study was to highlight the role of ozone in the adjunctive medical treatment of cardiovascular pathologies such as acute myocardial infarction due to ischemic disorders.
Collapse
Affiliation(s)
- Sergio Pandolfi
- High School Master of Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
- Italian Scientific Society of Oxygen-Ozone Therapy (SIOOT), Gorle, Italy
| | - Salvatore Chirumbolo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Marianno Franzini
- High School Master of Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
- Italian Scientific Society of Oxygen-Ozone Therapy (SIOOT), Gorle, Italy
| | | | - Luigi Valdenassi
- High School Master of Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
- Italian Scientific Society of Oxygen-Ozone Therapy (SIOOT), Gorle, Italy
| |
Collapse
|
2
|
Zhang S, Rao C, Wen M, Zhang X, Zha Z, Gu T, Zhu L, Yu C. Role of Peripheral Blood Regulatory T Cells and IL-2 in the Collateral Circulation of Acute Ischemic Stroke. Int J Gen Med 2025; 18:1075-1088. [PMID: 40026811 PMCID: PMC11871876 DOI: 10.2147/ijgm.s504218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Background Inflammation is recognized as a pivotal factor in the pathophysiology of acute ischemic stroke (AIS) and has the potential to influence the collateral circulation of patients. The objective of this investigation was to explore the link between peripheral regulatory T cells (Tregs), interleukin-2 (IL-2), and the status of collateral circulation. Methods Between September 2023 and May 2024, the study incorporated 117 AIS patients from the neurology department, with 60 identified as having good collateral status (GCS) and 57 with poor collateral status (PCS). Additionally, a control group of 46 healthy individuals was included. Collateral circulation in AIS patients was assessed via computed tomography angiography. The levels of peripheral blood Tregs were quantified through flow cytometry, while IL-2 was measured by ELISA. Results In this investigation, patients diagnosed with PCS demonstrated reduced Tregs (5.77 ± 1.55%) and IL-2 levels (7.37 ± 2.61 pg/mL) compared to individuals with GCS (7.09 ± 1.32%, 9.95 ± 3.58 pg/mL) and healthy controls (7.17 ± 1.40%,10.33 ± 4.01 pg/mL). Logistic regression analysis identified significant associations between Tregs and IL-2 levels and collateral circulation status (p<0.05), with diminished levels of both being independent predictors of PCS when compared to GCS. A nomogram was developed to forecast risk factors for collateral circulation, further highlighting the potential of plasma Tregs and IL-2 levels as biomarkers in predicting collateral circulation among AIS patients. The diagnostic performance of Tregs and IL-2 was assessed utilizing receiver operating characteristic (ROC) analysis. The area under the ROC curve (AUC) for Tregs in differentiating GCS from PCS patients was ascertained to be 0.741 (95% confidence interval [CI]: 0.652-0.830), while for IL-2, it was 0.710 (95% CI: 0.618-0.803). Moreover, the combined measurement of Tregs and IL-2 resulted in an AUC of 0.779 (95% CI: 0.695-0.863). Conclusion Plasma levels of peripheral blood Tregs and IL-2 may function as promising biomarkers for the prediction of collateral circulation status, suggesting potential new therapeutic approaches aimed at enhancing cerebral collateral circulation, and providing new therapeutic targets for acute ischemic stroke.
Collapse
Affiliation(s)
- Simin Zhang
- The Medical School of Anhui University of Science & Technology, Huainan, Anhui Province, 232000, People’s Republic of China
- Department of Neurology, The First Hospital of Anhui University of Science & Technology (The First People’s Hospital of Huainan), Huainan, Anhui Province, 232000, People’s Republic of China
| | - Chen Rao
- The Medical School of Anhui University of Science & Technology, Huainan, Anhui Province, 232000, People’s Republic of China
- Department of Neurology, The First Hospital of Anhui University of Science & Technology (The First People’s Hospital of Huainan), Huainan, Anhui Province, 232000, People’s Republic of China
| | - Meihai Wen
- Bengbu Medical University, Bengbu, Anhui Province, 233000, People’s Republic of China
| | - Xuke Zhang
- Bengbu Medical University, Bengbu, Anhui Province, 233000, People’s Republic of China
| | - Zhiwen Zha
- The Medical School of Anhui University of Science & Technology, Huainan, Anhui Province, 232000, People’s Republic of China
- Department of Neurology, The First Hospital of Anhui University of Science & Technology (The First People’s Hospital of Huainan), Huainan, Anhui Province, 232000, People’s Republic of China
| | - Tong Gu
- The Medical School of Anhui University of Science & Technology, Huainan, Anhui Province, 232000, People’s Republic of China
- Department of Neurology, The First Hospital of Anhui University of Science & Technology (The First People’s Hospital of Huainan), Huainan, Anhui Province, 232000, People’s Republic of China
| | - Lei Zhu
- The Medical School of Anhui University of Science & Technology, Huainan, Anhui Province, 232000, People’s Republic of China
- Department of Neurology, The First Hospital of Anhui University of Science & Technology (The First People’s Hospital of Huainan), Huainan, Anhui Province, 232000, People’s Republic of China
| | - Chuanqing Yu
- The Medical School of Anhui University of Science & Technology, Huainan, Anhui Province, 232000, People’s Republic of China
- Department of Neurology, The First Hospital of Anhui University of Science & Technology (The First People’s Hospital of Huainan), Huainan, Anhui Province, 232000, People’s Republic of China
| |
Collapse
|
3
|
Negri S, Reyff Z, Troyano-Rodriguez E, Milan M, Ihuoma J, Tavakol S, Shi H, Patai R, Jiang R, Mohon J, Boma-Iyaye J, Ungvari Z, Csiszar A, Yabluchanskiy A, Moccia F, Tarantini S. Endothelial Colony-Forming Cells (ECFCs) in cerebrovascular aging: Focus on the pathogenesis of Vascular Cognitive Impairment and Dementia (VCID), and treatment prospects. Ageing Res Rev 2025; 104:102672. [PMID: 39884362 DOI: 10.1016/j.arr.2025.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Endothelial colony-forming cells (ECFCs), a unique endothelial progenitor subset, are essential for vascular integrity and repair, providing significant regenerative potential. Recent studies highlight their role in cerebrovascular aging, particularly in the pathogenesis of vascular cognitive impairment and dementia (VCID). Aging disrupts ECFC functionality through mechanisms such as oxidative stress, chronic inflammation, and cellular senescence, leading to compromised vascular repair and reduced neurovascular resilience. ECFCs influence key cerebrovascular processes, including neurovascular coupling (NVC), blood-brain barrier (BBB) integrity, and vascular regeneration, which are critical for cognitive health. Age-related decline in ECFC quantity and functionality contributes to vascular rarefaction, diminished cerebral blood flow (CBF), and BBB permeability-processes that collectively exacerbate cognitive decline. This review delves into the multifaceted role of ECFCs in cerebrovascular aging and underscores their potential as therapeutic targets in addressing age-related vascular dysfunctions, presenting new directions for mitigating the effects of aging on brain health.
Collapse
Affiliation(s)
- Sharon Negri
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zeke Reyff
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eva Troyano-Rodriguez
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Madison Milan
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jennifer Ihuoma
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sherwin Tavakol
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Helen Shi
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Raymond Jiang
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Casady School, Oklahoma City, OK, USA
| | - Jonah Mohon
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma School of Science and Mathematics, OK, USA
| | - Jed Boma-Iyaye
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma School of Science and Mathematics, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral College, Health Sciences Program/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Francesco Moccia
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso 86100, Italy
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral College, Health Sciences Program/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Paschalaki K, Pericleous C. Isolation and Characterization of Endothelial-Colony Forming Cells (ECFC): Studying Endothelial Senescence for Translational Studies and for Personalized Medicine. Methods Mol Biol 2025; 2906:255-270. [PMID: 40082361 DOI: 10.1007/978-1-0716-4426-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Endothelium regulates vascular homeostasis maintaining a healthy cardiovascular system but also plays a key role in tumor development, progression, and metastasis. Endothelial senescence can be driven by aging, DNA damage, oxidative stress, oncogenes and chemotherapy, and contributes to vascular dysfunction. Endothelial colony-forming cells (ECFC) are endothelial-committed progenitors with clonogenic potential, de novo angiogenic capacity and endothelial regenerative abilities. Studying ECFC senescence provides a novel approach to investigate the molecular mechanisms of endothelial dysfunction and response to treatment, in a noninvasive and personalized manner.
Collapse
Affiliation(s)
| | - Charis Pericleous
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
5
|
Thangasparan S, Kamisah Y, Ugusman A, Mohamad Anuar NN, Ibrahim N‘I. Unravelling the Mechanisms of Oxidised Low-Density Lipoprotein in Cardiovascular Health: Current Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2024; 25:13292. [PMID: 39769058 PMCID: PMC11676878 DOI: 10.3390/ijms252413292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Cardiovascular diseases (CVD) are the number one cause of death worldwide, with atherosclerosis, which is the formation of fatty plaques in the arteries, being the most common underlying cause. The activation of inflammatory events and endothelium dysfunction are crucial for the development and pathophysiology of atherosclerosis. Elevated circulating levels of low-density lipoprotein (LDL) have been associated with severity of atherosclerosis. LDL can undergo oxidative modifications, resulting in oxidised LDL (oxLDL). OxLDL has been found to have antigenic potential and contribute significantly to atherosclerosis-associated inflammation by activating innate and adaptive immunity. Various inflammatory stimuli such as interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α) and intercellular adhesion molecule 1 (ICAM-1) play major roles in atherosclerosis. To date, studies have provided valuable insights into the role of oxLDL in the development of atherosclerosis. However, there remains a gap in understanding the specific pathways involved in this process. This review aims to provide and discuss the mechanisms by which oxLDL modulates signalling pathways that cause cardiovascular diseases by providing in vitro and in vivo experimental evidence. Its critical role in triggering and sustaining endothelial dysfunction highlights its potential as a therapeutic target. Advancing the understanding of its atherogenic role and associated signalling pathways could pave the way for novel targeted therapeutic strategies to combat atherosclerosis more effectively.
Collapse
Affiliation(s)
- Sahsikala Thangasparan
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.T.); (Y.K.)
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.T.); (Y.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
| | - Azizah Ugusman
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
| | - Nur Najmi Mohamad Anuar
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
- Programme of Biomedical Science, Center for Toxicology & Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nurul ‘Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.T.); (Y.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
| |
Collapse
|
6
|
Tariq AR, Lee M, Kim M. Endothelial Progenitor Cells: A Brief Update. Int J Stem Cells 2024; 17:374-380. [PMID: 38030386 PMCID: PMC11612220 DOI: 10.15283/ijsc23106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/30/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
An enormous amount of current data has suggested involvement of endothelial progenitor cells (EPCs) in neovasculogenesis in both human and animal models. EPC level is an indicator of possible cardiovascular risk such as Alzheimer disease. EPC therapeutics requires its identification, isolation, differentiation and thus expansion. We approach here the peculiar techniques through current and previous reports available to find the most plausible and fast way of their expansion to be used in therapeutics. We discuss here the techniques for EPCs isolation from different resources like bone marrow and peripheral blood circulation. EPCs have been isolated by methods which used fibronectin plating and addition of various growth factors to culture media. Particularly, the investigations which tried to enhance EPC differentiation while inducing with growth factors and endothelial nitric oxide synthase are shared. We also include the cryopreservation and other storage methods of EPCs for a longer time. Sufficient amount of EPCs are required in transplantation and other therapeutics which signifies their in vitro expansion. We highlight the role of EPCs in transplantation which improved neurogenesis in animal models of ischemic stroke and human with acute cerebral infarct in the brain. Accumulatively, these data suggest the exhilarating route for enhancing EPC number to make their use in the clinic. Finally, we identify the expression of specific biomarkers in EPCs under the influence of growth factors. This review provides a brief overview of factors involved in EPC expansion and transplantation and raises interesting questions at every stage with constructive suggestions.
Collapse
Affiliation(s)
- Amna Rashid Tariq
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Mijung Lee
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Manho Kim
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Neuroscience Dementia Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Protein Metabolism Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Sojakova D, Husakova J, Fejfarova V, Nemcova A, Jarosikova R, Kopp S, Lovasova V, Jude EB, Dubsky M. The Use of Autologous Cell Therapy in Diabetic Patients with Chronic Limb-Threatening Ischemia. Int J Mol Sci 2024; 25:10184. [PMID: 39337669 PMCID: PMC11431855 DOI: 10.3390/ijms251810184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Autologous cell therapy (ACT) is primarily used in diabetic patients with chronic limb-threatening ischemia (CLTI) who are not candidates for standard revascularization. According to current research, this therapy has been shown in some studies to be effective in improving ischemia parameters, decreasing the major amputation rate, and in foot ulcer healing. This review critically evaluates the efficacy of ACT in patients with no-option CLTI, discusses the use of mononuclear and mesenchymal stem cells, and compares the route of delivery of ACT. In addition to ACT, we also describe the use of new revascularization strategies, e.g., nanodiscs, microbeads, and epigenetics, that could enhance the therapeutic effect. The main aim is to summarize new findings on subcellular and molecular levels with the clinical aspects of ACT.
Collapse
Affiliation(s)
- Dominika Sojakova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| | - Jitka Husakova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| | - Vladimira Fejfarova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Andrea Nemcova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Radka Jarosikova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Simon Kopp
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Veronika Lovasova
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
- Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Edward B. Jude
- Diabetes Center, Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton-under-Lyne OL6 9RW, UK;
- Department of Endocrinology and Gastroenterology, University of Manchester, Manchester M13 9PL, UK
| | - Michal Dubsky
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| |
Collapse
|
8
|
Zhou H, Sun X, Dai Y, Wang X, Dai Z, Li X. 14-3-3-η interacts with BCL-2 to protect human endothelial progenitor cells from ox-LDL-triggered damage. Cell Biol Int 2024; 48:290-299. [PMID: 38100125 DOI: 10.1002/cbin.12105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/31/2023] [Accepted: 11/18/2023] [Indexed: 02/15/2024]
Abstract
Oxidized low-density lipoprotein (ox-LDL) causes dysfunction of endothelial progenitor cells (EPCs), and we recently reported that 14-3-3-η can attenuate the damage triggered by ox-LDL in EPCs. However, the molecular mechanisms by which 14-3-3-η protects EPCs from the damage caused by ox-LDL are not fully understood. In this study, we observed that the expression of 14-3-3-η and BCL-2 were downregulated in ox-LDL-treated EPCs. Overexpression of 14-3-3-η in ox-LDL-treated EPC significantly increased BCL-2 level, while knockdown of BCL-2 reduced 14-3-3-η expression and mitigated the protective effect of 14-3-3-η on EPCs. In addition, we discovered that 14-3-3-η colocalizes and interacts with BCL-2 in EPCs. Taken together, these data suggest that 14-3-3-η protects EPCs from ox-LDL-induced damage by its interaction with BCL-2.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaopei Sun
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Dai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaotong Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhihong Dai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiuli Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Kumrah R, Goyal T, Rawat A, Singh S. Markers of Endothelial Dysfunction in Kawasaki Disease: An Update. Clin Rev Allergy Immunol 2024; 66:99-111. [PMID: 38462555 DOI: 10.1007/s12016-024-08985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Kawasaki disease (KD) is a medium vessel vasculitis that has a special predilection for coronary arteries. Cardiovascular complications include the development of coronary artery abnormalities (CAAs) and myocarditis. Endothelial dysfunction (ED) is now recognized to be a key component in the pathogenesis of KD and is believed to contribute to the development of CAAs. ED has been evaluated by several clinical parameters. However, there is paucity of literature on laboratory markers for ED in KD. The evaluation of ED can be aided by the identification of biomarkers such as oxidative stress markers, circulating cells and their progenitors, angiogenesis factors, cytokines, chemokines, cell-adhesion molecules, and adipokines. If validated in multicentric studies, these biomarkers may be useful for monitoring the disease course of KD. They may also provide a useful predictive marker for the development of premature atherosclerosis that is often a concern during long-term follow-up of KD. This review provides insights into the current understanding of the significance of ED in KD.
Collapse
Affiliation(s)
- Rajni Kumrah
- Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Taru Goyal
- Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
10
|
Markandeywar TS, Singh D, Singh G, Kurmi BD, Narang RK. Endothelial Progenitor Cell (EPC) is a Prime Target in Diabetic Wound Healing: Mechanisms and Target Therapies. Curr Mol Med 2024; 24:1073-1076. [PMID: 37694783 DOI: 10.2174/1566524023666230911141402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Tanmay Sudhakar Markandeywar
- IK Gujral Punjab Technical University, Kapurthala, 144603, Jalandhar Punjab, India
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Moga, 142001, Punjab, India
| | - Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University Gharuan, Mohali, 140413, India
| | - Gurmeet Singh
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Moga, 142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Moga, 142001, Punjab, India
| |
Collapse
|
11
|
Guerrero F, Carmona A, Vidal V, Franco A, Martín-Malo A, Sánchez-Fernández EM, Carrillo-Carrión C. A selenoureido-iminoglycolipid transported by zeolitic-imidazolate framework nanoparticles: a novel antioxidant therapeutic approach. NANOSCALE HORIZONS 2023; 8:1700-1710. [PMID: 37819240 DOI: 10.1039/d3nh00363a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A selenium-containing metal-organic framework with remarkable antioxidant capacity and ROS-scavenging activity was constructed by a controlled de novo encapsulation approach of a glycoconjugate mimetic, specifically a sp2-iminoglycolipid bearing a selenoureido fragment (DSeU), within a zeolitic-imidazolate framework exoskeleton. Biocompatible and homogeneous nanosized particles of ∼70 nm (DSeU@ZIF8) were obtained, which could be efficiently internalized in cells, overcoming the poor solubility in biological media and limited bioavailability of glycolipids. The ZIF-particle served as nanocarrier for the intracellular delivery of the selenocompound to cells, promoted by the acidic pH inside endosomes/lysosomes. As demonstrated by in vitro studies, the designed DSeU@ZIF8 nanoparticles displayed a high antioxidant activity at low doses; lower intracellular ROS levels were observed upon the uptake of DSeU@ZIF8 by human endothelial cells. Even more interesting was the finding that these DSeU@ZIF8 particles were able to reverse to a certain level the oxidative stress induced in cells by pre-treatment with an oxidizing agent. This possibility of modulating the oxidative stress in living cells may have important implications in the treatment of diverse pathological complications that are generally accompanied with elevated ROS levels.
Collapse
Affiliation(s)
- Fátima Guerrero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Andrés Carmona
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Victoria Vidal
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Ana Franco
- Leibniz Institute für Katalyse e. V., 18059 Rostock, Germany
| | - Alejandro Martín-Malo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Elena M Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Sevilla, Spain.
| | - Carolina Carrillo-Carrión
- Institute for Chemical Research (IIQ), CSIC-University of Seville, Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
12
|
Liou YJ, Chen MH, Hsu JW, Huang KL, Huang PH, Bai YM. Circulating endothelial progenitor cell dysfunction in patients with bipolar disorder. Eur Arch Psychiatry Clin Neurosci 2023; 273:1255-1265. [PMID: 36527490 DOI: 10.1007/s00406-022-01530-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Dysfunction in circulating endothelial progenitor cells (cEPCs) plays a crucial role in cardiovascular disorders (CVDs). Patients with bipolar disorder (BPD) are at increased risk of developing CVDs. This study examined the associations of the functional properties of cEPCs with BPD and its clinical and cognitive characteristics. We recruited 69 patients with BPD and 41 healthy controls (HCs). The levels of manic, depressive, anxiety, psychosomatic symptoms, subjective cognitive dysfunction, quality of life, and functional disability of the BPD group were evaluated using the Young Mania Rating Scale (YMRS), Clinical Global Impression for BPD (CGI-BP), Hamilton Depression Rating Scale, Montgomery-Åsberg Depression Rating Scale, Hamilton Anxiety Rating Scale, Depression and Somatic Symptoms Scale, Perceived Deficits Questionnaire-Depression, 12-Item Short-Form Health Survey, and Sheehan Disability Scale, respectively. Cognitive function was assessed using 2-back and Go/No-Go tasks. Through in vitro assays, the adhesion to fibronectin and the percentage of apoptosis of cEPCs were examined. Under correction for multiple comparisons, the adhesive function of cEPCs in BPD was significantly lower than that in the HCs (corrected P [Pcorr] = 0.027). The reduced adhesive function of cEPCs correlated significantly with increased scores in the YMRS (Pcorr = 0.0002) and the CGI-BP (Pcorr = 0.0009). A lower percentage of apoptotic cEPC cells was associated with greater commission errors in the 2-back (Pcorr = 0.028) and Go/No-Go tasks (Pcorr = 0.029). The cEPCs of the BPD group exhibited attenuated adhesive function. The altered adhesive and apoptotic functions of cEPCs are associated with manic symptom severity and response inhibition deficits in patients with BPD.
Collapse
Affiliation(s)
- Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Shih-Pai Road, Sec. 2, 11217, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Shih-Pai Road, Sec. 2, 11217, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ju-Wei Hsu
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Shih-Pai Road, Sec. 2, 11217, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kai-Lin Huang
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Shih-Pai Road, Sec. 2, 11217, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Shih-Pai Road, Sec. 2, 11217, Taipei, Taiwan.
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Shih-Pai Road, Sec. 2, 11217, Taipei, Taiwan.
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
13
|
Ruknudin P, Nazari AR, Wirth M, Lahaie I, Bajon E, Rivard A, Chemtob S, Desjarlais M. Novel Function of Nogo-A as Negative Regulator of Endothelial Progenitor Cell Angiogenic Activity: Impact in Oxygen-Induced Retinopathy. Int J Mol Sci 2023; 24:13185. [PMID: 37685993 PMCID: PMC10488245 DOI: 10.3390/ijms241713185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Endothelial Progenitor Cells (EPCs) can actively participate in revascularization in oxygen-induced retinopathy (OIR). Yet the mechanisms responsible for their dysfunction is unclear. Nogo-A, whose function is traditionally related to the inhibition of neurite function in the central nervous system, has recently been documented to display anti-angiogenic pro-repellent properties. Based on the significant impact of EPCs in retinal vascularization, we surmised that Nogo-A affects EPC function, and proceeded to investigate the role of Nogo-A on EPC function in OIR. The expression of Nogo-A and its specific receptor NgR1 was significantly increased in isolated EPCs exposed to hyperoxia, as well as in EPCs isolated from rats subjected to OIR compared with respective controls (EPCs exposed to normoxia). EPCs exposed to hyperoxia displayed reduced migratory and tubulogenic activity, associated with the suppressed expression of prominent EPC-recruitment factors SDF-1/CXCR4. The inhibition of Nogo-A (using a Nogo-66 neutralizing antagonist peptide) or siRNA-NGR1 in hyperoxia-exposed EPCs restored SDF-1/CXCR4 expression and, in turn, rescued the curtailed neovascular functions of EPCs in hyperoxia. The in vivo intraperitoneal injection of engineered EPCs (Nogo-A-inhibited or NgR1-suppressed) in OIR rats at P5 (prior to exposure to hyperoxia) prevented retinal and choroidal vaso-obliteration upon localization adjacent to vasculature; coherently, the inhibition of Nogo-A/NgR1 in EPCs enhanced the expression of key angiogenic factors VEGF, SDF-1, PDGF, and EPO in retina; CXCR4 knock-down abrogated suppressed NgR1 pro-angiogenic effects. The findings revealed that hyperoxia-induced EPC malfunction is mediated to a significant extent by Nogo-A/NgR1 signaling via CXCR4 suppression; the inhibition of Nogo-A in EPCs restores specific angiogenic growth factors in retina and the ensuing vascularization of the retina in an OIR model.
Collapse
Affiliation(s)
- Pakiza Ruknudin
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
| | - Ali Riza Nazari
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
| | - Maelle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H1T 2H2, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
| | - Emmanuel Bajon
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H1T 2H2, Canada
| | - Alain Rivard
- Department of Medicine, Centre Hospitalier de l’Université de Montréal (CHUM) Research Center, Montréal, QC H1T 2H2, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H1T 2H2, Canada
| | - Michel Desjarlais
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H1T 2H2, Canada
| |
Collapse
|
14
|
Vázquez-Reza M, Custodia A, López-Dequidt I, Aramburu-Núñez M, Romaus-Sanjurjo D, Ouro A, Botelho J, Machado V, Iglesias-Rey R, Pías-Peleteiro JM, Leira R, Blanco J, Castillo J, Sobrino T, Leira Y. Periodontal inflammation is associated with increased circulating levels of endothelial progenitor cells: a retrospective cohort study in a high vascular risk population. Ther Adv Chronic Dis 2023; 14:20406223231178276. [PMID: 37360414 PMCID: PMC10285583 DOI: 10.1177/20406223231178276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Background One of the main biological mechanisms behind the link between periodontitis and atherosclerotic vascular diseases is vascular endothelial dysfunction. Particularly, circulating endothelial progenitor cells (EPCs) have been considered a biomarker of altered vascular endothelial function. Objectives The aim of this study was to investigate relationship between periodontal inflammation and increased number of circulating EPCs. Design This is retrospective cohort study. Methods In this study, 85 elderly patients with a previous history of hypertension were followed up to 12 months. A baseline full-mouth periodontal assessment was carried out, and the amount of periodontal tissue inflamed per subject was calculated as a proxy of periodontal inflammation [periodontal inflamed surface area (PISA)]. The number of circulating EPCs (CD34+/CD133+/KDR+) was determined by flow cytometry from peripheral blood samples collected at baseline and 12 months. Results Mean concentrations of CD34+/CD133+/KDR+ progenitor cells were higher in periodontitis patients than in those without periodontitis at baseline [55.4, 95% confidence interval (CI) = 20.8 to 90.0 versus 27.2, 95% CI = 13.6 to 40.8, p = 0.008] and 12 months (114.6, 95% CI = 53.5 to 175.7 versus 19.1, 95% CI = 10.8 to 27.4, p = 0.003). A significant increase over the follow-up was noticed in the group of subjects with periodontitis (p = 0.049) but not in the nonperiodontitis group (p = 0.819). PISA was independently associated with CD34+/CD133+/KDR+ EPCs at baseline (B coefficient = 0.031, 95% CI = 0.005 to 0.058; p = 0.021). The relationship between PISA and CD34+/CD133+/KDR+ EPCs at 12 months was confounded by increased baseline body mass index (B coefficient = 0.064, 95% CI = -0.005 to 0.132; p = 0.066). Conclusion Periodontal inflammation is associated with high number of CD34+/CD133+/KDR+ EPCs, thus supporting a potential link between periodontitis and endothelial dysfunction.
Collapse
Affiliation(s)
- María Vázquez-Reza
- Periodontology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Antía Custodia
- NeuroAging Laboratory (NEURAL) Group, Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - Marta Aramburu-Núñez
- NeuroAging Laboratory (NEURAL) Group, Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Laboratory (NEURAL) Group, Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Laboratory (NEURAL) Group, Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
| | - João Botelho
- Periodontology Department and Evidence-Based Hub, Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz – Cooperativa de Ensino Superior, Caparica, Portugal
| | - Vanessa Machado
- Periodontology Department and Evidence-Based Hub, Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz – Cooperativa de Ensino Superior, Caparica, Portugal
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL) Group, Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Laboratory (NEURAL) Group, Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
| | - Rogelio Leira
- Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - Juan Blanco
- Periodontology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL) Group, Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Laboratory (NEURAL) Group, Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain
| | - Yago Leira
- NeuroAging Laboratory (NEURAL) Group, Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain
- Periodontology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
15
|
Mannarino MR, Bianconi V, Scalisi G, Franceschini L, Manni G, Cucci A, Bagaglia F, Mencarelli G, Giglioni F, Ricciuti D, Figorilli F, Pieroni B, Cosentini E, Padiglioni E, Colangelo C, Fuchs D, Puccetti P, Follenzi A, Pirro M, Gargaro M, Fallarino F. A tryptophan metabolite prevents depletion of circulating endothelial progenitor cells in systemic low-grade inflammation. Front Immunol 2023; 14:964660. [PMID: 37081894 PMCID: PMC10110845 DOI: 10.3389/fimmu.2023.964660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundChronic systemic inflammation reduces the bioavailability of circulating endothelial progenitor cells (EPCs). Indoleamine 2,3-dioxygenase 1 (IDO1), a key enzyme of immune tolerance catalyzing the initial step of tryptophan degradation along the so-called l-kynurenine (l-kyn) pathway, that is induced by inflammatory stimuli and exerts anti-inflammatory effects. A specific relationship between IDO1 activity and circulating EPC numbers has not yet been investigated.MethodsIn this study, circulating EPCs were examined in mice treated with low doses of lipopolysaccharide (LPS) to mimic low-grade inflammation. Moreover, the association between IDO1 activity and circulating EPCs was studied in a cohort of 277 patients with variable systemic low-grade inflammation.ResultsRepeated low doses of LPS caused a decrease in circulating EPCs and l-kyn supplementation, mimicking IDO1 activation, significantly increased EPC numbers under homeostatic conditions preventing EPC decline in low-grade endotoxemia. Accordingly, in patients with variable systemic low-grade inflammation, there was a significant interaction between IDO1 activity and high-sensitivity C-reactive protein (hs-CRP) in predicting circulating EPCs, with high hs-CRP associated with significantly lower EPCs at low IDO1 activity but not at high IDO1 activity.InterpretationOverall, these findings demonstrate that systemic low-grade inflammation reduces circulating EPCs. However, high IDO1 activity and l-kyn supplementation limit circulating EPC loss in low-grade inflammation.
Collapse
Affiliation(s)
| | - Vanessa Bianconi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Vanessa Bianconi, ; Marco Gargaro, ; Francesca Fallarino,
| | - Giulia Scalisi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luca Franceschini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giorgia Manni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessia Cucci
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Francesco Bagaglia
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giulia Mencarelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Giglioni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Doriana Ricciuti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Filippo Figorilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Benedetta Pieroni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Cosentini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Cecilia Colangelo
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Matteo Pirro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Vanessa Bianconi, ; Marco Gargaro, ; Francesca Fallarino,
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Vanessa Bianconi, ; Marco Gargaro, ; Francesca Fallarino,
| |
Collapse
|
16
|
Demartini C, Francavilla M, Zanaboni AM, Facchetti S, De Icco R, Martinelli D, Allena M, Greco R, Tassorelli C. Biomarkers of Migraine: An Integrated Evaluation of Preclinical and Clinical Findings. Int J Mol Sci 2023; 24:ijms24065334. [PMID: 36982428 PMCID: PMC10049673 DOI: 10.3390/ijms24065334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, numerous efforts have been made to identify reliable biomarkers useful in migraine diagnosis and progression or associated with the response to a specific treatment. The purpose of this review is to summarize the alleged diagnostic and therapeutic migraine biomarkers found in biofluids and to discuss their role in the pathogenesis of the disease. We included the most informative data from clinical or preclinical studies, with a particular emphasis on calcitonin gene-related peptide (CGRP), cytokines, endocannabinoids, and other biomolecules, the majority of which are related to the inflammatory aspects and mechanisms of migraine, as well as other actors that play a role in the disease. The potential issues affecting biomarker analysis are also discussed, such as how to deal with bias and confounding data. CGRP and other biological factors associated with the trigeminovascular system may offer intriguing and novel precision medicine opportunities, although the biological stability of the samples used, as well as the effects of the confounding role of age, gender, diet, and metabolic factors should be considered.
Collapse
Affiliation(s)
- Chiara Demartini
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Miriam Francavilla
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Sara Facchetti
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Daniele Martinelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Marta Allena
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-(0382)-380255
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
17
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Akiash N, Assareh AR, Anbiyaee O, Antosik P, Dzięgiel P, Farzaneh M, Kempisty B. Potential roles of endothelial cells-related non-coding RNAs in cardiovascular diseases. Pathol Res Pract 2023; 242:154330. [PMID: 36696805 DOI: 10.1016/j.prp.2023.154330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Endothelial dysfunction is identified by a conversion of the endothelium toward decreased vasodilation and prothrombic features and is known as a primary pathogenic incident in cardiovascular diseases. An insight based on particular and promising biomarkers of endothelial dysfunction may possess vital clinical significances. Currently, non-coding RNAs due to their participation in critical cardiovascular processes like initiation and progression have gained much attention as possible diagnostic as well as prognostic biomarkers in cardiovascular diseases. Emerging line of proof has demonstrated that abnormal expression of non-coding RNAs is nearly correlated with the pathogenesis of cardiovascular diseases. In the present review, we focus on the expression and functional effects of various kinds of non-coding RNAs in cardiovascular diseases and negotiate their possible clinical implications as diagnostic or prognostic biomarkers and curative targets.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Nehzat Akiash
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paweł Antosik
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland; North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
18
|
Nguyen VT, Ngo QT, Ramirez RP, Nakamura T, Farman N, Aractingi S, Jaisser F. The myeloid mineralocorticoid receptor regulates dermal angiogenesis and inflammation in glucocorticoid-induced impaired wound healing. Br J Pharmacol 2022; 179:5222-5232. [PMID: 35861949 PMCID: PMC9826027 DOI: 10.1111/bph.15932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Delayed wound healing is among the deleterious consequences of over-activation of the mineralocorticoid receptor (MR) induced by topical dermocorticoids. The role of dermal inflammation and angiogenesis in the benefits of MR blockade is unknown. EXPERIMENTAL APPROACH Skin wounds were made on C57Bl6 mice after topical pretreatment with the dermocorticoid clobetasol. The impact of topical MR blockade by canrenoate on inflammation, angiogenesis, and the wound macrophage phenotype was analysed 5 days post-wounding. Similar experiments were conducted on mice with genetic deletion of the MR in myeloid cells. KEY RESULTS Topical inhibition of the MR with canrenoate improved delayed wound healing through the resolution of prolonged inflammation in glucocorticoid-pretreated mouse skin. This effect was associated with a higher ratio of anti-inflammatory macrophages versus pro-inflammatory macrophages in wounds treated by canrenoate. Furthermore, MR blockade led to upregulated expression of pro-angiogenic factors and improved impaired angiogenesis in wounds of glucocorticoid-pretreated skin. Finally, deletion of MR expression by myeloid cells reproduced the benefits of topical pharmacological MR blockade. CONCLUSION AND IMPLICATIONS Topical MR antagonism facilitates the switching of macrophages towards an anti-inflammatory phenotype, which improves prolonged inflammation and induces angiogenesis to accelerate wound healing delayed by glucocorticoid treatment.
Collapse
Affiliation(s)
- Van Tuan Nguyen
- INSERM, UMRS 1138, Centre de Recherche des CordeliersSorbonne Université, Université Paris CitéParisFrance,Department of Basic ScienceThai Nguyen University of Agriculture and ForestryThainguyenVietnam
| | - Qui Trung Ngo
- INSERM, UMRS 1138, Centre de Recherche des CordeliersSorbonne Université, Université Paris CitéParisFrance,Laboratory of Cutaneous Biology, INSERM U1016, Cochin InstituteUniversité Paris CitéParisFrance
| | - Roberto Palacios Ramirez
- INSERM, UMRS 1138, Centre de Recherche des CordeliersSorbonne Université, Université Paris CitéParisFrance
| | - Toshifumi Nakamura
- INSERM, UMRS 1138, Centre de Recherche des CordeliersSorbonne Université, Université Paris CitéParisFrance
| | - Nicolette Farman
- INSERM, UMRS 1138, Centre de Recherche des CordeliersSorbonne Université, Université Paris CitéParisFrance
| | - Sélim Aractingi
- Laboratory of Cutaneous Biology, INSERM U1016, Cochin InstituteUniversité Paris CitéParisFrance,Department of DermatologyCochin HospitalParisFrance
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des CordeliersSorbonne Université, Université Paris CitéParisFrance
| |
Collapse
|
19
|
Functional Impairment of Endothelial Colony Forming Cells (ECFC) in Patients with Severe Atherosclerotic Cardiovascular Disease (ASCVD). Int J Mol Sci 2022; 23:ijms23168969. [PMID: 36012229 PMCID: PMC9409296 DOI: 10.3390/ijms23168969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Endothelial dysfunction is a key factor in atherosclerosis. However, the link between endothelial repair and severity of atherosclerotic cardiovascular disease (ASCVD) is unclear. This study investigates the relationship between ASCVD, markers of inflammation, and circulating endothelial progenitor cells, namely hematopoietic cells with paracrine angiogenic activity and endothelial colony forming cells (ECFC). Two hundred and forty-three subjects from the TELARTA study were classified according to the presence of clinical atherosclerotic disease. ASCVD severity was assessed by the number of involved vascular territories. Flow cytometry was used to numerate circulating progenitor cells (PC) expressing CD34 and those co-expressing CD45, CD34, and KDR. Peripheral blood mononuclear cells ex vivo culture methods were used to determine ECFC and Colony Forming Unit- endothelial cells (CFU-EC). The ECFC subpopulation was analyzed for proliferation, senescence, and vasculogenic properties. Plasma levels of IL-6 and VEGF-A were measured using Cytokine Array. Despite an increased number of circulating precursors in ASCVD patients, ASCVD impaired the colony forming capacity and the angiogenic properties of ECFC in a severity-dependent manner. Alteration of ECFC was associated with increased senescent phenotype and IL-6 levels. Our study demonstrates a decrease in ECFC repair capacity according to ASCVD severity in an inflammatory and senescence-associated secretory phenotype context.
Collapse
|
20
|
Endothelial Progenitor Cells and Rheumatoid Arthritis: Response to Endothelial Dysfunction and Clinical Evidences. Int J Mol Sci 2021; 22:ijms222413675. [PMID: 34948469 PMCID: PMC8708779 DOI: 10.3390/ijms222413675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disease characterized by the swelling of multiple joints, pain and stiffness, and accelerated atherosclerosis. Sustained immune response and chronic inflammation, which characterize RA, may induce endothelial activation, damage and dysfunction. An equilibrium between endothelial damage and repair, together with the preservation of endothelial integrity, is of crucial importance for the homeostasis of endothelium. Endothelial Progenitor Cells (EPCs) represent a heterogenous cell population, characterized by the ability to differentiate into mature endothelial cells (ECs), which contribute to vascular homeostasis, neovascularization and endothelial repair. A modification of the number and function of EPCs has been described in numerous chronic inflammatory and auto-immune conditions; however, reports that focus on the number and functions of EPCs in RA are characterized by conflicting results, and discrepancies exist among different studies. In the present review, the authors describe EPCs' role and response to RA-related endothelial modification, with the aim of illustrating current evidence regarding the level of EPCs and their function in this disease, to summarize EPCs' role as a biomarker in cardiovascular comorbidities related to RA, and finally, to discuss the modulation of EPCs secondary to RA therapy.
Collapse
|
21
|
Dight J, Zhao J, Styke C, Khosrotehrani K, Patel J. Resident vascular endothelial progenitor definition and function: the age of reckoning. Angiogenesis 2021; 25:15-33. [PMID: 34499264 PMCID: PMC8813834 DOI: 10.1007/s10456-021-09817-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
The cardiovascular system is composed around the central function of the endothelium that lines the inner surfaces of its vessels. In recent years, the existence of a progenitor population within the endothelium has been validated through the study of endothelial colony-forming cells (ECFCs) in human peripheral blood and certain vascular beds. However, our knowledge on endothelial populations in vivo that can give rise to ECFCs in culture has been limited. In this review we report and analyse recent attempts at describing progenitor populations in vivo from murine studies that reflect the self-renewal and stemness capacity observed in ECFCs. We pinpoint seminal discoveries within the field, which have phenotypically defined, and functionally scrutinised these endothelial progenitors. Furthermore, we review recent publications utilising single-cell sequencing technologies to better understand the endothelium in homeostasis and pathology.
Collapse
Affiliation(s)
- James Dight
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Jilai Zhao
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Cassandra Styke
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
| | - Jatin Patel
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia. .,Cancer and Ageing Research Program, School of Biomedical Sciences, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
| |
Collapse
|
22
|
Endothelial Progenitor Cells Dysfunctions and Cardiometabolic Disorders: From Mechanisms to Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22136667. [PMID: 34206404 PMCID: PMC8267891 DOI: 10.3390/ijms22136667] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of several disorders, such as hypertension, central obesity, dyslipidemia, hyperglycemia, insulin resistance and non-alcoholic fatty liver disease. Despite health policies based on the promotion of physical exercise, the reduction of calorie intake and the consumption of healthy food, there is still a global rise in the incidence and prevalence of MetS in the world. This phenomenon can partly be explained by the fact that adverse events in the perinatal period can increase the susceptibility to develop cardiometabolic diseases in adulthood. Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing cardiovascular diseases (CVD) and metabolic disorders later in life. It has been shown that alterations in the structural and functional integrity of the endothelium can lead to the development of cardiometabolic diseases. The endothelial progenitor cells (EPCs) are circulating components of the endothelium playing a major role in vascular homeostasis. An association has been found between the maintenance of endothelial structure and function by EPCs and their ability to differentiate and repair damaged endothelial tissue. In this narrative review, we explore the alterations of EPCs observed in individuals with cardiometabolic disorders, describe some mechanisms related to such dysfunction and propose some therapeutical approaches to reverse the EPCs dysfunction.
Collapse
|
23
|
Toupance S, Simonici S, Labat C, Dumoulin C, Lai T, Lakomy C, Regnault V, Lacolley P, Dignat George F, Sabatier F, Aviv A, Benetos A. Number and Replating Capacity of Endothelial Colony-Forming Cells are Telomere Length Dependent: Implication for Human Atherogenesis. J Am Heart Assoc 2021; 10:e020606. [PMID: 33955230 PMCID: PMC8200696 DOI: 10.1161/jaha.120.020606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Background Short leukocyte telomere length (TL) is associated with atherosclerotic cardiovascular disease. Endothelial repair plays a key role in the development of atherosclerosis. The objective was to examine associations between TL and proliferative dynamics of endothelial colony-forming cells (ECFCs), which behave as progenitor cells displaying endothelial repair activity. Methods and Results To isolate ECFCs, we performed a clonogenic assay on blood samples from 116 participants (aged 24-94 years) in the TELARTA (Telomere in Arterial Aging) cohort study. We detected no ECFC clones in 29 (group 1), clones with no replating capacity in other 29 (group 2), and clones with replating capacity in the additional 58 (group 3). Leukocyte TL was measured by Southern blotting and ECFCs (ECFC-TL). Age- and sex-adjusted leukocyte TL (mean±SEM) was the shortest in group 1 (6.51±0.13 kb), longer in group 2 (6.69±0.13 kb), and the longest in group 3 (6.78±0.09 kb) (P<0.05). In group 3, ECFC-TL was associated with the number of detected clones (P<0.01). ECFC-TL (7.98±0.13 kb) was longer than leukocyte TL (6.74±0.012 kb) (P<0.0001) and both parameters were strongly correlated (r=0.82; P<0.0001). Conclusions Individuals with longer telomeres display a higher number of self-renewing ECFCs. Our results also indicate that leukocyte TL, as a proxy of TL dynamics in ECFCs, could be used as a surrogate marker of endothelial repair capacity in clinical and laboratory practice because of easy accessibility of leukocytes. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02176941.
Collapse
Affiliation(s)
- Simon Toupance
- InsermDCACUniversité de LorraineNancyFrance
- CHRU‐NancyPôle Maladies du vieillissement, Gérontologie et Soins Palliatifs and Fédération Hospitalo‐Universitaire CARTAGE‐PROFILESUniversité de LorraineNancyFrance
| | | | | | | | - Tsung‐Po Lai
- Center of Human Development and AgingRutgersThe State University of New JerseyNew Jersey Medical SchoolNewarkNJ
| | | | | | | | | | | | - Abraham Aviv
- Center of Human Development and AgingRutgersThe State University of New JerseyNew Jersey Medical SchoolNewarkNJ
| | - Athanase Benetos
- InsermDCACUniversité de LorraineNancyFrance
- CHRU‐NancyPôle Maladies du vieillissement, Gérontologie et Soins Palliatifs and Fédération Hospitalo‐Universitaire CARTAGE‐PROFILESUniversité de LorraineNancyFrance
| |
Collapse
|
24
|
Reyner CL, Winter RL, Maneval KL, Boone LH, Wooldridge AA. Effect of recombinant equine interleukin-1β on function of equine endothelial colony-forming cells in vitro. Am J Vet Res 2021; 82:318-325. [PMID: 33764832 DOI: 10.2460/ajvr.82.4.318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the effects of recombinant equine IL-1β on function of equine endothelial colony-forming cells (ECFCs) in vitro. SAMPLE ECFCs derived from peripheral blood samples of 3 healthy adult geldings. PROCEDURES Function testing was performed to assess in vitro wound healing, tubule formation, cell adhesion, and uptake of 1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate-labeled acetylated low-density lipoprotein (DiI-Ac-LDL) by cultured ECFCs. Cell proliferation was determined by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay. Effects on function test results of different concentrations and exposure times of recombinant equine IL-1β were assessed. RESULTS Challenge of cultured ECFCs with IL-1β for 48 hours inhibited tubule formation. Continuous challenge (54 hours) with IL-1β in the wound healing assay reduced gap closure. The IL-1β exposure did not significantly affect ECFC adhesion, DiI-Ac-LDL uptake, or ECFC proliferation. CONCLUSIONS AND CLINICAL RELEVANCE These results suggested a role for IL-1β in the inhibition of ECFC function in vitro. Functional changes in ECFCs following challenge with IL-1β did not appear to be due to changes in cell proliferative capacity. These findings have implications for designing microenvironments for and optimizing therapeutic effects of ECFCs used to treat ischemic diseases in horses.
Collapse
|
25
|
Current Status of Angiogenic Cell Therapy and Related Strategies Applied in Critical Limb Ischemia. Int J Mol Sci 2021; 22:ijms22052335. [PMID: 33652743 PMCID: PMC7956816 DOI: 10.3390/ijms22052335] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Critical limb ischemia (CLI) constitutes the most severe form of peripheral arterial disease (PAD), it is characterized by progressive blockade of arterial vessels, commonly correlated to atherosclerosis. Currently, revascularization strategies (bypass grafting, angioplasty) remain the first option for CLI patients, although less than 45% of them are eligible for surgical intervention mainly due to associated comorbidities. Moreover, patients usually require amputation in the short-term. Angiogenic cell therapy has arisen as a promising alternative for these "no-option" patients, with many studies demonstrating the potential of stem cells to enhance revascularization by promoting vessel formation and blood flow recovery in ischemic tissues. Herein, we provide an overview of studies focused on the use of angiogenic cell therapies in CLI in the last years, from approaches testing different cell types in animal/pre-clinical models of CLI, to the clinical trials currently under evaluation. Furthermore, recent alternatives related to stem cell therapies such as the use of secretomes, exosomes, or even microRNA, will be also described.
Collapse
|
26
|
Meyer N, Brodowski L, Richter K, von Kaisenberg CS, Schröder-Heurich B, von Versen-Höynck F. Pravastatin Promotes Endothelial Colony-Forming Cell Function, Angiogenic Signaling and Protein Expression In Vitro. J Clin Med 2021; 10:E183. [PMID: 33419165 PMCID: PMC7825508 DOI: 10.3390/jcm10020183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Endothelial dysfunction is a primary feature of several cardiovascular diseases. Endothelial colony-forming cells (ECFCs) represent a highly proliferative subtype of endothelial progenitor cells (EPCs), which are involved in neovascularization and vascular repair. Statins are known to improve the outcome of cardiovascular diseases via pleiotropic effects. We hypothesized that treatment with the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitor pravastatin increases ECFCs' functional capacities and regulates the expression of proteins which modulate endothelial health in a favourable manner. Umbilical cord blood derived ECFCs were incubated with different concentrations of pravastatin with or without mevalonate, a key intermediate in cholesterol synthesis. Functional capacities such as migration, proliferation and tube formation were addressed in corresponding in vitro assays. mRNA and protein levels or phosphorylation of protein kinase B (AKT), endothelial nitric oxide synthase (eNOS), heme oxygenase-1 (HO-1), vascular endothelial growth factor A (VEGF-A), placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and endoglin (Eng) were analyzed by real time PCR or immunoblot, respectively. Proliferation, migration and tube formation of ECFCs were enhanced after pravastatin treatment, and AKT- and eNOS-phosphorylation were augmented. Further, expression levels of HO-1, VEGF-A and PlGF were increased, whereas expression levels of sFlt-1 and Eng were decreased. Pravastatin induced effects were reversible by the addition of mevalonate. Pravastatin induces beneficial effects on ECFC function, angiogenic signaling and protein expression. These effects may contribute to understand the pleiotropic function of statins as well as to provide a promising option to improve ECFCs' condition in cell therapy in order to ameliorate endothelial dysfunction.
Collapse
Affiliation(s)
- Nadia Meyer
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
| | - Lars Brodowski
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany;
| | - Katja Richter
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
| | - Constantin S. von Kaisenberg
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany;
| | - Bianca Schröder-Heurich
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
| | - Frauke von Versen-Höynck
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany;
| |
Collapse
|
27
|
Bortoluzzi A, Chighizola CB, Fredi M, Raschi E, Bodio C, Privitera D, Gonelli A, Silvagni E, Govoni M, Cavazzana I, Airò P, Meroni PL, Tincani A, Franceschini F, Piantoni S, Casciano F. The IMMENSE Study: The Interplay Between iMMune and ENdothelial Cells in Mediating Cardiovascular Risk in Systemic Lupus Erythematosus. Front Immunol 2020; 11:572876. [PMID: 33193356 PMCID: PMC7658008 DOI: 10.3389/fimmu.2020.572876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with systemic lupus erythematosus (SLE) have a significant increase in cardiovascular (CV) risk although they display a preserved number of circulating angiogenic CD3+CD31+CXCR4+ T cells (Tang), a subpopulation of T cells which promotes repair of damaged endothelium. This happens due to the concomitant expansion of a Tang subset with immunosenescent features, such as the loss of CD28. Therefore, the aim of this study was to elucidate the interplay between Tang subpopulations and endothelial cells in a group of young SLE patients without previous cardiovascular events. Twenty SLE female patients and 10 healthy controls (HCs) were recruited. Flow cytometric analysis of endothelial progenitor cells (EPCs) and Tang subsets were performed and serum levels of interleukin (IL)-6, -8, matrix metalloproteinase (MMP)-9 and interferon (IFN)-γ were measured. Human umbilical vein endothelial cells (HUVECs) proliferation and pro-inflammatory phenotype in response to subjects' serum stimulation were also evaluated. Results showed that the percentage of Tang and EPC subsets was reduced in SLE patients compared with HCs, with a marked increase of senescent CD28null cells among Tang subset. SLE disease activity index-2000 (SLEDAI-2K) was inversed related to Tang cells percentage. Furthermore, IL-8 serum levels were directly correlated with the percentage of Tang and inversely related to the CD28null Tang subsets. We indirectly evaluated the role of the Tang subset on the endothelium upon stimulation with serum from subjects with a low percentage of Tang CD3+ cells in HUVECs. HUVECs displayed pro-inflammatory phenotype with up-regulation of mRNA for IL-6, intercellular adhesion molecule (ICAM)-1 and endothelial leukocyte adhesion molecule (ELAM)-1. Cell proliferation rate was directly related to IL-8 serum levels and EPC percentage. In highly selected young SLE patients without previous CV events, we found that the deterioration of Tang compartment is an early event in disease course, preceding the development of an overt cardiovascular disease and potentially mediated by SLE-specific mechanisms. The overcome of the CD28null subset exerts detrimental role over the Tang phenotype, where Tang could exert an anti-inflammatory effect on endothelial cells and might orchestrate via IL-8 the function of EPCs, ultimately modulating endothelial proliferation rate.
Collapse
Affiliation(s)
- Alessandra Bortoluzzi
- Rheumatology Unit, Department of Medical Sciences, University of Ferrara and Azienda Ospedaliero-Universitaria Sant’Anna, Cona, Italy
| | - Cecilia Beatrice Chighizola
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Micaela Fredi
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Elena Raschi
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Caterina Bodio
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Daniela Privitera
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Arianna Gonelli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Ettore Silvagni
- Rheumatology Unit, Department of Medical Sciences, University of Ferrara and Azienda Ospedaliero-Universitaria Sant’Anna, Cona, Italy
| | - Marcello Govoni
- Rheumatology Unit, Department of Medical Sciences, University of Ferrara and Azienda Ospedaliero-Universitaria Sant’Anna, Cona, Italy
| | - Ilaria Cavazzana
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Paolo Airò
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Angela Tincani
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Franco Franceschini
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Silvia Piantoni
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
28
|
Komici K, Faris P, Negri S, Rosti V, García-Carrasco M, Mendoza-Pinto C, Berra-Romani R, Cervera R, Guerra G, Moccia F. Systemic lupus erythematosus, endothelial progenitor cells and intracellular Ca2+ signaling: A novel approach for an old disease. J Autoimmun 2020; 112:102486. [DOI: 10.1016/j.jaut.2020.102486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023]
|
29
|
Negri S, Faris P, Rosti V, Antognazza MR, Lodola F, Moccia F. Endothelial TRPV1 as an Emerging Molecular Target to Promote Therapeutic Angiogenesis. Cells 2020; 9:cells9061341. [PMID: 32471282 PMCID: PMC7349285 DOI: 10.3390/cells9061341] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Therapeutic angiogenesis represents an emerging strategy to treat ischemic diseases by stimulating blood vessel growth to rescue local blood perfusion. Therefore, injured microvasculature may be repaired by stimulating resident endothelial cells or circulating endothelial colony forming cells (ECFCs) or by autologous cell-based therapy. Endothelial Ca2+ signals represent a crucial player in angiogenesis and vasculogenesis; indeed, several angiogenic stimuli induce neovessel formation through an increase in intracellular Ca2+ concentration. Several members of the Transient Receptor Potential (TRP) channel superfamily are expressed and mediate Ca2+-dependent functions in vascular endothelial cells and in ECFCs, the only known truly endothelial precursor. TRP Vanilloid 1 (TRPV1), a polymodal cation channel, is emerging as an important player in endothelial cell migration, proliferation, and tubulogenesis, through the integration of several chemical stimuli. Herein, we first summarize TRPV1 structure and gating mechanisms. Next, we illustrate the physiological roles of TRPV1 in vascular endothelium, focusing our attention on how endothelial TRPV1 promotes angiogenesis. In particular, we describe a recent strategy to stimulate TRPV1-mediated pro-angiogenic activity in ECFCs, in the presence of a photosensitive conjugated polymer. Taken together, these observations suggest that TRPV1 represents a useful target in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; (M.R.A.); (F.L.)
| | - Francesco Lodola
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; (M.R.A.); (F.L.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
- Correspondence:
| |
Collapse
|
30
|
Predicting the Risk of Recurrent Venous Thromboembolism: Current Challenges and Future Opportunities. J Clin Med 2020; 9:jcm9051582. [PMID: 32456008 PMCID: PMC7290951 DOI: 10.3390/jcm9051582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Acute venous thromboembolism (VTE) is a commonly diagnosed condition and requires treatment with anticoagulation to reduce the risk of embolisation as well as recurrent venous thrombotic events. In many cases, cessation of anticoagulation is associated with an unacceptably high risk of recurrent VTE, precipitating the use of indefinite anticoagulation. In contrast, however, continuing anticoagulation is associated with increased major bleeding events. As a consequence, it is essential to accurately predict the subgroup of patients who have the highest probability of experiencing recurrent VTE, so that treatment can be appropriately tailored to each individual. To this end, the development of clinical prediction models has aided in calculating the risk of recurrent thrombotic events; however, there are several limitations with regards to routine use for all patients with acute VTE. More recently, focus has shifted towards the utility of novel biomarkers in the understanding of disease pathogenesis as well as their application in predicting recurrent VTE. Below, we review the current strategies used to predict the development of recurrent VTE, with emphasis on the application of several promising novel biomarkers in this field.
Collapse
|
31
|
Beltran-Camacho L, Jimenez-Palomares M, Rojas-Torres M, Sanchez-Gomar I, Rosal-Vela A, Eslava-Alcon S, Perez-Segura MC, Serrano A, Antequera-González B, Alonso-Piñero JA, González-Rovira A, Extremera-García MJ, Rodriguez-Piñero M, Moreno-Luna R, Larsen MR, Durán-Ruiz MC. Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia. Stem Cell Res Ther 2020; 11:106. [PMID: 32143690 PMCID: PMC7060566 DOI: 10.1186/s13287-020-01591-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/10/2020] [Accepted: 02/06/2020] [Indexed: 12/18/2022] Open
Abstract
Background Critical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities. Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization. Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues. Methods Balb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 μl physiological serum (SC, n:8) or 5 × 105 human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related. Results Administration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown. Conclusions Our results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network. Graphical abstract ![]()
Collapse
Affiliation(s)
- Lucia Beltran-Camacho
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Margarita Jimenez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Ismael Sanchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Sara Eslava-Alcon
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | | | - Ana Serrano
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain
| | - Borja Antequera-González
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Jose Angel Alonso-Piñero
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Almudena González-Rovira
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Mª Jesús Extremera-García
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | | | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain. .,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
32
|
Komez A, Buyuksungur A, Antmen E, Swieszkowski W, Hasirci N, Hasirci V. A two-compartment bone tumor model to investigate interactions between healthy and tumor cells. ACTA ACUST UNITED AC 2020; 15:035007. [PMID: 31935707 DOI: 10.1088/1748-605x/ab6b31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We produced a novel three-dimensional (3D) bone tumor model (BTM) to study the interactions between healthy and tumor cells in a tumor microenvironment, the migration tendency of the tumor cells, and the efficacy of an anticancer drug, Doxorubicin, on the cancer cells. The model consisted of two compartments: (a) a healthy bone tissue mimic, made of poly(lactic acid-co-glycolic acid) (PLGA)/beta-tricalcium phosphate (β-TCP) sponge seeded with human fetal osteoblastic cells (hFOB) and human umbilical vein endothelial cells (HUVECs), and (b) a tumor mimic, made of lyophilized collagen sponge seeded with human osteosarcoma cells (Saos-2). The tumor mimic component was placed into a central cavity created in the healthy bone mimic and together they constituted the complete 3D bone tumor model (3D-BTM). The porosities of both sponges were higher than 85% and the diameters of the pores were 199 ± 52 μm for the PLGA/TCP and 50-150 μm for the collagen scaffolds. The compression Young's modulus of the PLGA/TCP and the collagen sponges were determined to be 4.76 MPa and 140 kPa, respectively. Cell proliferation, morphology, calcium phosphate forming capacity and alkaline phosphatase production were studied separately on both the healthy and tumor mimics. All cells demonstrated cellular extensions and spread well in porous scaffolds indicating good cell-material interactions. Confocal microscopy analysis showed direct contact between the cells present in different parts of the 3D-BTM. Migration of HUVECs from the healthy bone mimic to the tumor compartment was confirmed by the increase in the levels of angiogenic factors vascular endothelial growth factor, basic fibroblast growth factor, and interleukin 8 in the tumor component. Doxorubicin (2.7 μg.ml-1) administered to the 3D-BTM caused a seven-fold decrease in the cell number after 24 h of interaction with the anticancer drug. Caspase-3 enzyme activity assay results demonstrated apoptosis of the osteosarcoma cells. This novel 3D-BTM has a high potential for use in studying the metastatic capabilities of cancer cells, and in determining the effective drug types and combinations for personalized treatments.
Collapse
Affiliation(s)
- Aylin Komez
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey. BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
| | | | | | | | | | | |
Collapse
|
33
|
Jia J, Ma B, Wang S, Feng L. Therapeutic Potential of Endothelial Colony Forming Cells Derived from Human Umbilical Cord Blood. Curr Stem Cell Res Ther 2020; 14:460-465. [PMID: 30767752 DOI: 10.2174/1574888x14666190214162453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/06/2019] [Accepted: 01/24/2019] [Indexed: 02/08/2023]
Abstract
Endothelial progenitor cells (EPCs) are implicated in multiple biologic processes such as vascular homeostasis, neovascularization and tissue regeneration, and tumor angiogenesis. A subtype of EPCs is referred to as endothelial colony-forming cells (ECFCs), which display robust clonal proliferative potential and can form durable and functional blood vessels in animal models. In this review, we provide a brief overview of EPCs' characteristics, classification and origins, a summary of the progress in preclinical studies with regard to the therapeutic potential of human umbilical cord blood derived ECFCs (CB-ECFCs) for ischemia repair, tissue engineering and tumor, and highlight the necessity to select high proliferative CB-ECFCs and to optimize their recovery and expansion conditions.
Collapse
Affiliation(s)
- Jing Jia
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| | - Baitao Ma
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R., China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| | - Ling Feng
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| |
Collapse
|
34
|
Nasi M, Patrizi G, Pizzi C, Landolfo M, Boriani G, Dei Cas A, Cicero AFG, Fogacci F, Rapezzi C, Sisca G, Capucci A, Vitolo M, Galiè N, Borghi C, Berrettini U, Piepoli M, Mattioli AV. The role of physical activity in individuals with cardiovascular risk factors: an opinion paper from Italian Society of Cardiology-Emilia Romagna-Marche and SIC-Sport. J Cardiovasc Med (Hagerstown) 2020; 20:631-639. [PMID: 31436678 DOI: 10.2459/jcm.0000000000000855] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
: Regular physical activity is a cornerstone in the prevention and treatment of atherosclerotic cardiovascular disease (CVD) due to its positive effects in reducing several cardiovascular risk factors. Current guidelines on CVD suggest for healthy adults to perform at least 150 min/week of moderate intensity or 75 min/week of vigorous intensity aerobic physical activity. The current review explores the effects of physical activity on some risk factors, specifically: diabetes, dyslipidemia, hypertension and hyperuricemia. Physical activity induces an improvement in insulin sensitivity and in glucose control independently of weight loss, which may further contribute to ameliorate both diabetes-associated defects. The benefits of adherence to physical activity have recently proven to extend beyond surrogate markers of metabolic syndrome and diabetes by reducing hard endpoints such as mortality. In recent years, obesity has greatly increased in all countries. Weight losses in these patients have been associated with improvements in many cardiometabolic risk factors. Strategies against obesity included caloric restriction, however greater results have been obtained with association of diet and physical activity. Similarly, the beneficial effect of training on blood pressure via its action on sympathetic activity and on other factors such as improvement of endothelial function and reduction of oxidative stress can have played a role in preventing hypertension development in active subjects. The main international guidelines on prevention of CVD suggest to encourage and to increase physical activity to improve lipid pattern, hypertension and others cardiovascular risk factor. An active action is required to the National Society of Cardiology together with the Italian Society of Sports Cardiology to improve the prescription of organized physical activity in patients with CVD and/or cardiovascular risk factors.
Collapse
Affiliation(s)
- Milena Nasi
- Department of Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena
| | | | - Carmine Pizzi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum
| | - Matteo Landolfo
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna
| | - Giuseppe Boriani
- Division of Cardiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena
| | - Alessandra Dei Cas
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma
| | - Arrigo F G Cicero
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna
| | - Federica Fogacci
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna
| | - Claudio Rapezzi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum
| | - Giovanbattista Sisca
- Bologna F.C.,FIFA Medical Centre of Excellence, Isokinetic Medical Group, Bologna
| | | | - Marco Vitolo
- Division of Cardiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena
| | - Nazzareno Galiè
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum
| | - Claudio Borghi
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna
| | | | - Massimo Piepoli
- Heart Failure Unit, Cardiology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Anna V Mattioli
- Department of Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena
| |
Collapse
|
35
|
Zhang Q, Cannavicci A, Dai SC, Wang C, Kutryk MJB. MicroRNA profiling of human myeloid angiogenic cells derived from peripheral blood mononuclear cells. Biochem Cell Biol 2019; 98:203-207. [PMID: 31484002 DOI: 10.1139/bcb-2019-0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human myeloid angiogenic cells (MACs), also termed early endothelial progenitor cells, play an important role in neovascularization and vascular repair. MicroRNAs (miRNAs) are a class of naturally occurring, noncoding, short (∼22 nucleotides), single-stranded RNAs that regulate gene expression post-transcriptionally. MiRNAs have been shown to regulate MAC function. A miRNA signature of MACs was described approximately a decade ago, and many new miRNAs have been discovered in recent years. In this study, we aimed to provide an up-to-date miRNA signature for human MACs. MACs were obtained by culture of human peripheral blood mononuclear cells in endothelial medium for 7 days. Using qPCR array analysis we identified 72 highly expressed miRNAs (CT value < 30) in human MACs. RT-qPCR quantification of select miRNAs revealed a strong correlation between the CT values detected by the array analysis and RT-qPCR, suggesting the miRNA signature generated by the qPCR array assay is accurate and reliable. Experimentally validated target genes of the 10 most highly expressed miRNAs were retrieved. Only a few of the targets and their respective miRNAs have been studied for their role in MAC biology. Our study therefore provides a valuable repository of miRNAs for future exploration of miRNA function in MACs.
Collapse
Affiliation(s)
- Qiuwang Zhang
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Anthony Cannavicci
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Si-Cheng Dai
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Chenxi Wang
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Michael J B Kutryk
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
36
|
Yi M, Wu Y, Long J, Liu F, Liu Z, Zhang YH, Sun XP, Fan ZX, Gao J, Si J, Zuo XB, Zhang LM, Shi N, Miao ZP, Bai ZR, Liu BY, Liu HR, Li J. Exosomes secreted from osteocalcin-overexpressing endothelial progenitor cells promote endothelial cell angiogenesis. Am J Physiol Cell Physiol 2019; 317:C932-C941. [PMID: 31411920 DOI: 10.1152/ajpcell.00534.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Exosome secretion is an important paracrine way of endothelial progenitor cells (EPCs) to modulate resident endothelial cells. The osteocalcin (OCN)-expressing EPCs have been found to be increased in cardiovascular disease patients and are considered to be involved in the process of coronary atherosclerosis. Since OCN has been proven to prevent endothelial dysfunction, this study aimed to evaluate the effect of exosomes derived from OCN-overexpressed EPCs on endothelial cells. Exosomes derived from EPCs (Exos) and OCN-overexpressed EPCs (OCN-Exos) were isolated and incubated with rat aorta endothelial cells (RAOECs) with or without the inhibition of OCN receptor G protein-coupled receptor family C group 6 member A (GPRC6A). The effects of exosomes on the proliferation activity of endothelial cells were evaluated by CCK-8 assay, and the migration of endothelial cells was detected by wound healing assay. A tube formation assay was used to test the influence of exosomes on the angiogenesis performance of endothelial cells. Here, we presented that OCN was packed into Exos and was able to be transferred to the RAOECs via exosome incorporation, which was increased in OCN-Exos groups. Compared with Exos, OCN-Exos had better efficiency in promoting RAOEC proliferation and migration and tube formation. The promoting effects were impeded after the inhibition of GPRC6A expression in RAOECs. These data suggest that exosomes from OCN-overexpressed EPCs have a beneficial regulating effect on endothelial cells, which involved enhanced OCN-GPRC6A signaling.
Collapse
Affiliation(s)
- Ming Yi
- Division of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, People's Republic of China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, People's Republic of China
| | - Jun Long
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Fei Liu
- Division of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhi Liu
- Division of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ying-Hua Zhang
- Division of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xi-Peng Sun
- Division of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhen-Xing Fan
- Division of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jing Gao
- Division of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jin Si
- Division of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xue-Bing Zuo
- Division of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lei-Min Zhang
- Division of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ning Shi
- Division of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zu-Pei Miao
- Division of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhao-Run Bai
- Division of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Bin-Yu Liu
- Division of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hui-Rong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, People's Republic of China
| | - Jing Li
- Division of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, People's Republic of China
| |
Collapse
|
37
|
Qian W, Cai X, Qian Q, Zhuang Q, Yang W, Zhang X, Zhao L. Astragaloside IV protects endothelial progenitor cells from the damage of ox-LDL via the LOX-1/NLRP3 inflammasome pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2579-2589. [PMID: 31440038 PMCID: PMC6677131 DOI: 10.2147/dddt.s207774] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Purpose: Functional impairment of endothelial progenitor cells (EPCs) is frequently observed in patients with diabetic vascular complications. Astragaloside IV (ASV) has a significant protective effect against vascular endothelial dysfunction. Thus, this study aimed to investigate the role of ASV on oxidized low-density lipoprotein (ox-LDL)-induced EPCs dysfunction and its potential mechanisms. Methods: EPCs were isolated from the peripheral blood of mice and treated with different concentration of ASV (10, 20, 40, 60, 80, 100 and 200 µM). ox-LDL was served as a stimulus for cell model. The proliferation and migration, and improved tube formation ability of EPCs were determined. Reactive oxygen species (ROS) production and the levels of inflammatory cytokines, including interleukin 1β (IL-1β), IL-6, IL-10 and tumor necrosis factor (TNF-α) were measured. The expression oflectin-like oxidized LDL receptor (LOX-1) andNod-like receptor nucleotide-binding domain leucine rich repeat containing protein 3 (NLRP3) inflammasome were detected by Western blot analysis. Results: We found ASV treatment alleviated ox-LDL-induced cellular dysfunction, as evidenced by promoted proliferation and migration, and improved tube formation ability. Besides, ASV treatment significantly suppressed ox-LDL-induced ROS production and the levels of inflammatory cytokines. ASV inhibited ox-LDL-induced expression of LOX-1 in a concentration-dependent manner. Overexpression of LOX-1 in EPCs triggered NLRP3inflammasome activation, while inhibition of LOX-1 or treatment with ASV suppressed ox-LDL-induced NLRP3 inflammasome activation. Furthermore, overexpression of LOX-1 in ox-LDL-induced EPCs furtherly impaired cellular function, which could be ameliorated by ASV treatment. Conclusion: Our study showed that ASV may protect EPCs against ox-LDL-induced dysfunction via LOX-1/NLRP3 pathway.
Collapse
Affiliation(s)
- Weibin Qian
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, People's Republic of China.,Postdoctoral Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China
| | - Xinrui Cai
- Postdoctoral Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China.,Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, People's Republic of China
| | - Qiuhai Qian
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, People's Republic of China
| | - Qianzhu Zhuang
- Academic Department, China Association of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wenjun Yang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, People's Republic of China
| | - Xinying Zhang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, People's Republic of China
| | - Lijie Zhao
- Preventive Treatment Department, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250001, People's Republic of China
| |
Collapse
|
38
|
Innate Immune Dysregulation in the Development of Cardiovascular Disease in Lupus. Curr Rheumatol Rep 2019; 21:46. [DOI: 10.1007/s11926-019-0842-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Mayne ES, Louw S. Good Fences Make Good Neighbors: Human Immunodeficiency Virus and Vascular Disease. Open Forum Infect Dis 2019; 6:ofz303. [PMID: 31737735 PMCID: PMC6847507 DOI: 10.1093/ofid/ofz303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease, venous thrombosis, and microvascular disease in people with HIV (PWH) is predicted to increase in an aging HIV-infected population. Endothelial damage and dysfunction is a risk factor for cardiovascular events in PWH and is characterized by impaired vascular relaxation and decreased nitric oxide availability. Vascular disease has been attributed to direct viral effects, opportunistic infections, chronic inflammation, effects of antiretroviral therapy, and underlying comorbid conditions, like hypertension and use of tobacco. Although biomarkers have been examined to predict and prognosticate thrombotic and cardiovascular disease in this population, more comprehensive validation of risk factors is necessary to ensure patients are managed appropriately. This review examines the pathogenesis of vascular disease in PWH and summarizes the biomarkers used to predict vascular disease in this population.
Collapse
Affiliation(s)
- Elizabeth S Mayne
- Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service
| | - Susan Louw
- Department of Molecular Medicine Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
40
|
Della Bella S, Calcaterra F, Bacci M, Carenza C, Pandolfo C, Ferrazzi P, Uva P, Pagani M, Lodigiani C, Mavilio D. Pathologic up-regulation of TNFSF15–TNFRSF25 axis sustains endothelial dysfunction in unprovoked venous thromboembolism. Cardiovasc Res 2019; 116:698-707. [DOI: 10.1093/cvr/cvz131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Abstract
Aims
The pathogenetic mechanisms underlying unprovoked venous thromboembolism (uVTE) are largely unknown. In this study, we investigated the molecular mechanisms involved in uVTE pathogenesis by using ex vivo expanded endothelial colony-forming cells (ECFCs), which represent a valuable non-invasive tool for the assessment of endothelial function.
Methods and results
We isolated and expanded ECFCs from the peripheral blood of uVTE patients and observed that these cells underwent earlier senescence and showed lower growth rate compared with ECFCs obtained from healthy donors. Through microarray expression profiling, we demonstrated that 2905 genes were differentially expressed between patients and controls. Among them, the anti-angiogenic cytokine TNF superfamily member 15 (TNFSF15) and its death-receptor TNFRSF25 were up-regulated in uVTE ECFCs, and this finding was validated by RT-qPCR. TNFSF15 up-regulation was confirmed at the protein level in ECFC supernatants, and the in vivo relevance of these findings was further corroborated by demonstrating that also the plasmatic levels of TNFSF15 are increased in uVTE patients. After proving that exogenous TNFSF15 exerts pro-apoptotic and anti-proliferative activity on control ECFCs, we demonstrated through blocking experiments that TNFSF15 up-regulation contributes to impaired survival and proliferation of uVTE ECFCs.
Conclusion
By providing evidence that TNFSF15 impairs ECFC functions crucial to endothelial repair, and that uVTE patients have increased TNFSF15 levels both ex vivo and in vivo, the results of this study suggest that pathologic up-regulation of TNFSF15–TNFRSF25 axis may contribute to uVTE pathogenesis, and may represent the target for novel therapeutic strategies aimed at preventing recurrences in uVTE patients.
Collapse
Affiliation(s)
- Silvia Della Bella
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center—IRCCS, via Manzoni 113, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Francesca Calcaterra
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center—IRCCS, via Manzoni 113, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Monica Bacci
- Thrombosis and Haemorragic Diseases Center, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Claudia Carenza
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center—IRCCS, via Manzoni 113, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Pandolfo
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center—IRCCS, via Manzoni 113, Rozzano, Milan, Italy
| | - Paola Ferrazzi
- Thrombosis and Haemorragic Diseases Center, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paolo Uva
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Science and Technology Park Polaris, Pula, Cagliari, Italy
| | - Massimiliano Pagani
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- INGM-National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan, Milan, Italy
| | - Corrado Lodigiani
- Thrombosis and Haemorragic Diseases Center, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center—IRCCS, via Manzoni 113, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
41
|
Schröder-Heurich B, von Hardenberg S, Brodowski L, Kipke B, Meyer N, Borns K, von Kaisenberg CS, Brinkmann H, Claus P, von Versen-Höynck F. Vitamin D improves endothelial barrier integrity and counteracts inflammatory effects on endothelial progenitor cells. FASEB J 2019; 33:9142-9153. [PMID: 31084577 DOI: 10.1096/fj.201802750rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial colony-forming cells (ECFCs), a proliferative subpopulation of endothelial progenitor cells, are involved in angiogenesis and endothelial repair. In this study, we investigated endothelial barrier characteristics of ECFCs, whether vitamin D supports cell-cell adhesion and barrier integrity, and how it affects ECFC mobilization and actin dynamics. Although ECFC barrier was disrupted under inflammatory conditions, this effect was rescued by vitamin D treatment, leading to higher stability of an ECFC monolayer. Furthermore, vitamin D enhanced ECFC mobilization toward directional migration. In addition, immunocytochemistry, quantitative real-time PCR, and immunoblotting analysis showed that vitamin D increased endothelial interconnections through vascular endothelial cadherin (VE-cadherin) junctions and by impacting cell dynamics through cofilin and VE-cadherin phosphorylation. Our results suggest that vitamin D treatment efficiently counteracts inflammation in an ECFC monolayer, resulting in higher ECFC barrier integrity. This study provides evidence of a new beneficial effect of vitamin D for ECFC homeostasis.-Schröder-Heurich, B., von Hardenberg, S., Brodowski, L., Kipke, B., Meyer, N., Borns, K., von Kaisenberg, C. S., Brinkmann, H., Claus, P., von Versen-Höynck, F. Vitamin D improves endothelial barrier integrity and counteracts inflammatory effects on endothelial progenitor cells.
Collapse
Affiliation(s)
| | | | - Lars Brodowski
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany.,Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Berina Kipke
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Nadia Meyer
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Katja Borns
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | | | - Hella Brinkmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Frauke von Versen-Höynck
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany.,Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
42
|
Haybar H, Shahrabi S, Rezaeeyan H, Shirzad R, Saki N. Endothelial Cells: From Dysfunction Mechanism to Pharmacological Effect in Cardiovascular Disease. Cardiovasc Toxicol 2019; 19:13-22. [PMID: 30506414 DOI: 10.1007/s12012-018-9493-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endothelial cells (ECs) are the innermost layer of blood vessels that play important roles in homeostasis and vascular function. However, recent evidence suggests that the onset of inflammation and the production of reactive oxygen species impair the function of ECs and are a main factor in the development of cardiovascular disease (CVD). In this study, we investigated the effects of inflammatory markers, oxidative stress, and treatment on ECs in CVD patients. This review article is based on the material obtained from PubMed up to 2018. The key search terms used were "Cardiovascular Disease," "Endothelial Cell Dysfunction," "Inflammation," "Treatment," and "Oxidative Stress." The generation of reactive oxygen species (ROS) as well as reduced nitric oxide (NO) production by ECs impairs the function of blood vessels. Therefore, treatment of CVD patients leads to the expression of transcription factors activating anti-oxidant mechanisms and NO production. In contrast, NO production by inflammatory agents can cause ECs repair due to differentiation of endothelial progenitor cells (EPCs). Therefore, identifying the molecular pathways leading to the differentiation of EPCs through mediation of factors induced by inflammatory factors can be effective in regenerative medicine for ECs repair.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Shirzad
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
43
|
Diabetic endothelial colony forming cells have the potential for restoration with glycomimetics. Sci Rep 2019; 9:2309. [PMID: 30783159 PMCID: PMC6381138 DOI: 10.1038/s41598-019-38921-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Endothelial colony forming progenitor cell (ECFC) function is compromised in diabetes, leading to poor vascular endothelial repair, which contributes to impaired diabetic foot ulcer healing. We have generated novel glycomimetic drugs with protective effects against endothelial dysfunction. We investigated the effect of glycomimetic C3 on the functional capacity of diabetic ECFCs. ECFCs were isolated from healthy controls and patients with diabetes with neuroischaemic (NI) or neuropathic (NP) foot ulcers. Functionally, diabetic ECFCs demonstrated delayed colony formation (p < 0.02), differential proliferative capacity (p < 0.001) and reduced NO bioavailability (NI ECFCs; p < 0.05). Chemokinetic migration and angiogenesis were also reduced in diabetic ECFCs (p < 0.01 and p < 0.001), and defects in wound closure and tube formation were apparent in NP ECFCs (p < 0.01). Differential patterns in mitochondrial activity were pronounced, with raised activity in NI and depressed activity in NP cells (p < 0.05). The application of glycomimetic improved scratch wound closure in vitro in patient ECFCs (p < 0.01), most significantly in NI cells (p < 0.001), where tube formation (p < 0.05) was also improved. We demonstrate restoration of the deficits in NI cells but not NP cells, using a novel glycomimetic agent, which may be advantageous for therapeutic cell transplantation or as a localised treatment for NI but not NP patients.
Collapse
|
44
|
Abstract
Cardiovascular disease is cited as the underlying cause of death in one out of every three deaths within the United States; this burden on the health care system percolates down to affect patients on an individual level. In part, the problem arises from the low regenerative capacity of cardiovascular system cells, for example, cardiac myocytes, and from oxidative stressors to the human body. Endothelial progenitor cells (EPCs) are a type of stem cell, and various clinical conditions including hypertension and renal failure underlie their dysfunction. EPCs are classified as either early or late outgrowth endothelial progenitor cells depending on the time they appear in circulation and at the site of injury after an inciting event. Their function is paracrine through the release of cytokines, growth factors and chemokines such as interleukin-6 and vascular endothelial growth factor, and they are involved in transdifferentiation into vascular smooth muscle cells and potentially cardiac myocytes. They are beneficial to the modification of cardiovascular cell apoptosis, fibrosis, and contractility. In times of stress, the normal function of endothelial progenitor cells is altered; this creates a maladaptive cycle where stress and failed coping mechanisms enhance each other toward the culmination of cardiovascular disease. The development of the cardiovascular system follows gastrulation in the embryonic period, and the cells that form the system are derived from the mesoderm; being mesoderm, the vascular cells exhibit heterogeneity in their origin and function. The need to understand the molecular and cellular regulatory pathways during development can amalgamate efforts of endothelial cell and cardiovascular system pathophysiology for the advancement of patient cardiovascular reserve and function.
Collapse
|