1
|
Liang W, Zhou C, Deng Y, Fu L, Zhao J, Long H, Ming W, Shang J, Zeng B. The current status of various preclinical therapeutic approaches for tendon repair. Ann Med 2024; 56:2337871. [PMID: 38738394 PMCID: PMC11095292 DOI: 10.1080/07853890.2024.2337871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Tendons are fibroblastic structures that link muscle and bone. There are two kinds of tendon injuries, including acute and chronic. Each form of injury or deterioration can result in significant pain and loss of tendon function. The recovery of tendon damage is a complex and time-consuming recovery process. Depending on the anatomical location of the tendon tissue, the clinical outcomes are not the same. The healing of the wound process is divided into three stages that overlap: inflammation, proliferation, and tissue remodeling. Furthermore, the curing tendon has a high re-tear rate. Faced with the challenges, tendon injury management is still a clinical issue that must be resolved as soon as possible. Several newer directions and breakthroughs in tendon recovery have emerged in recent years. This article describes tendon injury and summarizes recent advances in tendon recovery, along with stem cell therapy, gene therapy, Platelet-rich plasma remedy, growth factors, drug treatment, and tissue engineering. Despite the recent fast-growing research in tendon recovery treatment, still, none of them translated to the clinical setting. This review provides a detailed overview of tendon injuries and potential preclinical approaches for treating tendon injuries.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Yongjun Deng
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jinxiang Shang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
2
|
Turgut N, Cengiz Çallıoğlu F, Bayraktar A, Savran M, Aşcı H, Gülle K, Ünal M. FGF-2 enriched nanofiber scaffold for advancing achilles tendon healing: a comparative experimental investigation. Front Surg 2024; 11:1424734. [PMID: 39483374 PMCID: PMC11524941 DOI: 10.3389/fsurg.2024.1424734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Achilles tendon rupture is a common and debilitating injury that significantly impacts mobility and quality of life. Effective treatment options that promote faster and more complete healing are needed. Fibroblast growth factor-2 (FGF-2) has shown potential in enhancing tendon repair. This study aims to investigate the efficacy of FGF-2 in promoting tendon healing in a rat model of Achilles tendon rupture, providing insights into its potential as a therapeutic option. Materials and methods Forty-eight rat hind legs with complete Achilles tendon ruptures were divided into four equal groups: the Sham (S) group (tendon repair only), the Polymer (P) group (tendon repair with scaffold wrapping), the Produced FGF-2 (PF) group (scaffold coated with lab-produced FGF-2), and the Commercial FGF-2 (CF) group (scaffold coated with commercially sourced FGF-2). Histological analyses at two and four weeks post-surgery evaluated healing based on nuclear morphology, vascularity, fibril organization, inflammation, and adipogenesis. Results At the end of the second week, no macroscopic healing was observed in one rat each from the S and P groups. By the end of the fourth week, macroscopic healing was observed in all groups. The S and P groups exhibited similarly severe fibril disorganization, pathological adipogenesis, and sustained inflammation, particularly at the fourth week. In contrast, the CF group demonstrated improved tendon healing with increased vascularity and extracellular matrix, lower inflammatory cell infiltration, and better fibril organization. Pathological adipogenesis was absent in the CF group, especially at the fourth week. The PF group showed comparable improvements at the second week but experienced a relapse by the 4th week, with increased inflammation and adipogenesis. Conclusion FGF-2 coated scaffolds significantly enhanced tendon healing in a rat Achilles tendon rupture model by improving fibril organization, increasing vascularity, and reducing inflammation and pathological adipogenesis. These findings suggest that FGF-2 could be a promising therapeutic option for accelerating tendon repair. Future perspectives on tendon repair will focus on enhancing FGF-2 delivery using innovative scaffolds, paving the way for more effective therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Necmettin Turgut
- Department of Orthopedics and Traumatology, Faculty of Medicine, Adana Dr. Turgut Noyan Research and Training Centre, Başkent University, Adana, Türkiye
| | - Funda Cengiz Çallıoğlu
- Department of Textile Engineering, Engineering Faculty, Süleyman Demirel University, Isparta, Türkiye
| | - Aytül Bayraktar
- Department of Chemistry Engineering, Engineering Faculty, Süleyman Demirel University, Isparta, Türkiye
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Süleyman Demirel University, Isparta, Türkiye
| | - Halil Aşcı
- Department of Pharmacology, Faculty of Medicine, Süleyman Demirel University, Isparta, Türkiye
| | - Kanat Gülle
- Department of Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Türkiye
| | - Meriç Ünal
- Department of Orthopedics and Traumatology, Private Meddem Hospital, Isparta, Türkiye
| |
Collapse
|
3
|
Huang SH, Wang CC, Shen PC, Liu ZM, Chen SJ, Tien YC, Lu CC. Suramin enhances proliferation, migration, and tendon gene expression of human supraspinatus tenocytes. J Orthop Res 2024. [PMID: 39358851 DOI: 10.1002/jor.25990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Rotator cuff tendinopathy is a common musculoskeletal disorder with limited pharmacological treatment strategies. This study aimed to investigate tenocytes' functional in vitro response from a ruptured supraspinatus tendon to suramin administration and to elucidate whether suramin can enhance tendon repair and modulate the inflammatory response to injury. Tenocytes were obtained from human supraspinatus tendons (n = 6). We investigated the effect of suramin on LPS-induced inflammatory responses and the underlying molecular mechanisms in THP-1 macrophages. Suramin enhanced the proliferation, cell viability, and migration of tenocytes. It also increased the protein expression of PCNA and Ki-67. Suramin-treated tenocytes exhibited increased expression of COL1A1, COL3A1, TNC, SCX, and VEGF. Suramin significantly reduced LPS-induced iNOS, COX2 synthesis, inflammatory cytokine TNF-α production, and inflammatory signaling by influencing the NF-κB pathways in THP-1 cells. Our results suggest that suramin holds great promise as a therapeutic option for treating rotator cuff tendinopathy.
Collapse
Affiliation(s)
- Shih-Hao Huang
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Chien Wang
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Po-Chih Shen
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zi-Miao Liu
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Jung Chen
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yin-Chun Tien
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Chang Lu
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Orthopaedic Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Rathod V, Shrivastav S, Gharpinde MR. Platelet-Rich Plasma Therapy for Rotator Cuff Injuries: A Comprehensive Review of Current Evidence and Future Directions. Cureus 2024; 16:e70042. [PMID: 39449946 PMCID: PMC11499309 DOI: 10.7759/cureus.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Rotator cuff injuries are a prevalent cause of shoulder pain and disability, significantly impacting daily activities and quality of life. Platelet-rich plasma (PRP) therapy has emerged as a potential treatment for these injuries, aiming to enhance healing by delivering concentrated platelets and growth factors. This review comprehensively evaluates the current evidence regarding PRP therapy for rotator cuff injuries. It examines clinical trial data, comparing PRP therapy with conventional treatments such as physical therapy and surgical intervention. The review also explores the biological mechanisms of PRP, including its role in promoting tendon repair and regeneration through growth factors and cytokines. In addition, it addresses variables that may affect PRP therapy outcomes, including preparation techniques, injection methods, and patient-specific factors. The review highlights the need for standardized protocols and further research to optimize PRP therapy and address existing gaps in knowledge. Future directions include exploring combined treatment approaches and assessing long-term outcomes to refine PRP therapy's role in rotator cuff injury management. This review aims to provide valuable insights into the effectiveness of PRP therapy, contributing to improved treatment strategies and enhanced patient outcomes.
Collapse
Affiliation(s)
- Vinit Rathod
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sandeep Shrivastav
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Milind R Gharpinde
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
5
|
Vinhas A, Rodrigues MT, Gonçalves AI, Gomes ME. Immunomodulatory Behavior of Tendon Magnetic Cell Sheets can be Modulated in Hypoxic Environments under Magnetic Stimulus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44440-44450. [PMID: 39143034 DOI: 10.1021/acsami.4c08154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Tissue environments play a crucial role in orchestrating cell behavior, guided by a complex interplay of various factors. Long lasting inflammatory signals compromise tendon homeostasis and promote tissue degeneration, while tissue oxygen levels affect local cells' responses with hypoxic environments influencing apoptosis, inflammatory mediators, and matrix production. Recent works have unveiled the therapeutic potential of pulsed electromagnetic field (PEMF) in modulating inflammatory signals expressed by human tendon cells (hTDCs), and in mitigating the hypoxia-induced effects on the regulation of inflammatory cytokines. Thus, we sought to investigate the role of hypoxic environments, namely, 1 and 2% oxygen tension, in the inflammatory profiles of magnetic cell sheets (magCSs) formed by magnetic nanoparticles internalized in contiguous hTDCs with intact cell-cell junctions and deposited matrix. We also aimed to explore the impact of PEMF over hypoxia-treated magCSs, including IL-1β-primed-magCSs, with the objective of harnessing magnetic stimulation to guide abnormal inflammatory cell responses toward efficient treatments supporting tendon regenerative potential. Our findings revealed that low oxygen tensions amplified the expression of hypoxia-associated genes and of inflammatory markers in IL-1β-primed-magCSs with an involvement of the NF-κB signaling pathway. Encouragingly, when PEMF was applied to IL-1β-primed-magCSs under hypoxic conditions, it successfully modulated inflammatory cues by favoring IL-10 and IL-4, via the NF-κB pathway. These results signify the remarkable potential of PEMF in driving proregenerative strategies and opens up new approaches in tendon therapies, highlighting the transformative impact of immunomodulatory magnetic cell sheets.
Collapse
Affiliation(s)
- Adriana Vinhas
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark─Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's─PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark─Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's─PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Ana I Gonçalves
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark─Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's─PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark─Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's─PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| |
Collapse
|
6
|
Koch DW, Froneberger A, Berglund A, Connard S, Souther A, Schnabel LV. IL-1β + TGF-β2 dual-licensed mesenchymal stem cells have reduced major histocompatibility class I expression and positively modulate tenocyte migration, metabolism, and gene expression. J Am Vet Med Assoc 2024; 262:S61-S72. [PMID: 38547589 PMCID: PMC11187728 DOI: 10.2460/javma.23.12.0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/08/2024] [Indexed: 04/24/2024]
Abstract
OBJECTIVE The study objectives were to 1) determine the mesenchymal stem cell (MSC) surface expression of major histocompatibility complex (MHC) class I and transcriptome-wide gene expression changes following IL-1β + TGF-β2 dual licensing and 2) evaluate if IL-1β + TGF-β2 dual-licensed MSCs had a greater ability to positively modulate tenocyte function compared to naive MSCs. SAMPLE Equine bone marrow-derived MSCs from 6 donors and equine superficial digital flexor tenocytes from 3 donors. METHODS Experiments were performed in vitro. Flow cytometry and bulk RNA sequencing were utilized to determine naive and dual-licensed MSC phenotype and transcriptome-wide changes in gene expression. Conditioned media were generated from MSCs and utilized in tenocyte cell culture assays as a method to determine the effect of MSC paracrine factors on tenocyte function. RESULTS Dual-licensed MSCs have a reduced expression of MHC class I and exhibit enrichment in functional pathways associated with the extracellular matrix, cell signaling, and tissue development. Additionally, dual-licensed MSC-conditioned media significantly improved in vitro tenocyte migration and metabolism to a greater degree than naive MSC-conditioned media. In tenocytes exposed to IL-1β, dual-licensed conditioned media also positively modulated tenocyte gene expression. CLINICAL RELEVANCE Our data indicate that conditioned media containing paracrine factors secreted from dual-licensed MSCs significantly modulates in vitro tenocyte function, which may confer benefits in vivo to healing tendons following injury. Additionally, due to reduced MHC class I expression in dual-licensed MSCs, this technique may also provide an avenue to provide an effective "off-the-shelf" allogenic source of MSCs.
Collapse
Affiliation(s)
- Drew W. Koch
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Anna Froneberger
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Alix Berglund
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Shannon Connard
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Alexis Souther
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Lauren V. Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| |
Collapse
|
7
|
Pedrotti L, Bertani B, Tuvo G, Mora R, Nasi F, Manzoni F, Marin L, Moro F, De Rosa F. Ultrasonic Evaluation of the Achilles Tendon in Patients Treated for Congenital Clubfoot: Comparison between Patients Treated with Plaster Alone, Achilles Tenotomy, and Z-Plasty Lengthening. CHILDREN (BASEL, SWITZERLAND) 2024; 11:580. [PMID: 38790575 PMCID: PMC11119425 DOI: 10.3390/children11050580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Clubfoot is a common congenital deformity. The Ponseti technique, involving early corrective manipulations followed by applying long leg casts and Achilles tenotomy, is widely accepted as the preferred treatment. Rapid tendon healing after surgery has been documented, but the aspect regarding long-term tendon structure and properties is not known. Three cases of Achilles tendon rupture in adolescents previously treated for clubfoot have been described in the literature. As rupture is a rare event in this age group, a possible correlation with previous surgery has been hypothesized. The primary aim of the study was to compare the ultrasound findings of the Achilles tendon in patients treated for clubfoot, between patients treated with casting alone and with patients who underwent surgery (percutaneous tenotomy or Z-plasty lengthening). METHODS There were 22 asymptomatic patients (34 feet) with a median age of 12 years, previously treated for clubfoot, that were recruited for this study; the patients underwent an Achilles tendon ultrasound examination during a follow-up outpatient visit. RESULTS A greater thickness and increased number of structural alterations with the presence of hypoechoic areas of the operated tendons compared with those treated with plaster alone were observed (p-value: 0.0498 and <0.001, respectively). These ultrasound findings were indicative of tendon suffering, as seen in tendinopathies. CONCLUSIONS The presence of ultrasound alterations in asymptomatic patients operated on for clubfoot requires careful control of the extrinsic factors of tendinopathy in order to reduce the risk of subcutaneous rupture.
Collapse
Affiliation(s)
- Luisella Pedrotti
- Locomotor System Diseases Unit, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Barbara Bertani
- Orthopedic and Traumatology Unit, Città di Pavia Institute, 27100 Pavia, Italy; (B.B.); (G.T.); (R.M.)
| | - Gabriella Tuvo
- Orthopedic and Traumatology Unit, Città di Pavia Institute, 27100 Pavia, Italy; (B.B.); (G.T.); (R.M.)
| | - Redento Mora
- Orthopedic and Traumatology Unit, Città di Pavia Institute, 27100 Pavia, Italy; (B.B.); (G.T.); (R.M.)
| | - Fabrizio Nasi
- Outpatient Ultrasound Service, Città di Pavia Institute, 27100 Pavia, Italy;
| | - Federica Manzoni
- Epidemiology Unit, Health Protection Agency of Pavia (ATS Pavia) Italy, 27100 Pavia, Italy;
| | - Luca Marin
- Laboratory of Adapted Motor Activity, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Francesco Moro
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy;
| | - Federica De Rosa
- Pediatric Orthopedic and Traumatology Unit, Children’s Hospital, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
| |
Collapse
|
8
|
Kasula V, Padala V, Gupta N, Doyle D, Bagheri K, Anastasio A, Adams SB. The Use of Extracellular Vesicles in Achilles Tendon Repair: A Systematic Review. Biomedicines 2024; 12:942. [PMID: 38790904 PMCID: PMC11117955 DOI: 10.3390/biomedicines12050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Achilles tendon (AT) pathologies are common musculoskeletal conditions that can significantly impair function. Despite various traditional treatments, recovery is often slow and may not restore full functionality. The use of extracellular vesicles (EVs) has emerged as a promising therapeutic option due to their role in cell signaling and tissue regeneration. This systematic review aims to consolidate current in vivo animal study findings on the therapeutic effects of EVs on AT injuries. An extensive literature search was conducted using the PubMed, Scopus, and Embase databases for in vivo animal studies examining the effects of EVs on AT pathologies. The extracted variables included but were not limited to the study design, type of EVs used, administration methods, efficacy of treatment, and proposed therapeutic mechanisms. After screening, 18 studies comprising 800 subjects were included. All but one study reported that EVs augmented wound healing processes in the AT. The most proposed mechanisms through which this occurred were gene regulation of the extracellular matrix (ECM), the enhancement of macrophage polarization, and the delivery of therapeutic microRNAs to the injury site. Further research is warranted to not only explore the therapeutic potential of EVs in the context of AT pathologies, but also to establish protocols for their clinical application.
Collapse
Affiliation(s)
- Varun Kasula
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Vikram Padala
- Department of Orthopedic Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nithin Gupta
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - David Doyle
- Department of Orthopedic Surgery, Central Michigan University College of Medicine, Saginaw, MI 48602, USA
| | - Kian Bagheri
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Albert Anastasio
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Samuel Bruce Adams
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
9
|
Dec P, Żyłka M, Burszewski P, Modrzejewski A, Pawlik A. Recent Advances in the Use of Stem Cells in Tissue Engineering and Adjunct Therapies for Tendon Reconstruction and Future Perspectives. Int J Mol Sci 2024; 25:4498. [PMID: 38674084 PMCID: PMC11050411 DOI: 10.3390/ijms25084498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Due to their function, tendons are exposed to acute injuries. This type of damage to the musculoskeletal system represents a challenge for clinicians when natural regeneration and treatment methods do not produce the expected results. Currently, treatment is long and associated with long-term complications. In this review, we discuss the use of stem cells in the treatment of tendons, including how to induce appropriate cell differentiation based on gene therapy, growth factors, tissue engineering, proteins involved in regenerative process, drugs and three-dimensional (3D) structures. A multidirectional approach as well as the incorporation of novel components of the therapy will improve the techniques used and benefit patients with tendon injuries in the future.
Collapse
Affiliation(s)
- Paweł Dec
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland; (P.D.); (M.Ż.); (P.B.)
| | - Małgorzata Żyłka
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland; (P.D.); (M.Ż.); (P.B.)
| | - Piotr Burszewski
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland; (P.D.); (M.Ż.); (P.B.)
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
10
|
Lake SP, Snedeker JG, Wang VM, Awad H, Screen HRC, Thomopoulos S. Guidelines for ex vivo mechanical testing of tendon. J Orthop Res 2023; 41:2105-2113. [PMID: 37312619 PMCID: PMC10528429 DOI: 10.1002/jor.25647] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Tendons are critical for the biomechanical function of joints. Tendons connect muscles to bones and allow for the transmission of muscle forces to facilitate joint motion. Therefore, characterizing the tensile mechanical properties of tendons is important for the assessment of functional tendon health and efficacy of treatments for acute and chronic injuries. In this guidelines paper, we review methodological considerations, testing protocols, and key outcome measures for mechanical testing of tendons. The goal of the paper is to present a simple set of guidelines to the nonexpert seeking to perform tendon mechanical tests. The suggested approaches provide rigorous and consistent methodologies for standardized biomechanical characterization of tendon and reporting requirements across laboratories.
Collapse
Affiliation(s)
- Spencer P. Lake
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Vincent M. Wang
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Hani Awad
- Department of Orthopaedics, Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Hazel R. C. Screen
- School of Engineering & Materials Science, Queen Mary University of London, London, UK
| | - Stavros Thomopoulos
- Department of Orthopaedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| |
Collapse
|
11
|
Lu J, Li H, Zhang Z, Xu R, Wang J, Jin H. Platelet-rich plasma in the pathologic processes of tendinopathy: a review of basic science studies. Front Bioeng Biotechnol 2023; 11:1187974. [PMID: 37545895 PMCID: PMC10401606 DOI: 10.3389/fbioe.2023.1187974] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Tendinopathy is a medical condition that includes a spectrum of inflammatory and degenerative tendon changes caused by traumatic or overuse injuries. The pathological mechanism of tendinopathy has not been well defined, and no ideal treatment is currently available. Platelet-rich plasma (PRP) is an autologous whole blood derivative containing a variety of cytokines and other protein components. Various basic studies have found that PRP has the therapeutic potential to promote cell proliferation and differentiation, regulate angiogenesis, increase extracellular matrix synthesis, and modulate inflammation in degenerative tendons. Therefore, PRP has been widely used as a promising therapeutic agent for tendinopathy. However, controversies exist over the optimal treatment regimen and efficacy of PRP for tendinopathy. This review focuses on the specific molecular and cellular mechanisms by which PRP manipulates tendon healing to better understand how PRP affects tendinopathy and explore the reason for the differences in clinical trial outcomes. This article has also pointed out the future direction of basic research and clinical application of PRP in the treatment of tendinopathy, which will play a guiding role in the design of PRP treatment protocols for tendinopathy.
Collapse
Affiliation(s)
- Jialin Lu
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Han Li
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Ziyu Zhang
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Rui Xu
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Hui Jin
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Ning C, Li P, Gao C, Fu L, Liao Z, Tian G, Yin H, Li M, Sui X, Yuan Z, Liu S, Guo Q. Recent advances in tendon tissue engineering strategy. Front Bioeng Biotechnol 2023; 11:1115312. [PMID: 36890920 PMCID: PMC9986339 DOI: 10.3389/fbioe.2023.1115312] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Tendon injuries often result in significant pain and disability and impose severe clinical and financial burdens on our society. Despite considerable achievements in the field of regenerative medicine in the past several decades, effective treatments remain a challenge due to the limited natural healing capacity of tendons caused by poor cell density and vascularization. The development of tissue engineering has provided more promising results in regenerating tendon-like tissues with compositional, structural and functional characteristics comparable to those of native tendon tissues. Tissue engineering is the discipline of regenerative medicine that aims to restore the physiological functions of tissues by using a combination of cells and materials, as well as suitable biochemical and physicochemical factors. In this review, following a discussion of tendon structure, injury and healing, we aim to elucidate the current strategies (biomaterials, scaffold fabrication techniques, cells, biological adjuncts, mechanical loading and bioreactors, and the role of macrophage polarization in tendon regeneration), challenges and future directions in the field of tendon tissue engineering.
Collapse
Affiliation(s)
- Chao Ning
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Pinxue Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Cangjian Gao
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Liwei Fu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiyao Liao
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Guangzhao Tian
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Han Yin
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Muzhe Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiang Sui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuyun Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Biological and Mechanical Factors and Epigenetic Regulation Involved in Tendon Healing. Stem Cells Int 2023; 2023:4387630. [PMID: 36655033 PMCID: PMC9842431 DOI: 10.1155/2023/4387630] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Tendons are an important part of the musculoskeletal system. Connecting muscles to bones, tendons convert force into movement. Tendon injury can be acute or chronic. Noticeably, tendon healing requires a long time span and includes inflammation, proliferation, and remodeling processes. The mismatch between endogenous and exogenous healing may lead to adhesion causing further negative effects. Management of tendon injuries and complications such as subsequent adhesion formation are still challenges for clinicians. Due to numerous factors, tendon healing is a complex process. This review introduces the role of various biological and mechanical factors and epigenetic regulation processes involved in tendon healing.
Collapse
|
14
|
Zhao H, Liang T, Tang Y, Zhu D, Lin Q, Chen J, Fei J, Yu T, Zhang Y. Single-Cell Transcriptomics Analysis of the Pathogenesis of Tendon Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7887782. [PMID: 36148412 PMCID: PMC9489412 DOI: 10.1155/2022/7887782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 12/05/2022]
Abstract
Tendon injury repair has been a clinical challenge, and little is known about tendon healing scar generation, repair, and regeneration mechanisms. To explore the cellular composition of tendon tissue and analyze cell populations and signaling pathways associated with tendon repair, in this paper, single-cell sequencing data was used for data mining and seven cell subsets were annotated in the tendon tissue, including fibroblasts, tenocytes, smooth muscle cells, endothelial cells, macrophages, T cells, and plasma cells. According to cell group interaction network analysis, pattern 4 composed of macrophages was an important communication pattern in tendon injury. Furthermore, the heterogeneity of M1 macrophages in tendons, the correlation of KEGG enriched pathway with inflammatory response, and the core regulatory role of the transcription factor NFKB and REL were observed; in addition, the heterogeneity of T cell isoforms in tendons was found and indicated that different isotypes of T cells involve in different roles of tendon injury and repair. This study demonstrated the heterogeneity of M1 macrophages and T cells in the tendon tissue, being involved in different physiological processes such as tendon injury and healing, providing new thinking insights and basis for subsequent clinical treatment of tendon injury.
Collapse
Affiliation(s)
- Haibo Zhao
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ting Liang
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yijie Tang
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Dongxu Zhu
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Qian Lin
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jinli Chen
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jun Fei
- Department of Emergency, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Tengbo Yu
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yingze Zhang
- Trauma and Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| |
Collapse
|
15
|
Zakirova E, Aimaletdinov A, Mansurova M, Titova A, Kurilov I, Rutland CS, Malanyeva A, Rizvanov A. Artificial Microvesicles: New Perspective on Healing Tendon Wounds. Cells Tissues Organs 2022; 213:24-39. [PMID: 36049461 DOI: 10.1159/000526845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Tendons have a limited capacity to repair both naturally and following clinical interventions. Damaged tissue often presents with structural and functional differences, adversely affecting animal performance, mobility, health, and welfare. Advances in cell therapies have started to overcome some of these issues, however complications such as the formation of ectopic bone remain a complication of this technique. Regenerative medicine is therefore looking toward future therapies such as the introduction of microvesicles (MVs) derived from stem cells (SCs). The aim of the present study was to assess the characteristics of artificially derived MVs, from equine mesenchymal stem cells (MSCs), when delivered to rat tendon cells in vitro and damaged tendons in vivo. The initial stages of extracting MVs from equine MSCs and identifying and characterizing the cultured tendon stem/progenitor cells (TSCs) from rat Achilles tendons were undertaken successfully. The horse MSCs and the rat tendon cells were both capable of differentiating in 3 directions: adipogenic, osteogenic, and chondrogenic pathways. The artificially derived equine MVs successfully fused with the TSC membranes, and no cytotoxic or cytostimulating effects were observed. In addition, co-cultivation of TSCs with MVs led to stimulation of cell proliferation and migration, and cytokine VEGF and fractalkine expression levels were significantly increased. These experiments are the first to show that artificially derived MVs exhibited regeneration-stimulating effects in vitro, and that fusion of cytoplasmic membranes from diploid cell lines originating from different species was possible. The experiment in vivo demonstrated the influence of MVs on synthesis of collagen I and III types in damaged tendons of rats. Explorations in vivo showed accelerated regeneration of injured tendons after introduction of the MVs into damaged areas. The results from the studies performed indicated obvious positive modifying effects following the administration of MVs. This represents the initial successful step required prior to translating this regenerative medicine technique into clinical trials, such as for tendon repair in injured horses.
Collapse
Affiliation(s)
- Elena Zakirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Alexander Aimaletdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Milana Mansurova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Angelina Titova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Igor Kurilov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Catrin Sian Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Albina Malanyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation,
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
16
|
Hart DA, Nakamura N. Creating an Optimal In Vivo Environment to Enhance Outcomes Using Cell Therapy to Repair/Regenerate Injured Tissues of the Musculoskeletal System. Biomedicines 2022; 10:1570. [PMID: 35884875 PMCID: PMC9313221 DOI: 10.3390/biomedicines10071570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Following most injuries to a musculoskeletal tissue which function in unique mechanical environments, an inflammatory response occurs to facilitate endogenous repair. This is a process that usually yields functionally inferior scar tissue. In the case of such injuries occurring in adults, the injury environment no longer expresses the anabolic processes that contributed to growth and maturation. An injury can also contribute to the development of a degenerative process, such as osteoarthritis. Over the past several years, researchers have attempted to use cellular therapies to enhance the repair and regeneration of injured tissues, including Platelet-rich Plasma and mesenchymal stem/medicinal signaling cells (MSC) from a variety of tissue sources, either as free MSC or incorporated into tissue engineered constructs, to facilitate regeneration of such damaged tissues. The use of free MSC can sometimes affect pain symptoms associated with conditions such as OA, but regeneration of damaged tissues has been challenging, particularly as some of these tissues have very complex structures. Therefore, implanting MSC or engineered constructs into an inflammatory environment in an adult may compromise the potential of the cells to facilitate regeneration, and neutralizing the inflammatory environment and enhancing the anabolic environment may be required for MSC-based interventions to fulfill their potential. Thus, success may depend on first eliminating negative influences (e.g., inflammation) in an environment, and secondly, implanting optimally cultured MSC or tissue engineered constructs into an anabolic environment to achieve the best outcomes. Furthermore, such interventions should be considered early rather than later on in a disease process, at a time when sufficient endogenous cells remain to serve as a template for repair and regeneration. This review discusses how the interface between inflammation and cell-based regeneration of damaged tissues may be at odds, and outlines approaches to improve outcomes. In addition, other variables that could contribute to the success of cell therapies are discussed. Thus, there may be a need to adopt a Precision Medicine approach to optimize tissue repair and regeneration following injury to these important tissues.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| | - Norimasa Nakamura
- Institute of Medical Science in Sport, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka 530-0043, Japan;
| |
Collapse
|
17
|
Arnold I. Sehnenpathologien im Bereich des Fußes – Inflammation
versus Degeneration: wo liegen die Unterschiede? AKTUEL RHEUMATOL 2022. [DOI: 10.1055/a-1766-0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ZusammenfassungDie Ursachen für Tendopathien bzw. Tenosynovialitiden sind mannigfaltig.
Stoffwechsel und Genaktivität der Bindegewebszellen im Sehnengewebe
reagieren sehr empfindlich auf mechanische Beanspruchung und aber auch
entzündliche Reize im Hinblick auf die Integrität der
extrazellulären Matrix. Hierin unterscheiden sich entzündliche
und degenerative Sehnenerkrankungen nicht. Die verbesserten
medikamentösen Möglichkeiten einer nachhaltigen
Entzündungskontrolle erlaubt es dem Rheumaorthopäden auch
häufiger sich an den fusschirurgischen Prinzipien eines Gelenkerhaltes
orientieren zu können. Weiterhin erfordert jedoch die mit chronisch
degenerativen Prozeßen nicht vergleichbare
Entzündungsintensität einen ausreichenden Erfahrungsschatz im
peri- und intraoperativen Umganges mit den RA, SpA und PsA Patienten.
Collapse
Affiliation(s)
- Ingo Arnold
- Klinik für operative Rheumatologie und Orthopädie,
Rheumazentrum Bremen, Rotes Kreuz Krankenhaus, Bremen, Germany
| |
Collapse
|
18
|
Viganò M, Ragni E, Marmotti A, de Girolamo L. The effects of orthobiologics in the treatment of tendon pathologies: a systematic review of preclinical evidence. J Exp Orthop 2022; 9:31. [PMID: 35394237 PMCID: PMC8994001 DOI: 10.1186/s40634-022-00468-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose The aim of this systematic review is to explore the current available knowledge about tendon disorders and orthobiologics derived by preclinical experiments to evaluate their role and efficacy in the different stages and conditions related to the tendon healing processes. Methods The systematic review was performed according to the PRISMA guidelines. Different electronic databases (MEDLINE, Web of Science, EMBASE) were searched for studies investigating orthobiologics (PRP and cell-based products from adipose tissue or bone marrow) in animal models or veterinary clinical trials for tendon pathologies (complete/partial tendon ruptures, rotator cuff tears, tendinopathy, enthesis-related injuries). Data regarding the specific product used, the treatment site/pathology, the host and the model were collected. The results were classified into the following categories: histological, biomechanical, molecular and imaging. Results A large pool of preclinical studies on tendon disorders have been found on platelet-rich plasma (PRP), while data about stromal vascular fraction (SVF) and bone marrow concentrate (BMAC) are still limited and frequently focused on expanded cells, rather than orthobiologics prepared at the point of care. The effect of PRP is related to an acceleration of the healing process, without improvements in the final structure and properties of repaired tendon. Cell-based products have been reported to produce more durable results, but the level of evidence is currently insufficient to draw clear indications. Conclusions The preclinical results about orthobiologics applications to tendon pathologies would support the rationale of their clinical use and encourage the performance of clinical trials aimed to confirm these data in human subjects. Supplementary Information The online version contains supplementary material available at 10.1186/s40634-022-00468-w.
Collapse
Affiliation(s)
- Marco Viganò
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Enrico Ragni
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy.
| | - Antonio Marmotti
- San Luigi Gonzaga Hospital, Orthopedics and Traumatology Department, University of Turin - Medical School, Turin, Italy
| | - Laura de Girolamo
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| |
Collapse
|