1
|
Rouba A, Ansmant T, Chaqroun A, Challant J, Josse T, Schvoerer E, Gantzer C, Bertrand I, Hartard C. First detection of Hepatitis E virus (Rocahepevirus ratti) in French urban wastewater: Potential implications for human contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176805. [PMID: 39389133 DOI: 10.1016/j.scitotenv.2024.176805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Hepatitis E virus (HEV) is considered as an emerging zoonotic pathogen circulating in a wide range of animals. In recent decades, the genus Paslahepevirus frequently isolated in pigs were the most involved in human clinical practice. In addition, the genus Rocahepevirus have been isolated in rodents, and transmission to humans is increasingly reported worldwide, although gaps remain regarding the exposure factors. In this study, the presence of HEV was investigated in urban wastewater, swine slaughterhouse wastewater and river waters, in a geographical area where its circulation had previously been reported. In addition to the expected detection of Paslahepevirus in almost all waters samples collected, Rocahepevirus strains were detected with the same frequencies in urban and river waters, at concentrations up to 40-fold higher. No Rocahepeviruses were detected in swine slaughterhouse wastewater. This is the first study demonstrating the presence of Rocahepevirus in French wastewater. Although no evidence of transmission was reported among patients followed for a suspected HEV infection in the same area between April 2019 and October 2023 (i.e. 135/3078 serological tests positive for anti-HEV IgM detection; 46/822 blood samples positive for Paslahepevirus genome detection but none for Rocahepevirus), the circulation of Rocahepevirus in waters in such concentrations raises the question of the possible zoonotic transmission to human. Indeed, the waterborne transmission of HEV is now well documented in industrialized countries, and the exploration of the growing number of human infections in Europe involving Rocahepevirus has not until now made it possible to clarify the transmission routes.
Collapse
Affiliation(s)
- Achouak Rouba
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Thomas Ansmant
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Ahlam Chaqroun
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Julie Challant
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Thomas Josse
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France
| | - Evelyne Schvoerer
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France; Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France
| | | | | | - Cédric Hartard
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France; Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
2
|
Casares-Jimenez M, Rivero-Juarez A, Lopez-Lopez P, Montes ML, Navarro-Soler R, Peraire J, Espinosa N, Alemán-Valls MR, Garcia-Garcia T, Caballero-Gomez J, Corona-Mata D, Perez-Valero I, Ulrich RG, Rivero A. Rat hepatitis E virus ( Rocahepevirus ratti) in people living with HIV. Emerg Microbes Infect 2024; 13:2295389. [PMID: 38095070 PMCID: PMC10763910 DOI: 10.1080/22221751.2023.2295389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/12/2023] [Indexed: 12/31/2023]
Abstract
Rat hepatitis E virus (ratHEV; species Rocahepevirus ratti) is considered a newly emerging cause of acute hepatitis of zoonotic origin. ratHEV infection of people living with HIV (PLWH) might portend a worse, as with hepatitis E virus (HEV; species Paslahepevirus balayani), and consequently this group may constitute a high-risk population. We aimed to evaluate the prevalence of ratHEV by measuring viral RNA and specific IgG antibodies in a large Spanish cohort of PLWH. Multicentre study conducted in Spain evaluating PLWHIV included in the Spanish AIDS Research Network (CoRIS). Patients were evaluated for ratHEV infection using PCR at baseline and anti-ratHEV IgG by dot blot analysis to evaluate exposure to ratHEV strains. Patients with detectable ratHEV RNA were followed-up to evaluate persistence of viremia and IgG seroconversion. Eight-hundred and forty-two individuals were tested. A total of 9 individuals showed specific IgG antibodies against ratHEV, supposing a prevalence of 1.1 (95% CI; 0.5%-2.1%). Of these, only one was reactive to HEV IgG antibodies by ELISA. One sample was positive for ratHEV RNA (prevalence of infection: 0.1%; 95% CI: 0.08%-0.7%). The case was a man who had sex with men exhibiting a slightly increased alanine transaminase level (49 IU/L) as only biochemical alteration. In the follow-up, the patients showed undetectable ratHEV RNA and seroconversion to specific ratHEV IgG antibodies. Our study shows that ratHEV is geographical broadly distributed in Spain, representing a potential zoonotic threat.
Collapse
Affiliation(s)
- María Casares-Jimenez
- Infectious Diseases Unit, Reina Sofia University Hospital, Maimonides Instituto for Biomedical Research (IMIBIC), University of Cordoba (UCO), Cordoba, Spain
| | - Antonio Rivero-Juarez
- Infectious Diseases Unit, Reina Sofia University Hospital, Maimonides Instituto for Biomedical Research (IMIBIC), University of Cordoba (UCO), Cordoba, Spain
- CIBERINFEC, ISCIII – CIBER on Infectious Diseases, Carlos III Health Institute, Madrid, Spain
| | - Pedro Lopez-Lopez
- Infectious Diseases Unit, Reina Sofia University Hospital, Maimonides Instituto for Biomedical Research (IMIBIC), University of Cordoba (UCO), Cordoba, Spain
- CIBERINFEC, ISCIII – CIBER on Infectious Diseases, Carlos III Health Institute, Madrid, Spain
| | - María Luisa Montes
- CIBERINFEC, ISCIII – CIBER on Infectious Diseases, Carlos III Health Institute, Madrid, Spain
- HIV Unit, Internal Medicine Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | | | - Joaquín Peraire
- CIBERINFEC, ISCIII – CIBER on Infectious Diseases, Carlos III Health Institute, Madrid, Spain
- Infectious Diseases Unit, Joan XXIII University Hospital, IISPV, Rovira i Virgili University, Tarragona, Spain
| | - Nuria Espinosa
- Infectious Diseases and Clinical Microbiology Unit, Virgen del Rocío University Hospital, CSIC, IbIS, University of Seville, Seville, Spain
| | | | - Tránsito Garcia-Garcia
- Immunogenomic and Molecular Pathogenesis, Zoonoses and Emerging diseases Unit (ENZOEM), Genetic Department, University of Cordoba, Cordoba, Spain
| | - Javier Caballero-Gomez
- Infectious Diseases Unit, Reina Sofia University Hospital, Maimonides Instituto for Biomedical Research (IMIBIC), University of Cordoba (UCO), Cordoba, Spain
- CIBERINFEC, ISCIII – CIBER on Infectious Diseases, Carlos III Health Institute, Madrid, Spain
- Animal Health Unit, Zoonoses and Emerging diseases Unit (ENZOEM), University of Cordoba, Cordoba, Spain
| | - Diana Corona-Mata
- Infectious Diseases Unit, Reina Sofia University Hospital, Maimonides Instituto for Biomedical Research (IMIBIC), University of Cordoba (UCO), Cordoba, Spain
- CIBERINFEC, ISCIII – CIBER on Infectious Diseases, Carlos III Health Institute, Madrid, Spain
| | - Ignacio Perez-Valero
- Infectious Diseases Unit, Reina Sofia University Hospital, Maimonides Instituto for Biomedical Research (IMIBIC), University of Cordoba (UCO), Cordoba, Spain
- CIBERINFEC, ISCIII – CIBER on Infectious Diseases, Carlos III Health Institute, Madrid, Spain
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- German Centre for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, Greifswald-Insel Riems, Germany
| | - Antonio Rivero
- Infectious Diseases Unit, Reina Sofia University Hospital, Maimonides Instituto for Biomedical Research (IMIBIC), University of Cordoba (UCO), Cordoba, Spain
- CIBERINFEC, ISCIII – CIBER on Infectious Diseases, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
3
|
Casares-Jimenez M, Corona-Mata D, Garcia-Garcia T, Manchado-Lopez L, Rios-Muñoz L, de Guia-Castro M, Lopez-Lopez P, Caceres-Anillo D, Camacho A, Caballero-Gomez J, Perez-Valero I, Gallo-Marin M, Perez AB, Ulrich RG, Rivero-Juarez A, Rivero A. Serological and molecular survey of rat hepatitis E virus ( Rocahepevirus ratti) in drug users. Emerg Microbes Infect 2024; 13:2396865. [PMID: 39193634 PMCID: PMC11376293 DOI: 10.1080/22221751.2024.2396865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
ABSTRACTRat hepatitis E virus (ratHEV) is an emerging cause of acute hepatitis of zoonotic origin. Since seroprevalence studies are scarce, at-risk groups are almost unknown. Because blood-borne infections frequently occur in people with drug use, who are particularly vulnerable to infection due to lack of housing and homelessness, this population constitutes a priority in which ratHEV infection should be evaluated. Therefore, the aim of this study was to evaluate the ratHEV seroprevalence and RNA detection rate in drug users as a potential at-risk population. We designed a retrospective study involving individuals that attended drug rehabilitation centres. Exposure to ratHEV was assessed by specific antibody detection using ELISA and dot blot (DB) assay and the presence of active infection by ratHEV RNA detection using RT-qPCR. Three-hundred and forty-one individuals were included, the most of them being men (67.7%) with an average age of 45 years. A total of 17 individuals showed specific IgG antibodies against ratHEV (4.6%; 95% CI; 3.1%-7.9%). One case of active ratHEV infection was identified (0.3%; 95% CI: 0.1%-1.8%). This was a 57-year-old homeless woman with limited financial resources, who had active cocaine and heroin use via parenteral route. In conclusion, we identified a potential exposure to ratHEV among drug users. Targeted studies in drug users with proper control groups are necessary to evaluate high-risk populations and transmission routes more accurately.
Collapse
Affiliation(s)
- Maria Casares-Jimenez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
| | - Diana Corona-Mata
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
| | - Transito Garcia-Garcia
- Immunogenomic and Molecular Pathogenesis, Zoonoses and Emerging Diseases Unit (ENZOEM), Genetic Department, University of Cordoba, Cordoba, Spain
| | - Leticia Manchado-Lopez
- Unidad de Drogas y Adicciones-CPD (UDA-CPD), Instituto Provincial Bienestar Social, Diputación Córdoba, Córdoba, España
| | - Lucia Rios-Muñoz
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
| | - Maria de Guia-Castro
- Unidad de Drogas y Adicciones-CPD (UDA-CPD), Instituto Provincial Bienestar Social, Diputación Córdoba, Córdoba, España
| | - Pedro Lopez-Lopez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
| | - David Caceres-Anillo
- Unidad de Drogas y Adicciones-CPD (UDA-CPD), Instituto Provincial Bienestar Social, Diputación Córdoba, Córdoba, España
| | - Angela Camacho
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
| | - Javier Caballero-Gomez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Córdoba, España
| | - Ignacio Perez-Valero
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
| | - Marina Gallo-Marin
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
| | - Ana Belen Perez
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
- Unidad de Microbiología, Hospital Universitario Reina Sofía, Córdoba, España
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Greifswald-Insel Riems, Germany
| | - Antonio Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
| | - Antonio Rivero
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
| |
Collapse
|
4
|
Guo H, Xu J, Situ J, Li C, Wang X, Hou Y, Yang G, Wang L, Ying D, Li Z, Wang Z, Su J, Ding Y, Zeng D, Zhang J, Ding X, Wu S, Miao W, Tang R, Lu Y, Kong H, Zhou P, Zheng Z, Zheng K, Pan X, Sridhar S, Wang W. Cell binding tropism of rat hepatitis E virus is a pivotal determinant of its zoonotic transmission to humans. Proc Natl Acad Sci U S A 2024; 121:e2416255121. [PMID: 39467126 PMCID: PMC11551445 DOI: 10.1073/pnas.2416255121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/30/2024] Open
Abstract
Classically, all hepatitis E virus (HEV) variants causing human infection belong to the genus Paslahepevirus (HEV-A). However, the increasing cases of rat HEV infection in humans since 2018 challenged this dogma, posing increasing health threats. Herein, we investigated the underlying mechanisms dictating the zoonotic potentials of different HEV species and their possible cross-protection relationships. We found that rat HEV virus-like particles (HEVVLPs) bound to human liver and intestinal cells/tissues with high efficiency. Moreover, rat HEVVLPs and infectious rat HEV particles penetrated the cell membrane and entered human target cells postbinding. In contrast, ferret HEVVLPs showed marginal cell binding and entry ability, bat HEVVLPs and avian HEVVLPs exhibited no binding and entry potency. Structure-based three-dimensional mapping identified that the surface spike domain of rat HEV is crucial for cell binding. Antigenic cartography indicated that rat HEV exhibited partial cross-reaction with HEV-A. Intriguingly, sera of HEV-A infected patients or human HEV vaccine Hecolin® immunized individuals provided partial cross-protection against the binding of rat HEVVLPs to human target cells. In summary, the interactions between the viral capsid and cellular receptor(s) regulate the distinct zoonotic potentials of different HEV species. The systematic characterization of antigenic cartography and serological cross-reactivity of different HEV species provide valuable insights for the development of species-specific diagnosis and protective vaccines against zoonotic HEV infection.
Collapse
Affiliation(s)
- Hongbo Guo
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou221004, China
| | - Jiaqi Xu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou221004, China
| | - Jianwen Situ
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chunyang Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou221004, China
| | - Xia Wang
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou221002, China
| | - Yao Hou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou221004, China
| | - Guangde Yang
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou221002, China
| | - Lingli Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou221004, China
| | - Dong Ying
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
| | - Zheng Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou221004, China
| | - Zijie Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou221004, China
| | - Jia Su
- Chinese Academy of Sciences Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan430207, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou510320, China
| | - Yibo Ding
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou221004, China
| | - Dou Zeng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou221004, China
| | - Jikai Zhang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou221004, China
| | - Xiaohui Ding
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou221004, China
| | - Shusheng Wu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Weiwei Miao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Renxian Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou221004, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai200032, China
| | - Huihui Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin150069, China
| | - Peng Zhou
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou510320, China
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen361102, China
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou221004, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou221002, China
| | - Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou221004, China
| |
Collapse
|
5
|
De Sabato L, Monini M, Galuppi R, Dini FM, Ianiro G, Vaccari G, Ostanello F, Di Bartolo I. Investigating the Hepatitis E Virus (HEV) Diversity in Rat Reservoirs from Northern Italy. Pathogens 2024; 13:633. [PMID: 39204234 PMCID: PMC11357196 DOI: 10.3390/pathogens13080633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Hepatitis E virus belonging to the Rocahepevirus ratti species, genotype HEV-C1, has been extensively reported in rats in Europe, Asia and North America. Recently, human cases of hepatitis associated with HEV-C1 infection have been reported, but the zoonotic nature of rat-HEV remains controversial. The transmission route of rat-HEV is unidentified and requires further investigation. The HEV strains of the Paslahepevirus balayani species, belonging to the same Hepeviridae family, and including the zoonotic genotype HEV-3 usually found in pigs, have also sporadically been identified in rats. We sampled 115 rats (liver, lung, feces) between 2020 and 2023 in Northeast Italy and the HEV detection was carried out by using Reverse Transcription PCR. HEV RNA was detected in 3/115 (2.6%) rats who tested positive for HEV-C1 strains in paired lung, intestinal contents and liver samples. Overall, none tested positive for the Paslahepevirus balayani strains. In conclusion, our results confirm the presence of HEV-rat in Italy with a prevalence similar to previous studies but show that there is a wide heterogeneity of strains in circulation. The detection of HEV-C1 genotype of Rocahepevirus ratti species in some human cases of acute hepatitis suggests that HEV-C1 may be an underestimated source of human infections. This finding, with the geographically widespread detection of HEV-C1 in rats, raises questions about the role of rats as hosts for both HEV-C1 and HEV-3 and the possibility of zoonotic transmission.
Collapse
Affiliation(s)
- Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (L.D.S.); (G.I.); (G.V.); (I.D.B.)
| | - Marina Monini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (L.D.S.); (G.I.); (G.V.); (I.D.B.)
| | - Roberta Galuppi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (R.G.); (F.M.D.); (F.O.)
| | - Filippo Maria Dini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (R.G.); (F.M.D.); (F.O.)
| | - Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (L.D.S.); (G.I.); (G.V.); (I.D.B.)
| | - Gabriele Vaccari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (L.D.S.); (G.I.); (G.V.); (I.D.B.)
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (R.G.); (F.M.D.); (F.O.)
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (L.D.S.); (G.I.); (G.V.); (I.D.B.)
| |
Collapse
|
6
|
Marion O, Izopet J, Kamar N. Which Hepatitis E virus to worry about in our transplant patients. Transpl Infect Dis 2024; 26:e14285. [PMID: 38872417 DOI: 10.1111/tid.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 06/15/2024]
Affiliation(s)
- Olivier Marion
- Department of Nephrology and Organ Transplantation, Toulouse Rangueil University Hospital, INSERM UMR 1291, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University Paul Sabatier, Toulouse, France
| | - Jacques Izopet
- Laboratory of Virology, Institut Fédératif de Biologie, Toulouse Rangueil University Hospital, INSERM UMR 1291, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University Paul Sabatier, Toulouse, France
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, Toulouse Rangueil University Hospital, INSERM UMR 1291, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University Paul Sabatier, Toulouse, France
| |
Collapse
|
7
|
Benavent S, Carlos S, Reina G. Rocahepevirus ratti as an Emerging Cause of Acute Hepatitis Worldwide. Microorganisms 2023; 11:2996. [PMID: 38138140 PMCID: PMC10745784 DOI: 10.3390/microorganisms11122996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The hepatitis E virus (HEV) is a widespread human infection that causes mainly acute infection and can evolve to a chronic manifestation in immunocompromised individuals. In addition to the common strains of hepatitis E virus (HEV-A), known as Paslahepevirus balayani, pathogenic to humans, a genetically highly divergent rat origin hepevirus (RHEV) can cause hepatitis possessing a potential risk of cross-species infection and zoonotic transmission. Rocahepevirus ratti, formerly known as Orthohepevirus C, is a single-stranded RNA virus, recently reassigned to Rocahepevirus genus in the Hepeviridae family, including genotypes C1 and C2. RHEV primarily infects rats but has been identified as a rodent zoonotic virus capable of infecting humans through the consumption of contaminated food or water, causing both acute and chronic hepatitis cases in both animals and humans. This review compiles data concluding that 60% (295/489) of RHEV infections are found in Asia, being the continent with the highest zoonotic and transmission potential. Asia not only has the most animal cases but also 16 out of 21 human infections worldwide. Europe follows with 26% (128/489) of RHEV infections in animals, resulting in four human cases out of twenty-one globally. Phylogenetic analysis and genomic sequencing will be employed to gather global data, determine epidemiology, and assess geographical distribution. This information will enhance diagnostic accuracy, pathogenesis understanding, and help prevent cross-species transmission, particularly to humans.
Collapse
Affiliation(s)
- Sara Benavent
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (S.B.); (G.R.)
| | - Silvia Carlos
- Department of Preventive Medicine and Public Health, Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Gabriel Reina
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (S.B.); (G.R.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
8
|
Nemes K, Persson S, Simonsson M. Hepatitis A Virus and Hepatitis E Virus as Food- and Waterborne Pathogens-Transmission Routes and Methods for Detection in Food. Viruses 2023; 15:1725. [PMID: 37632066 PMCID: PMC10457876 DOI: 10.3390/v15081725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Foodborne viruses are an important threat to food safety and public health. Globally, there are approximately 5 million cases of acute viral hepatitis due to hepatitis A virus (HAV) and hepatitis E virus (HEV) every year. HAV is responsible for numerous food-related viral outbreaks worldwide, while HEV is an emerging pathogen with a global health burden. The reported HEV cases in Europe have increased tenfold in the last 20 years due to its zoonotic transmission through the consumption of infected meat or meat products. HEV is considered the most common cause of acute viral hepatitis worldwide currently. This review focuses on the latest findings on the foodborne transmission routes of HAV and HEV and the methods for their detection in different food matrices.
Collapse
Affiliation(s)
- Katalin Nemes
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Dag Hammarskjölds väg 56 A, 75237 Uppsala, Sweden; (S.P.); (M.S.)
| | | | | |
Collapse
|
9
|
Zhang X, Cremers N, Hendrickx S, Debing Y, Roskams T, Coelmont L, Neyts J, Kaptein SJF. Establishment of a robust rat hepatitis E virus fecal-oral infection model and validation for antiviral studies. Antiviral Res 2023; 216:105670. [PMID: 37451630 DOI: 10.1016/j.antiviral.2023.105670] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The hepatitis E virus (HEV) is a major cause of hepatitis, with an estimated 3.3 million symptomatic cases annually. There is no HEV-specific treatment besides the off-label use of ribavirin and a vaccine is only available in China and Pakistan. To aid the development of therapeutic and preventive strategies, there is a need for convenient HEV infection models in small laboratory animals. To this end, we make use of the rat hepatitis E virus. Human infections with this virus have been reported in recent years, making it a relevant pathogen for the establishment of a small animal infection model. We here report that oral gavage of a feces suspension, containing a pre-defined viral RNA load, results in a reproducible synchronized infection in athymic nude rats. This route of administration mimics fecal-oral transmission in a standardized fashion. The suitability of the model to study the effect of antiviral drugs was assessed by using ribavirin, which significantly reduced viral loads in the feces, liver, and other tissues.
Collapse
Affiliation(s)
- Xin Zhang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Niels Cremers
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Stijn Hendrickx
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | | | - Tania Roskams
- KU Leuven, Pathology, Translational Cell and Tissue Research, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| | - Suzanne J F Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| |
Collapse
|
10
|
Porea D, Raileanu C, Crivei LA, Gotu V, Savuta G, Pavio N. First Detection of Hepatitis E Virus ( Rocahepevirus ratti Genotype C1) in Synanthropic Norway Rats ( Rattus norvegicus) in Romania. Viruses 2023; 15:1337. [PMID: 37376636 DOI: 10.3390/v15061337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen with different viral genera and species reported in a wide range of animals. Rodents, particularly rats, carry the specific genus rat HEV (Rocahepevirus genus, genotype C1) and are exposed occasionally to HEV-3 (Paslahepevirus genus, genotype 3), a zoonotic genotype identified in humans and widely distributed in domestic and feral pigs. In this study, the presence of HEV was investigated in synanthropic Norway rats from Eastern Romania, in areas where the presence of HEV-3 was previously reported in pigs, wild boars and humans. Using methods capable of detecting different HEV species, the presence of HEV RNA was investigated in 69 liver samples collected from 52 rats and other animal species. Nine rat liver samples were identified as being positive for rat HEV RNA (17.3%). High sequence identity (85-89% nt) was found with other European Rocahepevirus. All samples tested from other animal species, within the same environment, were negative for HEV. This is the first study to demonstrate the presence of HEV in rats from Romania. Since rat HEV has been reported to cause zoonotic infections in humans, this finding supports the need to extend the diagnosis of Rocahepevirus in humans with suspicion of hepatitis.
Collapse
Affiliation(s)
- Daniela Porea
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, 700490 Iași, Romania
- Laboratories and Research Stations Department, Danube Delta National Institute for Research and Development, 820112 Tulcea, Romania
| | - Cristian Raileanu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, 700490 Iași, Romania
| | - Luciana Alexandra Crivei
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, 700490 Iași, Romania
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety Iași, University of Life Sciences, 700490 Iași, Romania
| | - Vasilica Gotu
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Gheorghe Savuta
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, 700490 Iași, Romania
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety Iași, University of Life Sciences, 700490 Iași, Romania
| | - Nicole Pavio
- Agence Nationale de Sécurité Sanitaire de L'alimentation de L'environnement et du Travail (ANSES), Institut National de Recherche pour L'agriculture L'alimentation et L'environnement (INRAE), École Nationale Vétérinaire d'Alfort (ENVA), UMR Virology, 94700 Maisons-Alfort, France
| |
Collapse
|
11
|
Rivero-Juarez A, Frias M, Perez AB, Pineda JA, Reina G, Fuentes-Lopez A, Freyre-Carrillo C, Ramirez-Arellano E, Alados JC, Rivero A. Orthohepevirus C infection as an emerging cause of acute hepatitis in Spain: First report in Europe. J Hepatol 2022; 77:326-331. [PMID: 35167911 DOI: 10.1016/j.jhep.2022.01.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIM Hepatitis E virus (HEV) was considered the only member of the Hepeviridae family with zoonotic potential. Nevertheless, this consideration has been reassessed owing to several reported cases of acute and chronic hepatitis linked to the Orthohepevirus C genus. Because the circulation of Orthohepevirus C in rodents has been described worldwide, the risk of zoonotic transmission is plausibly global. METHODS Orthohepevirus C RNA was retrospectively evaluated in 2 cohorts of patients in Spain. The first cohort included patients with acute hepatitis without etiological diagnosis after screening for hepatotropic virus infection. The second cohort included patients diagnosed with acute HEV infection, defined as positivity for anti-HEV-IgM antibodies and/or detectable HEV RNA in serum. RESULTS Cohort 1 comprised 169 patients (64.4% male, median age 43 years) and cohort 2 comprised 98 individuals (68.3% male, median age 45 years). Of the individuals included in Cohort 1, two (1.18%; 95% CI 0.2-3.8) had detectable Orthohepevirus C RNA in serum. In Cohort 2, of the 98 included patients, 58 showed detectable HEV RNA, while 40 only showed positivity for IgM antibodies. Among those bearing only IgM antibodies, Orthohepevirus C RNA was detected in 1 (2.5%; 95% CI 0.06-13.1) individual. All strains were consistent with genotype C1. The infection resulted in mild self-limiting acute hepatitis in 2 patients. Infection caused severe acute hepatitis in the remaining patient who died as a result of liver and renal failure. CONCLUSIONS We described 3 cases of Orthohepevirus C in patients with acute hepatitis, resulting in the first description of this infection in Europe. The prevalence obtained in our study suggests that Orthohepevirus C could be an emerging disease in Europe. LAY SUMMARY We describe the first cases of acute hepatitis related to rat hepatitis E virus in Europe. The prevalence found in our study suggest that rat hepatitis E virus could be considered an emerging disease in Europe.
Collapse
Affiliation(s)
- Antonio Rivero-Juarez
- Unit of Infectious Diseases, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Mario Frias
- Unit of Infectious Diseases, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belen Perez
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Clinical Microbiology Unit, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Juan Antonio Pineda
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases and Microbiology, Hospital Universitario de Valme, Seville, Spain
| | - Gabriel Reina
- Microbiology Department, Clínica Universidad de Navarra, STUN, Institute of Tropical Health, Universidad de Navarra, diSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Ana Fuentes-Lopez
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Clinical Microbiology Unit, Hospital Universitario Clínico San Cecilio, Granada, Spain; Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| | | | - Encarnación Ramirez-Arellano
- Infectious Diseases, Microbiology and Preventive Medicine Unit, Virgen Macarena Univ. Hospital, and Department of Medicine, University of Sevilla / Biomedicine Institute of Sevilla, Sevilla, Spain
| | - Juan Carlos Alados
- Clinical Microbiology Unit, Hospital Universitario de Jerez, Cádiz, Spain
| | - Antonio Rivero
- Unit of Infectious Diseases, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
No Evidence for Orthohepevirus C in Archived Human Samples in Germany, 2000–2020. Viruses 2022; 14:v14040742. [PMID: 35458471 PMCID: PMC9029421 DOI: 10.3390/v14040742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Orthohepevirus C1, also known as rat hepatitis E virus (HEV), has been shown to sporadically cause disease in immunocompromised and immunocompetent adults. While routine serological assays vary in reactivity, rat HEV is not detected in routine HEV RT-PCR. Thus, such infections could be either missed or misclassified as conventional HEV (Orthohepevirus A) infections. We conducted a retrospective screening study among serum and plasma samples from patients suspected of having HEV infection, which were archived at the national consultant laboratory for HAV and HEV between 2000 and 2020. We randomly selected n = 200 samples, which were initially tested reactive (positive or borderline) for HEV-IgM and negative for HEV RNA and re-examined them using a highly sensitive Orthohepevirus C genotype 1-specific in-house RT-qPCR (LoD 95: 6.73 copies per reaction) and a nested RT-PCR broadly reactive for Orthohepevirus A and C. Conventional sanger sequencing was conducted for resulting PCR products. No atypical HEV strains were detected (0 of 200 [0.0%; 95% confidence interval: 0.0%–1.89%], indicating that Orthohepevirus C infections in the investigated population (persons with clinical suspicion of hepatitis E and positive HEV-IgM) are very rare.
Collapse
|