1
|
Pan M, Huang X, Huang X, Liu X, Lin J. USP38 protects intestinal epithelial cells from ischemia/reperfusion injury by stabilizing BIRC5. Gastroenterol Rep (Oxf) 2025; 13:goaf024. [PMID: 40151769 PMCID: PMC11947415 DOI: 10.1093/gastro/goaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/01/2024] [Accepted: 01/21/2025] [Indexed: 03/29/2025] Open
Abstract
Background Intestinal ischemia/reperfusion (II/R) is a severe condition with high mortality and limited treatment options. Extracellular vesicles that are derived from bone marrow mesenchymal stem cells (BM-MSC-EVs) exhibit therapeutic potential in alleviating II/R injury. However, the mechanism by which BM-MSC-EVs fulfill this function requires further characterization. The ubiquitin-proteasome system plays an essential role in II/R, but the functions of individual ubiquitination regulators such as ubiquitin-specific proteases (USPs) in this process remain incompletely understood. Methods An II/R cellular model was established by using IEC-6 intestinal epithelial cells with oxygen-glucose deprivation/reperfusion (OGD/R) treatment. The expression of USPs was evaluated by using quantitative polymerase chain reaction and Western blot. The role of USP38 on the viability, apoptosis, migration, and reactive oxygen species (ROS) levels in OGD/R-treated IEC-6 cells were measured by using CCK-8, Annexin V/PI staining, transwell assay, and 2',7'-dichlorofluorescin diacetate (DCFDA) staining, respectively. The interaction between USP38 and BIRC5 was explored by using co-immunoprecipitation (Co-IP) and the ubiquitination level and stability of BIRC5 were examined by using Western blot. USP38-overexpressing BM-MSC-EVs were produced to treat OGD/R-treated IEC-6 cells. Results USP38 expression was significantly downregulated in OGD/R-treated IEC-6 cells. Incubation of these cells with BM-MSC-EVs substantially elevated the USP38 expression, resulting in improved viability, reduced apoptosis, enhanced migration, and decreased ROS levels. Furthermore, overexpression of USP38 in BM-MSC-EVs further enhanced their protective effect on OGD/R-treated IEC-6 cells. At the molecular level, USP38 interacts with and stabilizes BIRC5 by decreasing its ubiquitination. Knock-down of BIRC5 abolished the protective effect of excessive USP38 on OGD/R-treated IEC-6 cells. Conclusion USP38 protects intestinal epithelial cells from I/R injury by enhancing the stability of BIRC5.
Collapse
Affiliation(s)
- Mandong Pan
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, P. R. China
| | - Xianwei Huang
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, P. R. China
| | - Xiaodong Huang
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, P. R. China
| | - Xiong Liu
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, P. R. China
| | - Jiyan Lin
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, P. R. China
- Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, Xiamen, Fujian, P. R. China
| |
Collapse
|
2
|
Mi L, Jin J, Zhang Y, Chen M, Cui J, Chen R, Zheng X, Jing C. Chitinase 3-like 1 overexpression aggravates hypoxia-reoxygenation injury in IEC-6 cells by inhibiting the PI3K/AKT signalling pathway. Exp Physiol 2024; 109:2073-2087. [PMID: 39480684 DOI: 10.1113/ep091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/14/2024] [Indexed: 11/02/2024]
Abstract
Intestinal ischaemia-reperfusion (I/R) is a common clinical pathology with high incidence and mortality rates. However, the mechanisms underlying intestinal I/R injury remain unclear. In this study, we investigated the role and mechanism of chitinase 3-like 1 (CHI3L1) during intestinal I/R injury. Therefore, we analysed the expression levels of CHI3L1 in the intestinal tissue of an intestinal I/R rat model and explored its effects and mechanism in a hypoxia-reoxygenation (H/R) IEC-6 cell model. We found that intestinal I/R injury elevated CHI3L1 levels in the serum, ileum and duodenum, whereas H/R enhanced CHI3L1 expression in IEC-6 cells. The H/R-induced inhibition of proliferation and apoptosis was alleviated by CHI3L1 knockdown and aggravated by CHI3L1 overexpression. In addition, CHI3L1 knockdown alleviated, and CHI3L1 overexpression aggravated, the H/R-induced inflammatory response and oxidative stress. Mechanistically, CHI3L1 overexpression weakened the activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway, suppressed the nuclear translocation of Nrf2, and promoted the nuclear translocation of nuclear factor κB (NF-κB). Moreover, CHI3L1 knockdown had the opposite effect on the PI3K/AKT pathway, Nrf2, and NF-κB. Moreover, the PI3K inhibitor LY294002 blocked the effect of CHI3L1 knockdown on the H/R-induced inhibition of proliferation, apoptosis, inflammatory response and oxidative stress. In conclusion, CHI3L1 expression was induced during intestinal I/R and H/R injury in IEC-6 cells, and CHI3L1 overexpression aggravated H/R injury in IEC-6 cells by inhibiting the PI3K/AKT signalling pathway. Therefore, CHI3L1 may be an effective target for controlling intestinal I/R injury.
Collapse
Affiliation(s)
- Lei Mi
- Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, China
| | - Jie Jin
- Department of Traditional Chinese Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, China
| | - Yingying Zhang
- Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, China
| | - Ming Chen
- Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, China
| | - JianLi Cui
- Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, China
| | - Rui Chen
- Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, China
| | - Xiao Zheng
- Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Yao Z, Liang Y, Pan C, Zeng K, Qu Z. Lonicerin alleviates intestinal myenteric neuron injury induced by hypoxia/reoxygenation treated macrophages by downregulating EZH2. J Biochem Mol Toxicol 2024; 38:e23810. [PMID: 39163614 DOI: 10.1002/jbt.23810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/01/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024]
Abstract
Intestinal ischemia-reperfusion (IR) injury is a common gastrointestinal disease that induces severe intestinal dysfunction. Intestinal myenteric neurons participate in maintaining the intestinal function, which will be severely injured by IR. Macrophages are widely reported to be involved in the pathogenesis of organ IR injury, including intestine, which is activated by NLRP3 signaling. Lonicerin (LCR) is a natural extracted monomer with inhibitory efficacy against the NLRP3 pathway in macrophages. The present study aims to explore the potential protective function of LCR in intestinal IR injury. Myenteric neurons were extracted from mice. RAW 264.7 cells were stimulated by H/R with or without 10 μM and 30 μM LCR. Remarkable increased release of IL-6, MCP-1, and TNF-α were observed in H/R treated RAW 264.7 cells, along with an upregulation of NLRP3, cleaved-caspase-1, IL-1β, and EZH2, which were sharply repressed by LCR. Myenteric neurons were cultured with the supernatant collected from each group. Markedly decreased neuron number and shortened length of neuron axon were observed in the H/R group, which were signally reversed by LCR. RAW 264.7 cells were stimulated by H/R, followed by incubated with 30 μM LCR with or without pcDNA3.1-EZH2. The inhibition of LCR on NLRP3 signaling in H/R treated RAW 264.7 cells was abolished by EZH2 overexpression. Furthermore, the impact of LCR on neuron number and neuron axon length in myenteric neurons in the H/R group was abated by EZH2 overexpression. Collectively, LCR alleviated intestinal myenteric neuron injury induced by H/R treated macrophages via downregulating EZH2.
Collapse
Affiliation(s)
- Zhiguang Yao
- Department of Surgical District 2, Eighth People's Hospital of Dongguan City, Dongguan, China
| | - Yuan Liang
- Department of Pediatrics, Eighth People's Hospital of Dongguan City, Dongguan, China
| | - Chunyan Pan
- Department of Health Management, Eighth People's Hospital of Dongguan City, Dongguan, China
| | - Kun Zeng
- Department of Science and Education, Eighth People's Hospital of Dongguan City, Dongguan, China
| | - Zhibo Qu
- Department of Surgical District 2, Eighth People's Hospital of Dongguan City, Dongguan, China
| |
Collapse
|
4
|
Damian-Buda AC, Matei DM, Ciobanu L, Damian-Buda DZ, Pop RM, Buzoianu AD, Bocsan IC. Nesfatin-1: A Novel Diagnostic and Prognostic Biomarker in Digestive Diseases. Biomedicines 2024; 12:1913. [PMID: 39200377 PMCID: PMC11352118 DOI: 10.3390/biomedicines12081913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Nesfatin-1, deriving from a precursor protein, NUCB2, is a newly discovered molecule with anti-apoptotic, anti-inflammatory, antioxidant, and anorexigenic effects. It was initially identified in the central nervous system (CNS) and received increasing interest due to its energy-regulating properties. However, research showed that nesfatin-1 is also expressed in peripheral tissues, including the digestive system. The aim of this review is to give a résumé of the present state of knowledge regarding its structure, immunolocalization, and potential implications in diseases with inflammatory components. The main objective was to focus on its clinical importance as a diagnostic biomarker and potential therapeutic molecule in a variety of disorders, among which digestive disorders were of particular interest. Previous studies have shown that nesfatin-1 regulates the balance between pro- and antioxidant agents, which makes nesfatin-1 a promising therapeutic agent. Further in-depth research regarding the underlying mechanisms of action is needed for a better understanding of its effects.
Collapse
Affiliation(s)
- Adriana-Cezara Damian-Buda
- Pharmacology, Toxicology and Clinical Pharmacology Laboratory, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Daniela Maria Matei
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Lidia Ciobanu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | | | - Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Ioana Corina Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| |
Collapse
|
5
|
Liu Y, Ji T, Jiang H, Chen M, Liu W, Zhang Z, He X. Emodin alleviates intestinal ischemia-reperfusion injury through antioxidant stress, anti-inflammatory responses and anti-apoptosis effects via Akt-mediated HO-1 upregulation. J Inflamm (Lond) 2024; 21:25. [PMID: 38982499 PMCID: PMC11232135 DOI: 10.1186/s12950-024-00392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/08/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Intestinal ischemia-reperfusion (I/R) injury is a severe vascular emergency. Previous research indicated the protective effects of Emodin on I/R injury. Our study aims to explore the effect of Emodin on intestinal I/R (II/R) injury and elucidate the underlying mechanisms. METHODS C57BL/6 mice and Caco-2 cells were used for in vivo and in vitro studies. We established an animal model of II/R injury by temporarily occluding superior mesenteric artery. We constructed an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model using a hypoxia-reoxygenation incubator. Different doses of Emodin were explored to determine the optimal therapeutic dose. Additionally, inhibitors targeting the protein kinase B (Akt) or Heme oxygenase-1 (HO-1) were administered to investigate their potential protective mechanisms. RESULTS Our results demonstrated that in animal experiments, Emodin mitigated barrier disruption, minimized inflammation, reduced oxidative stress, and inhibited apoptosis. When Akt or HO-1 was inhibited, the protective effect of Emodin was eliminated. Inhibiting Akt also reduced the level of HO-1. In cell experiments, Emodin reduced inflammation and apoptosis in the OGD/R cell model. Additionally, when Akt or HO-1 was inhibited, the protective effect of Emodin was weakened. CONCLUSIONS Our findings suggest that Emodin may protect the intestine against II/R injury through the Akt/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yinyin Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
| | - Tuo Ji
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Haixing Jiang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
| | - Meng Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
- Department of Anesthesiology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, 430070, China
| | - Wanli Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China.
| | - Xianghu He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China.
- Department of Anesthesiology, Jiayu Hospital, Zhongnan Hospital of Wuhan University, Xianning, Hubei, 437200, China.
| |
Collapse
|
6
|
Chen Z, Wang G, Wang W, Wang X, Huang Y, Jia J, Gao Q, Xu H, He L, Xu Y, Liu Z, Sun J, Li C. Relationship between jejunum ATPase activity and antioxidant function on the growth performance, feed conversion efficiency, and jejunum microbiota in Hu sheep (Ovis aries). BMC Vet Res 2024; 20:242. [PMID: 38831422 PMCID: PMC11149274 DOI: 10.1186/s12917-024-04100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND ATPase activity and the antioxidant function of intestinal tissue can reflect intestinal cell metabolic activity and oxidative damage, which might be related to intestinal function. However, the specific influence of intestinal ATPase activity and antioxidant function on growth performance, feed conversion efficiency, and the intestinal microbiota in sheep remains unclear. RESULTS This study analyzed the correlation between ATPase activity and antioxidant function in the jejunum of 92 Hu sheep and their growth performance and feed conversion efficiency. Additionally, individuals with the highest (H group) and lowest (L group) jejunum MDA content and Na+ K+-ATPase activity were further screened, and the effects of jejunum ATPase activity and MDA content on the morphology and microbial community of sheep intestines were analyzed. There was a significant correlation between jejunum ATPase and SOD activity and the initial weight of Hu sheep (P < 0.01). The H-MDA group exhibited significantly higher average daily gain (ADG) from 0 to 80 days old and higher body weight (BW) after 80 days. ATPase and SOD activities, and MDA levels correlated significantly and positively with heart weight. The jejunum crypt depth and circular muscle thickness in the H-ATP group were significantly higher than in the L-ATP group, and the villus length, crypt depth, and longitudinal muscle thickness in the H-MDA group were significantly higher than in the L-MDA group (P < 0.01). High ATPase activity and MDA content significantly reduced the jejunum microbial diversity, as indicated by the Chao1 index and observed species, and affected the relative abundance of specific taxa. Among species, the relative abundance of Olsenella umbonata was significantly higher in the H-MDA group than in the L-MDA group (P < 0.05), while Methanobrevibacter ruminantium abundance was significantly lower than in the L-MDA group (P < 0.05). In vitro culture experiments confirmed that MDA promoted the proliferation of Olsenella umbonata. Thus, ATPase and SOD activities in the jejunum tissues of Hu sheep are predominantly influenced by congenital factors, and lambs with higher birth weights exhibit lower Na+ K+-ATPase, Ca2+ Mg2+-ATPase, and SOD activities. CONCLUSIONS The ATPase activity and antioxidant performance of intestinal tissue are closely related to growth performance, heart development, and intestinal tissue morphology. High ATPase activity and MDA content reduced the microbial diversity of intestinal tissue and affect the relative abundance of specific taxa, representing a potential interaction between the host and its intestinal microbiota.
Collapse
Affiliation(s)
- Zhanyu Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Guoxiu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, 730020, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Jiale Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Qihao Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Haoyu Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Lijuan He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Yunfei Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Zhen Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Jinlin Sun
- Gansu Runmu Bio-Engineering Co.,LTD, Yongchang, Gansu, 737200, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
7
|
Rong Y, Xu M, Hu T, Zhang S, Fu J, Liu H. Effects of butyrate on intestinal ischemia-reperfusion injury via the HMGB1-TLR4-MyD88 signaling pathway. Aging (Albany NY) 2024; 16:7961-7978. [PMID: 38709282 PMCID: PMC11131991 DOI: 10.18632/aging.205797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND This study combined bioinformatics and experimental verification in a mouse model of intestinal ischemia-reperfusion injury (IRI) to explore the protection mechanism exerted by butyrate against IRI. METHODS GeneCards, Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine and GSE190581 were used to explore the relationship between butyrate and IRI and aging. Protein-protein interaction networks involving butyrate and IRI were constructed via the STRING database, with hub gene analysis performed through Cytoscape. Functional enrichment analysis was conducted on intersection genes. A mouse model of IRI was established, followed by direct arterial injection of butyrate. The experiment comprised five groups: normal, sham, model, vehicle, low-dose butyrate, and high-dose butyrate. Intestinal tissue observation was done via transmission electron microscopy (TEM), histological examination via hematoxylin and eosin (H&E) staining, tight junction proteins detection via immunohistochemistry, and Western blot analysis of hub genes. Drug-target interactions were evaluated through molecular docking. RESULTS Butyrate protected against IRI by targeting 458 genes, including HMGB1 and TLR4. Toll-like receptor pathway was implicated. Butyrate improved intestinal IRI by reducing mucosal damage, increasing tight junction proteins, and lowering levels of HMGB1, TLR4, and MyD88. Molecular docking showed strong binding energies between butyrate and HMGB1 (-3.7 kcal/mol) and TLR4 (-3.8 kcal/mol). CONCLUSIONS According to bioinformatics predictions, butyrate mitigates IRI via multiple-target and multiple-channel mechanisms. The extent of IRI can be reduced by butyrate through the inhibition of the HMGB1-TLR4-MyD88 signaling pathway, which is related to senescence.
Collapse
Affiliation(s)
- Yuanyuan Rong
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Meili Xu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Tao Hu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Shasha Zhang
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Jianfeng Fu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Huaqin Liu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| |
Collapse
|
8
|
Zhang J, Zhang X, Liu Y, Shi Y, Chen F, Leng Y. Recent insights into the effect of endoplasmic reticulum stress in the pathophysiology of intestinal ischaemia‒reperfusion injury. Biochem Biophys Res Commun 2024; 701:149612. [PMID: 38316091 DOI: 10.1016/j.bbrc.2024.149612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Intestinal ischaemia‒reperfusion (I/R) injury is a surgical emergency. This condition is associated with a high mortality rate. At present, there are limited number of efficient therapeutic measures for this injury, and the prognosis is poor. Therefore, the pathophysiological mechanisms of intestinal I/R injury must be elucidated to develop a rapid and specific diagnostic and treatment protocol. Numerous studies have indicated the involvement of endoplasmic reticulum (ER) stress in the development of intestinal I/R injury. Specifically, the levels of unfolded and misfolded proteins in the ER lumen are increased due to unfolded protein response. However, persistent ER stress promotes apoptosis of intestinal mucosal epithelial cells through three signalling pathways in the ER, impairing intestinal mucosal barrier function and leading to the dysfunction of intestinal tissues and distant organ compartments. This review summarises the mechanisms of ER stress in intestinal I/R injury, diagnostic indicators, and related treatment strategies with the objective of providing novel insights into future therapies for this condition.
Collapse
Affiliation(s)
- Jianmin Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiaohui Zhang
- The Department of Anaesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yongqiang Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China; The Department of Anaesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yajing Shi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Feng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China; The Department of Anaesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
9
|
El Mahdy RN, Nader MA, Helal MG, Abu-Risha SE, Abdelmageed ME. Tiron ameliorates acetic acid-induced colitis in rats: Role of TGF-β/EGFR/PI3K/NF-κB signaling pathway. Int Immunopharmacol 2024; 128:111587. [PMID: 38286073 DOI: 10.1016/j.intimp.2024.111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Ulcerative colitis (UC), an ongoing inflammatory disorder of the colon, is marked by persistent mucosal surface irritation extending from the rectum to the near-proximal colon. Tiron is a synthetic analogue of vitamin E which is known to have antioxidant and anti-inflammatory effects in various animal models, so the goal of this study was to find out whether Tiron had any preventive impacts on UC inflicted by acetic acid (A.A) exposure in rats. METHOD Tiron (235 and 470 mg/kg) was administered intra-peritoneally for 2 weeks, and A.A (2 ml, 3 % v/v) was injected intra-rectally to cause colitis. Colon tissues and blood samples were then collected for measurement of various inflammatory and oxidative stress biomarkers. RESULTS Tiron administration significantly diminished lactate dehydrogenase (LDH), C-reactive protein (CRP), colon weight, and the weight/length ratio of the colon as compared to A.A-injected rats. Additionally, Tiron attenuated oxidative stress biomarkers. Tiron also enforced the levels of Glucagon-like peptide-1 (GLP-1) and trefoil factor-3 (TFF-3), while it greatly lowered the expression of nuclear factor kappa B (NF-κB), interleukin-6 (IL-6), interferon-γ (IFN-γ), and transforming growth factor-1(TGF-β1), phosphorylated epidermal growth factor receptor (P-EGFR), phosphatidylinositol-3-kinase (PI3K) and protein kinase B (AKT) expression in colonic cellular structures. Furthermore, colonichistopathologic damages, revealed by hematoxylin and eosin (H&E) and Alcian Blue stain, were significantly decreased upon Tiron administration. CONCLUSION Tiron prevented A.A-induced colitis in rats via modulating inflammatory pathway TGF-β1/P-EGFR/PI3K/AKT/NF-κB, alongside managing the oxidant/antioxidant equilibrium, and boosting the reliability of the intestinal barrier.
Collapse
Affiliation(s)
- Raghda N El Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sally E Abu-Risha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
10
|
Chiu YW, Lee CH, Lo HC. Oral post-treatment supplementation with a combination of glutamine, citrulline, and antioxidant vitamins additively mitigates jejunal damage, oxidative stress, and inflammation in rats with intestinal ischemia and reperfusion. PLoS One 2024; 19:e0298334. [PMID: 38306371 PMCID: PMC10836685 DOI: 10.1371/journal.pone.0298334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION Intestinal ischemia and reperfusion (IIR) injury is closely associated with oxidative stress. Evidence shows that oral supplementation with glutamine and citrulline alleviates IIR-induced jejunal damage. We investigated the effects of a combination of glutamine, citrulline, and antioxidant vitamins on IIR-induced jejunal damage, oxidative stress, and inflammation. METHOD Male Wistar rats that underwent 60 min of superior mesenteric artery occlusion were orally administered glutamine plus citrulline (GC), vitamin C plus E (CE), or a combination of GC and CE 15 min before and 3, 9, and 21 h after reperfusion. Healthy rats without IIR were used as controls. RESULTS After reperfusion for 24 h, rats with IIR showed lower levels of red blood cells, hemoglobin, serum glucose, and jejunal DNA and increased white blood cell counts compared to controls (1-way ANOVA with the least significant difference, P < 0.05). The IIR-induced decrease in serum albumin and increase in plasma interleukin-6 and jejunal thiobarbituric acid-reactive substances (TBARS) were significantly reversed by GC and/or CE. The results of the 2-way ANOVA indicated that GC was the main factor that increased jejunal villus height and muscularis DNA, and CE was the main factor that increased jejunal muscularis protein and decreased jejunal proinflammatory cytokine levels and myeloperoxidase activity. In addition, GC and CE are the main factors that decrease plasma proinflammatory cytokine levels and the jejunal apoptotic index. CONCLUSION Oral post-treatment supplementation with glutamine and citrulline, combined with vitamins C and E, may alleviate IIR-induced oxidative stress, inflammation, and jejunal damage.
Collapse
Affiliation(s)
- Yu-Wen Chiu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Lee’s Endocrinology Clinic, Pingtung City, Pingtung County, Taiwan
| | - Chien-Hsing Lee
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Surgery, Division of Pediatric Surgery, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Hui-Chen Lo
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
11
|
Su L, Xie S, Li T, Jia Y, Wang Y. Pretreatment with platelet-rich plasma protects against ischemia-reperfusion induced flap injury by deactivating the JAK/STAT pathway in mice. Mol Med 2024; 30:18. [PMID: 38302877 PMCID: PMC10835983 DOI: 10.1186/s10020-024-00781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is a major cause of surgical skin flap compromise and organ dysfunction. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, with tissue regenerative potential. PRP has shown promise in multiple I/R-induced tissue injuries, but its effects on skin flap injury remain unexplored. METHODS We evaluated the effects of PRP on I/R-injured skin flaps, optimal timing of PRP administration, and the involved mechanisms. RESULTS PRP protected against I/R-induced skin flap injury by improving flap survival, promoting blood perfusion and angiogenesis, suppressing oxidative stress and inflammatory response, and reducing apoptosis, at least partly via deactivating Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signalling pathway. PRP given before ischemia displayed overall advantages over that given before reperfusion or during reperfusion. In addition, PRP pretreatment had a stronger ability to reverse I/R-induced JAK/STAT activation and apoptosis than AG490, a specific inhibitor of JAK/STAT signalling. CONCLUSIONS This study firstly demonstrates the protective role of PRP against I/R-injured skin flaps through negative regulation of JAK/STAT activation, with PRP pretreatment showing optimal therapeutic effects.
Collapse
Affiliation(s)
- Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.
| | - Songtao Xie
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Ting Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
12
|
Matkovic Z, Aleksic Z. Medical, Surgical and Experimental Approaches to Acute Mesenteric Ischemia and Reperfusion. Mater Sociomed 2024; 36:77-81. [PMID: 38590590 PMCID: PMC10999141 DOI: 10.5455/msm.2024.36.77-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/25/2024] [Indexed: 04/10/2024] Open
Abstract
Background Acute mesenteric ishemia(AMI) is a rare but very serious disease with high rate of mortality and morbidity. About 1-2% of all gastrointestinal disease is AMI. Mortality is about 60-80% and depends of time between starting of symptoms and establishing of diagnosis, type AMI, comorbidities. AMI is often in older population with coronary syndrom and atrial fibrilation. AMI may be occlusive(embolisatio arteriae mesentericae superior(AMS), or thrombosis of AMS, mesenterial vein thrombosis) and nonoclusive form(NOMI). NOMI is rising in critical ill patients in shock or sepsis. Pathophysiology of AMI is very complex and significant role in this proces has ischemia and also reperfusion. Reperfusion injury including oxidative stres, inflamation, infection. The best diagnostic approach is CT angiography but after high clinical suspicion on AMI. Patients have sudden, catastrophic abdominal pain, vomitus, bloody diarrhoea. Therapy is multidisciplinary-basic treatment(resuscitation with cristaloids, antibiotic, anticoagulans...), surgical treatment-resection necrotic segments of intestinum without anastomosis or endovascular treatment. In early phases conservative treatment is possible( vasodilatation, thrombolysis). In some countries there are Intestinal Stroke Centers (ISC) in which patients with AMI have better prognosis. Because of progressive nature of AMI( rapide worsening) rare are clinical study,but there are many experimental study on animal models. Most of experimental study investigate protective effects of some supstances on damage on intestinum and remote organs during ishemia and reperfusion. Objective To present literature data of clinical and experimental study, describe experiments on animal models and mention supstances whit promising results in protective strategies during AMI. Methods We analysed Pubmed by using mesh terms such as acute mesenteric ischemia, intestinal injury, reperfusion, experimental study, clinical and therapeutic approach. Results: Sudden abdominal pain resists on opioids analgetics, high rate of CRP, hyperlactatemia, increase of D dimer is enough for suspicion of AMI. Often is delayed in establishing of diagnosis of AMI. CT angiography has sensitivity of 94%. Pneumatosis is sign of necrosis of intestinal wall. Classical surgical approach is dominant, more than 70%,. Endovascular treatment became often last few years. Experimental studies investigate occlusion of AMS with atraumatic clamp, with schemia and reperfusion in different intervals Most animals models are on wistar male rats. Conclusion AMI has still high rate of mortality. Better diagnostic and therapeutic principles (shorter interval between appearance of symptoms and starting of therapy, multidisciplinary approach, higher percent of endovascular procedures), could decrease mortality. Experimental studies on animal models may be succesfull in development of new clinical, conservative approaches in the early phases of AMI in the future.
Collapse
Affiliation(s)
- Zoran Matkovic
- Department of Abdominal Surgery, General Hospital Doboj. Doboj, Bosnia and Herzegovina
| | - Zoran Aleksic
- Clinic for General and Abdominal surgery, University Clinical Centre of the Republic of Srpska, BanjaLuka. Banja Luka, Bosnia and Herzegovina
- Faculty of Medicine, University of Banja Luka. Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
13
|
Chu C, Wang X, Chen F, Yang C, Shi L, Xu W, Wang K, Liu B, Wang C, Sun D, Li J, Ding W. Neutrophil extracellular traps aggravate intestinal epithelial necroptosis in ischaemia-reperfusion by regulating TLR4/RIPK3/FUNDC1-required mitophagy. Cell Prolif 2024; 57:e13538. [PMID: 37691112 PMCID: PMC10771116 DOI: 10.1111/cpr.13538] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Neutrophil extracellular trap (NET) has been confirmed to be related to gut barrier injury during intestinal ischaemia-reperfusion (II/R). However, the specific molecular regulatory mechanism of NETs in II/R-induced intestinal barrier damage has yet to be fully elucidated. Here, we reported increased NETs infiltration accompanied by elevated inflammatory cytokines, cellular necroptosis and tight junction disruption in the intestine of human II/R patients. Meanwhile, NETs aggravated Caco-2 intestinal epithelial cell necroptosis, impairing the monolayer barrier in vitro. Moreover, Pad4-deficient mice were used further to validate the role of NETs in II/R-induced intestinal injury. In contrast, NET inhibition via Pad4 deficiency alleviated intestinal inflammation, attenuated cellular necroptosis, improved intestinal permeability, and enhanced tight junction protein expression. Notably, NETs prevented FUN14 domain-containing 1 (FUNDC1)-required mitophagy activation in intestinal epithelial cells, and stimulating mitophagy attenuated NET-associated mitochondrial dysfunction, cellular necroptosis, and intestinal damage. Mechanistically, silencing Toll-like receptor 4 (TLR4) or receptor-interacting protein kinase 3 (RIPK3) via shRNA relieved mitophagy limitation, restored mitochondrial function and reduced NET-induced necroptosis in Caco-2 cells, whereas this protective effect was reversed by TLR4 or RIPK3 overexpression. The regulation of TLR4/RIPK3/FUNDC1-required mitophagy by NETs can potentially induce intestinal epithelium necroptosis.
Collapse
Affiliation(s)
- Chengnan Chu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Xinyu Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Fang Chen
- Division of Trauma and Acute Care Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingJiangsu ProvinceChina
| | - Chao Yang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Lin Shi
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu ProvinceChina
| | - Weiqi Xu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Kai Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Baochen Liu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Chenyang Wang
- Key Laboratory of Intestinal Injury, Research Institute of General Surgery, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingJiangsuChina
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu ProvinceChina
| | - Jieshou Li
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Weiwei Ding
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
- Division of Trauma and Acute Care Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
14
|
Zhang J, Jiang X, Yang Y, Yang L, Lu B, Ji Y, Guo L, Zhang F, Xue J, Zhi X. Peptidome analysis reveals critical roles for peptides in a rat model of intestinal ischemia/reperfusion injury. Aging (Albany NY) 2023; 15:12852-12872. [PMID: 37955663 DOI: 10.18632/aging.205200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/15/2023] [Indexed: 11/14/2023]
Abstract
Intestinal ischemia/reperfusion injury (IIRI) has the potential to be life threatening and is associated with significant morbidity and serious damage to distant sites in the body on account of disruption of the intestinal mucosal barrier. In the present study, we have explored this line of research by comparing and identifying peptides that originated from the intestinal segments of IIRI model rats by using liquid chromatography-mass spectrometry (LC-MS). We also analyzed the basic characteristics, cleavage patterns, and functional domains of differentially expressed peptides (DEPs) between the IIRI model rats and control (sham-operated) rats and identified bioactive peptides that are potentially associated with ischemia reperfusion injury. We also performed bioinformatics analyses in order to identify the biological roles of the DEPs based on their precursor proteins. Enrichment analysis demonstrated the role of several DEPs in impairment of the intestinal mucosal barrier caused by IIRI. Based on the results of comprehensive ingenuity pathway analysis, we identified the DEPs that were significantly correlated with IIRI. We identified a candidate precursor protein (Actg2) and seven of its peptides, and we found that Actg2-6 had a more significant difference in its expression, a longer half-life, and better lipophilicity, hydrophobicity, and stability than the other candidate Actg2 peptides examined. Furthermore, we observed that Actg2-6 might play critical roles in the protection of the intestinal mucosal barrier during IIRI. In summary, our study provides a better understanding of the peptidomics profile of IIRI, and the results indicate that Actg2-6 could be a useful target in the treatment of IIRI.
Collapse
Affiliation(s)
- Jiaxuan Zhang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoqi Jiang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yang Yang
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Lei Yang
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Bing Lu
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yannan Ji
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Leijun Guo
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Fan Zhang
- Department of Pediatrics, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226001, China
| | - Jianhua Xue
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaofei Zhi
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
15
|
Kanika, Khan R. Functionalized nanomaterials targeting NLRP3 inflammasome driven immunomodulation: Friend or Foe. NANOSCALE 2023; 15:15906-15928. [PMID: 37750698 DOI: 10.1039/d3nr03857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The advancement in drug delivery systems in recent times has significantly enhanced therapeutic effects by enabling site-specific targeting through nanocarriers. These nanocarriers serve as invaluable tools for pharmacotherapeutic advancements against various disorders that enhance the effectiveness of encapsulated drugs by reducing their toxicity and increasing the efficacy of less potent drugs, thereby improving the therapeutic index. Inflammasomes, protein complexes located in the activated immune cell cytoplasm, regulate the activation of caspases involved in inflammation. However, aberrant activation of inflammasomes can result in uncontrolled tissue responses, contributing to the development of various diseases. Therefore, achieving a precise balance between inflammasome inhibition and activation is crucial for effectively treating inflammatory disorders through targeted functionalized nanocarriers. Despite the wealth of available data on the relevance of functionalized nanocarriers in inflammatory disorders, the nanotechnological potential to modulate inflammasomes has not been adequately explored. In this comprehensive review, we highlight the latest research on the modulation of the inflammasome cascade, both upregulating and downregulating its function, using nanocarriers in the context of inflammatory disorders. The utilization of nanocarriers as a therapeutic strategy holds immense potential for researchers aiming to effectively target and modulate inflammasomes in the treatment of inflammatory disorders, thus improving disease severity outcomes.
Collapse
Affiliation(s)
- Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, 5 Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, 5 Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| |
Collapse
|
16
|
Ji T, Chen M, Liu Y, Jiang H, Li N, He X. Artesunate alleviates intestinal ischemia/reperfusion induced acute lung injury via up-regulating AKT and HO-1 signal pathway in mice. Int Immunopharmacol 2023; 122:110571. [PMID: 37441813 DOI: 10.1016/j.intimp.2023.110571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Acute Lung injury (ALI) is a common complication following intestinal ischemia/reperfusion (II/R) injury that can lead to acute respiratory distress syndrome (ARDS) a fatal illness for there is no specific therapy. The semisynthetic artemisinin Artesunate (Art) extracted from Artemisia annua has been found lots of pharmaceutical effects such as anti-malaria, anti-inflammatory, and anti-apoptosis. This study aimed to investigate the effect of Artesunate on intestinal ischemia/reperfusion and the mechanism of how Artesunate works in mice. To establish the II/R model, the C57BL/c mice were subjected to occlude superior mesenteric artery (SMA) for 45 min and 120 min reperfusion, and the lung tissue was collected for examination. Severe lung injury occurred during the II/R, meanwhile Art pretreatment decreased the lung injury score, wet/dry ratio, the level of MDA, MPO, IL-1β, TNFα, CXCL1, MCP-1, the TUNEL-positive cells, Bax and Cleaved-Caspase3 protein expression obviously, and increased the activity of SOD and the expression of Bcl-2. In addition, the protein of P-AKT and HO-1 were upregulated during the Art pretreatment. Then the AKT inhibitor Triciribin and HO-1 inhibitor Tin-protoporphyrin IX were administered which reversed the protein expression of apoptosis, AKT and HO-1. Our study suggests that Art mitigated the II/R induced acute lung injury by targeting the oxidative stress, inflammatory response and apoptosis which is associated with the activating of AKT and HO-1, providing novel insights into the therapeutic candidate for the treatment of II/R induced acute lung injury.
Collapse
Affiliation(s)
- Tuo Ji
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuhan, Hubei 430071, China; Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Meng Chen
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, Hubei 430070, China.
| | - Yinyin Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuhan, Hubei 430071, China.
| | - Haixing Jiang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuhan, Hubei 430071, China.
| | - Na Li
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, Hubei 430070, China.
| | - Xianghu He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuhan, Hubei 430071, China.
| |
Collapse
|
17
|
Shen X, Shi H, Chen X, Han J, Liu H, Yang J, Shi Y, Ma J. Esculetin Alleviates Inflammation, Oxidative Stress and Apoptosis in Intestinal Ischemia/Reperfusion Injury via Targeting SIRT3/AMPK/mTOR Signaling and Regulating Autophagy. J Inflamm Res 2023; 16:3655-3667. [PMID: 37641705 PMCID: PMC10460583 DOI: 10.2147/jir.s413941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
Aim Intestinal ischemia/reperfusion (I/R) injury is a challenging pathological phenomenon accountable for significant mortality in clinical scenarios. Substantial evidence has supported the protective role of esculetin in myocardial I/R injury. This study is designed to reveal the specific impacts of esculetin on intestinal I/R injury and disclose the underlying mechanism. Methods First, intestinal I/R injury model and intestinal epithelial cell line hypoxia/reoxygenation (H/R) model were established. Pathologic damages to intestinal tissues were observed through H&E staining. Serum diamine oxidase (DAO) levels were examined. RT-qPCR and Western blot examined the expression of inflammatory mediators. Commercial kits were used for detecting the levels of oxidative stress markers. TUNEL assay and caspase 3 activity assay measured cell apoptosis. Immunofluorescence (IF) staining measured autophagy levels. Western blot analyzed the expression of apoptosis-, Sirtuin 3 (SIRT3)/AMP activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling- and autophagy-related proteins. Molecular docking verified the interaction of esculetin with SIRT3. Cell viability was explored via CCK-8 assay. Results The experimental results revealed that esculetin treatment mitigated pathological damage of intestinal tissues, reduced serum DAO level, ameliorated inflammation, oxidative stress and apoptosis and promoted autophagy in intestinal I/R rats. Moreover, esculetin bond to SIRT3 and activated SIRT3/AMPK/mTOR signaling both in vitro and in vivo. Furthermore, esculetin treatment enhanced cell viability and SIRT3 silencing reversed the impacts of esculetin on autophagy, inflammation, oxidative stress and apoptosis in H/R cell model. Conclusion In a word, esculetin activated SIRT3/AMPK/mTOR signaling and autophagy to protect against inflammation, oxidative stress and apoptosis in intestinal I/R injury.
Collapse
Affiliation(s)
- Xin Shen
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Hai Shi
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Xinli Chen
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Junwei Han
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Haiwang Liu
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Jie Yang
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Yuan Shi
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Jiajia Ma
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Military Medical University, Xi’an, 710032, People’s Republic of China
| |
Collapse
|
18
|
Chen F, Zhan J, Liu M, Mamun AA, Huang S, Tao Y, Zhao J, Zhang Y, Xu Y, He Z, Du S, Lu W, Li X, Chen Z, Xiao J. FGF2 Alleviates Microvascular Ischemia-Reperfusion Injury by KLF2-mediated Ferroptosis Inhibition and Antioxidant Responses. Int J Biol Sci 2023; 19:4340-4359. [PMID: 37705747 PMCID: PMC10496511 DOI: 10.7150/ijbs.85692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023] Open
Abstract
An essential pathogenic element of acute limb ischemia/reperfusion (I/R) injury is microvascular dysfunction. The majority of studies indicates that fibroblast growth factor 2 (FGF2) exhibits protective properties in cases of acute I/R injury. Albeit its specific role in the context of acute limb I/R injury is yet unknown. An impressive post-reperfusion increase in FGF2 expression was seen in a mouse model of hind limb I/R, followed by a decline to baseline levels, suggesting a key role for FGF2 in limb survivability. FGF2 appeared to reduce I/R-induced hypoperfusion, tissue edema, skeletal muscle fiber injury, as well as microvascular endothelial cells (ECs) damage within the limb, according to assessments of limb vitality, Western blotting, and immunofluorescence results. The bioinformatics analysis of RNA-sequencing revealed that ferroptosis played a key role in FGF2-facilitated limb preservation. Pharmacological inhibition of NFE2L2 prevented ECs from being affected by FGF2's anti-oxidative and anti-ferroptosis activities. Additionally, silencing of kruppel-like factor 2 (KLF2) by interfering RNA eliminated the antioxidant and anti-ferroptosis effects of FGF2 on ECs. Further research revealed that the AMPK-HDAC5 signal pathway is the mechanism via which FGF2 regulates KLF2 activity. Data from luciferase assays demonstrated that overexpression of HDAC5 prevented KLF2 from becoming activated by FGF2. Collectively, FGF2 protects microvascular ECs from I/R injury by KLF2-mediated ferroptosis inhibition and antioxidant responses.
Collapse
Affiliation(s)
- Fanfeng Chen
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayu Zhan
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Mi Liu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shanshan Huang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yibing Tao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaxin Zhao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yitie Xu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Zili He
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shenghu Du
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Lu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaokun Li
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Zimiao Chen
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Jian Xiao
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
19
|
Mehrzadi S, Sheibani M, Koosha F, Alinaghian N, Pourhanifeh MH, Tabaeian SAP, Reiter RJ, Hosseinzadeh A. Protective and therapeutic potential of melatonin against intestinal diseases: updated review of current data based on molecular mechanisms. Expert Rev Gastroenterol Hepatol 2023; 17:1011-1029. [PMID: 37796746 DOI: 10.1080/17474124.2023.2267439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Intestinal diseases, a leading global cause of mortality and morbidity, carry a substantial socioeconomic burden. Small and large intestines play pivotal roles in gastrointestinal physiology and food digestion. Pathological conditions, such as gut dysbiosis, inflammation, cancer, therapy-related complications, ulcers, and ischemia, necessitate the urgent exploration of safe and effective complementary therapeutic strategies for optimal intestinal health. AREAS COVERED This article evaluates the potential therapeutic effects of melatonin, a molecule with a wide range of physiological actions, on intestinal diseases including inflammatory bowel disease, irritable bowel syndrome, colon cancer, gastric/duodenal ulcers and other intestinal disorders. EXPERT OPINION Due to anti-inflammatory and antioxidant properties as well as various biological actions, melatonin could be a therapeutic option for improving digestive disorders. However, more researches are needed to fully understand the potential benefits and risks of using melatonin for digestive disorders.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazila Alinaghian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Xu J, Sun X, Qin F, Wang X, Chen Q, Yan R. Protective effects of salvianolic acid B on intestinal ischemia/reperfusion injury in rats by regulating the AhR/IL-22/STAT6 axis. J Recept Signal Transduct Res 2023; 43:73-82. [PMID: 37387514 DOI: 10.1080/10799893.2023.2204949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/13/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE Intestinal ischemia/reperfusion (I/R) injury (IIRI) is associated with high morbidity and mortality. Salvianolic acid B (Sal-B) could exert neuroprotective effects on reperfusion injury after cerebral vascular occlusion, but its effect on IIRI remains unclear. This study set out to investigate the protective effects of Sal-B on IIRI in rats. METHODS The rat IIRI model was established by occluding the superior mesenteric artery and reperfusion, and they were pretreated with Sal-B and aryl hydrocarbon receptor (AhR) antagonist CH-223191 before surgery. Pathological changes in rat ileum, IIRI degree, and intestinal cell apoptosis were evaluated through hematoxylin-eosin staining, Chiu's score scale, and TUNEL staining, together with the determination of caspase-3, AhR protein level in the nucleus, and STAT6 phosphorylation by Western blotting. The levels of inflammatory cytokines (IL-1β/IL-6/TNF-α) and IL-22 were determined by ELISA and RT-qPCR. The contents of superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in intestinal tissues were determined by spectrophotometry. RESULTS Sal-B alleviated IIRI in rats, evidenced by slight villi shedding and villi edema, reduced Chiu's score, and diminished the number of TUNEL-positive cells and caspase-3 expression. SAL-B alleviated inflammation and oxidative stress (OS) responses induced by IIRI. Sal-B promoted IL-22 secretion by activating AhR in intestinal tissue after IIRI. Inhibition of AhR activation partially reversed the protective effect of Sal-B on IIRI. Sal-B promoted STAT6 phosphorylation by activating the AhR/IL-22 axis. CONCLUSION Sal-B plays a protective role against IIRI in rats by activating the AhR/IL-22/STAT6 axis, which may be achieved by reducing the intestinal inflammatory response and OS responses.
Collapse
Affiliation(s)
- Jinyao Xu
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Xiangjun Sun
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Feng Qin
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Xufeng Wang
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Qian Chen
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Ruicheng Yan
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
21
|
Elwany NE, El Salem A, Mostafa Mohamed N, Khalil SS, Mahmoud NM. Rebamipide protects against experimentally induced intestinal ischemia/reperfusion-promoted liver damage: Impact on SIRT1/β-catenin/FOXO1and NFκB signaling. Int Immunopharmacol 2023; 119:110269. [PMID: 37148771 DOI: 10.1016/j.intimp.2023.110269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Rebamipide (Reba) is a well-known gastroprotective agent. However, its potential protective efficacy against intestinal ischemia/reperfusion (I/R)-induced liver injury remains elusive. Therefore, this study aimed to assess the modulatory effect of Reba on SIRT1/β-catenin/FOXO1-NFκB signaling cascade. Thirty-two male Wistar albino rats were randomized into four groups: G1 (sham): rats were subjected to surgical stress without I/R, GII (I/R): rats were subjected to 60 min/4-h I/R, GIII (Reba + I/R): rats received Reba 100 mg/kg/day, p.o. for three weeks, then were subjected to 60 min/4-h I/R, and GIV (Reba + EX527 + I/R): rats received Reba (100 mg/kg/day p.o.) + EX527 (10 mg/kg/day, ip) for three weeks before I/R. Reba pretreatment decreased the serum levels of ALT and AST, improved I/R-induced histological alterations of both intestine and liver, increased hepatic Silent information regulator 1 (SIRT1) expression/content, β-catenin expression/immunoreactivity, and FOXO1 expression, while suppressed NF-κB p65 expression/protein content. In addition, Reba increased hepatic total antioxidant capacity (TAC), while suppressed malondialdehyde (MDA), tumor necrosis factor (TNFα), and caspase-3 activity. Furthermore, Reba inhibited BAX expression, while upregulated Bcl-2 expression. Reba exhibited a plausible protective effect against intestinal I/R-mediated liver injury by modulating SIRT1/β-catenin/FOXO1-NFκB signaling mechanisms.
Collapse
Affiliation(s)
- Nisreen E Elwany
- Lecturer of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Amal El Salem
- Lecturer of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | | | - Sama S Khalil
- Associate professor of Medical Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Nevertyty M Mahmoud
- Lecturer of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
22
|
MiR-130a-3p regulates FUNDC1-mediated mitophagy by targeting GJA1 in myocardial ischemia/reperfusion injury. Cell Death Discov 2023; 9:77. [PMID: 36841811 PMCID: PMC9968299 DOI: 10.1038/s41420-023-01372-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Understanding the complex pathogenesis in myocardial ischemia/reperfusion (I/R) injury (IRI) is an urgent problem in clinical trials. Increasing pieces of evidence have suggested that miRNAs are involved in the occurrence and development of heart diseases by regulating mitochondria-related gene expression. Mitochondria have been acknowledged as the key triggers of cardiac I/R injury. However, the potential impact of miR-130a on mitochondria remains unclear in myocardial IRI. Exploring the regulatory mechanism of miR-130a on mitochondria may provide a new target for IRI therapy. In the present study, we found that miR-130a significantly increased in acute myocardial infarction (AMI) patients and myocardial I/R rats. MiR-130a could downregulate the viability of cardiomyocytes and the knockdown of miR-130a could protect the viability of cardiomyocytes under hypoxia-reoxygenation (HR). Over-expression of miR-130a resulted in mitochondrial dysfunction. It was evidenced by decreases in mitochondrial ATP production, mitochondrial membrane potential (MMP), and an increase in reactive oxygen species (ROS) production. However, suppression of miR-130a could protect against mitochondrial damage, show elevation of mitochondrial ATP production rate and MMP, and reduce ROS production. We further explored the effect of miR-130a on the mitochondrial quality control (QMC) system by determining mitochondrial-protein-specific proteases and analyzed mitochondrial morphology by fluorescence imaging and electron microscopy, respectively. It was noted that miR-130a could suppress mitochondrial fusion and FUNDC1-mediated mitophagy to accelerate myocardial IRI. Moreover, we investigated the potential miR-130a targeted mitochondria-related genes to understand the regulatory mechanism of miR-130a in the setting of myocardial IRI. It was revealed that miR-130a targeted GJA1, and GJA1 rescued IRI by enhancing ATP production rate and oxidative phosphorylation, meanwhile protecting cell viability, MMP, and activating mitophagy. In addition, the knockdown of miR-130a significantly activated FUNDC1-mediated mitophagy, while the knockdown of GJA1 reversed the relevant response. Collectively, our findings suggest that miR-130a regulates FUNDC1-mediated mitophagy by targeting GJA1 in myocardial IRI.
Collapse
|
23
|
Protective Effect of Oxygen and Isoflurane in Rodent Model of Intestinal Ischemia-Reperfusion Injury. Int J Mol Sci 2023; 24:ijms24032587. [PMID: 36768910 PMCID: PMC9917127 DOI: 10.3390/ijms24032587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Animal research in intestinal ischemia-reperfusion injury (IRI) is mainly performed in rodent models. Previously, intraperitoneal (I.P.) injections with ketamine-xylazine mixtures were used. Nowadays, volatile anesthetics (isoflurane) are more common. However, the impact of the anesthetic method on intestinal IRI has not been investigated. We aim to analyze the different anesthetic methods and their influence on the extent of intestinal IRI in a rat model. Male Sprague-Dawley rats were used to investigate the effect of I.P. anesthesia on 60 min of intestinal ischemia and 60 min of reperfusion in comparison to hyperoxygenation (100% O2) and volatile isoflurane anesthesia. In comparison to I.P. anesthesia with room air (21% O2), supplying 100% O2 improved 7-day survival by cardiovascular stabilization, reducing lactic acidosis and preventing vascular leakage. However, this had no effect on the intestinal epithelial damage, permeability, and inflammatory response observed after intestinal IRI. In contrast to I.P. + 100% O2, isoflurane anesthesia reduced intestinal IRI by preventing ongoing low-flow reperfusion hypotension, limiting intestinal epithelial damage and permeability, and by having anti-inflammatory effects. When translating the aforementioned results of this study to clinical situations, such as intestinal ischemia or transplantation, the potential protective effects of hyperoxygenation and volatile anesthetics require further research.
Collapse
|
24
|
Yang F, Shen C. Sodium Danshensu Cream Promotes the Healing of Pressure Ulcers in Mice through the Nrf2/HO-1 and NF-κB Pathways. Pharmaceuticals (Basel) 2022; 15:ph15121548. [PMID: 36558999 PMCID: PMC9783848 DOI: 10.3390/ph15121548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
On the basis of the mice pressure ulcers (PU) model, the protective effect and potential mechanism of sodium Danshensu (SDSS) cream against PU were investigated. The mice were randomly divided into three groups: the negative control group (cream without 0.5 g SDSS), the SDSS group (cream containing 0.5 g SDSS), and the positive group (0.5 g Hirudoid®). After 7 and 14 days of ointment application, the wound-healing rate of the SDSS and positive groups was significantly higher than that of the control group (p < 0.05). The results of hematoxylin−eosin staining also indicated that SDSS has the potential to promote the healing of PU. In addition, the serum IL-6, IL-1β, TNF-α, and MDA levels decreased significantly (p < 0.01) after 14 days of SDSS treatment, while the SOD, CAT, and GSH-Px activities increased significantly (p < 0.01). In addition, SDSS cream was able to significantly increase the expression of Nrf2, HO-1, GCLM, NQO1, NF-κB p65, NF-κB p50, IKKα, and IKKβ while decreasing the expression of Keap1 and IκBαin the Nrf2/HO-1 and NF-κB pathways. Our research will provide a foundation for the future clinical prevention and treatment of PU with SDSS cream.
Collapse
Affiliation(s)
- Fei Yang
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou 310008, China
| | - Cuizhen Shen
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Correspondence:
| |
Collapse
|
25
|
Wei Y, Chang L, Zhou X. Can Exosomes Derived from Bone Marrow-Derived Stem Cells Help Heal Intestinal Ischemia/Reperfusion Injury? Dig Dis Sci 2022; 67:4971-4973. [PMID: 35624330 DOI: 10.1007/s10620-022-07552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Yan Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xiangyu Zhou
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
26
|
Dong YH, Hu JJ, Deng F, Chen XD, Li C, Liu KX, Zhao BC. Use of dexmedetomidine to alleviate intestinal ischemia-reperfusion injury via intestinal microbiota modulation in mice. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1161. [PMID: 36467356 PMCID: PMC9708495 DOI: 10.21037/atm-22-824] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/08/2022] [Indexed: 11/06/2022]
Abstract
Background Intestinal ischemia-reperfusion (I/R) injury is a serious condition with unacceptable mortality rates. Our previous study revealed a protective effect of dexmedetomidine (DEX) on intestinal I/R injury, but its underlying mechanism remains unclear. Gut microbiota imbalance is associated with the progression of I/R injury. We hypothesized that DEX would attenuate intestinal I/R injury via modulating gut microbiota. Methods An I/R injury model was established in C57BL/6 mice in the presence or absence of DEX preconditioning. Some mice were treated with antibiotics to deplete intestinal bacteria. Fecal microbiota transplantation (FMT) was performed by transplanting the feces of DEX-pretreated mice into a new batch of I/R mice. We analyzed the expression of Bacteroidetes and Firmicutes in feces, survival rate, and inflammatory cytokines. Results DEX reversed I/R-induced bacterial abnormalities by increasing the ratio of Firmicutes to Bacteroidetes [DEX + I/R 3.02±0.36 vs. normal saline (NS) + I/R 0.82±0.15; 95% CI: 0.80-3.60; P<0.05] and was accompanied by increased 72-hour survival (0.40±0.16 vs. 0.10±0.09; P<0.05). The protective effect of DEX did not significantly differ from that of DEX + antibiotics. Furthermore, the bacteria of the DEX-pretreated mice decreased the release of inflammatory factors. Conclusions This study revealed that DEX can alleviate intestinal I/R injury through a microbiota-related mechanism, providing a potential avenue for the management of intestinal I/R injury.
Collapse
Affiliation(s)
- Ye-Hong Dong
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Juan Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Dong Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bing-Cheng Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Gao Y, Chen H, Cang X, Chen H, Di Y, Qi J, Cai H, Luo K, Jin S. Transplanted hair follicle mesenchymal stem cells alleviated small intestinal ischemia–reperfusion injury via intrinsic and paracrine mechanisms in a rat model. Front Cell Dev Biol 2022; 10:1016597. [PMID: 36274835 PMCID: PMC9581151 DOI: 10.3389/fcell.2022.1016597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Small intestinal ischemia-reperfusion (IR) injury is a common intestinal disease with high morbidity and mortality. Mesenchymal stem cells (MSCs) have been increasingly used in various intestinal diseases. This study aimed to evaluate the therapeutic effect of hair follicle MSCs (HFMSCs) on small intestinal IR injury. Methods: We divided Sprague–Dawley rats into three groups: the sham group, IR group and IR + HFMSCs group. A small intestinal IR injury rat model was established by clamping of the superior mesenteric artery (SMA) for 30 min and reperfusion for 2 h. HFMSCs were cultured in vitro and injected into the rats through the tail vein. Seven days after treatment, the intrinsic homing and differentiation characteristics of the HFMSCs were observed by immunofluorescence and immunohistochemical staining, and the paracrine mechanism of HFMSCs was assessed by Western blotting and enzyme-linked immunosorbent assay (ELISA). Results: A small intestinal IR injury model was successfully established. HFMSCs could home to damaged sites, express proliferating cell nuclear antigen (PCNA) and intestinal stem cell (ISC) markers, and promote small intestinal ISC marker expression. The expression levels of angiopoietin-1 (ANG1), vascular endothelial growth factor (VEGF) and insulin growth factor-1 (IGF1) in the IR + HFMSCs group were higher than those in the IR group. HFMSCs could prevent IR-induced apoptosis by increasing B-cell lymphoma-2 (Bcl-2) expression and decreasing Bcl-2 homologous antagonist/killer (Bax) expression. Oxidative stress level detection showed that the malondialdehyde (MDA) content was decreased, while the superoxide dismutase (SOD) content was increased in the IR + HFMSCs group compared to the IR group. An elevated diamine oxidase (DAO) level reflected the potential protective effect of HFMSCs on the intestinal mucosal barrier. Conclusion: HFMSCs are beneficial to alleviate small intestinal IR injury through intrinsic homing to the small intestine and by differentiating into ISCs, via a paracrine mechanism to promote angiogenesis, reduce apoptosis, regulate the oxidative stress response, and protect intestinal mucosal function potentially. Therefore, this study suggests that HFMSCs serve as a new option for the treatment of small intestinal IR injury.
Collapse
|
28
|
Dery KJ, Kupiec-Weglinski JW. New insights into ischemia-reperfusion injury signaling pathways in organ transplantation. Curr Opin Organ Transplant 2022; 27:424-433. [PMID: 35857344 DOI: 10.1097/mot.0000000000001005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Ischemia-reperfusion injury (IRI) leading to allograft rejection in solid organ transplant recipients is a devastating event that compromises graft and patient survival. As our clinical knowledge regarding its definition and presentation has significantly improved over the last years, adequate biomarkers translating to important therapeutic intervention remains a challenge. This review will summarize recent findings in this area. RECENT FINDINGS In the past 18 months, our understanding of organ transplantation IRI has improved. IRI involves a positive amplification feedback loop encompassing damaged cells at the graft site, the activity of redox-sensitive damage-associated molecular patterns, and local sequestration of recipient-derived monocytes, lymphocytes and polymorphonuclear leukocytes, like neutrophils, to sustain the immunological cascade and to enhance the destruction of the foreign tissue. Recent studies have identified critical components leading to IRI, including the oxidation state of high mobility group box 1, a classic danger signal, its role in the Toll-like receptor 4-interleukin (IL)-23-IL-17A signaling axis, and the role of neutrophils and CD321, a marker for transmigration of circulating leukocytes into the inflamed tissue. In addition, recent findings imply that the protective functions mediated by autophagy activation counterbalance the detrimental nucleotide-binding domain-like receptor family, pyrin domain containing 3 inflammasome pathway. Finally, clinical studies reveal the posttransplant variables associated with early allograft dysfunction and IRI. SUMMARY The future challenge will be understanding how crosstalk at the molecular and cellular levels integrate prospectively to predict which peri-transplant signals are essential for long-term clinical outcomes.
Collapse
Affiliation(s)
- Kenneth J Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
29
|
Guo J, Lou X, Gong W, Bian J, Liao Y, Wu Q, Jiao Q, Zhang X. The effects of different stress on intestinal mucosal barrier and intestinal microecology were discussed based on three typical animal models. Front Cell Infect Microbiol 2022; 12:953474. [PMID: 36250050 PMCID: PMC9557054 DOI: 10.3389/fcimb.2022.953474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have revealed that the effect of intestinal microecological disorders on organismal physiology is not limited to the digestive system, which provides new perspectives for microecological studies and new ideas for clinical diagnosis and prevention of microecology-related diseases. Stress triggers impairment of intestinal mucosal barrier function, which could be duplicated by animal models. In this paper, pathological animal models with high prevalence and typical stressors-corresponding to three major stressors of external environmental factors, internal environmental factors, and social psychological factors, respectively exemplified by burns, intestinal ischemia-reperfusion injury (IIRI), and depression models-were selected. We summarized the construction and evaluation of these typical animal models and the effects of stress on the organism and intestinal barrier, as well as systematically discussed the effects of different stresses on the intestinal mucosal barrier and intestinal microecology.
Collapse
Affiliation(s)
- Junfeng Guo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xiaokun Lou
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Jing Bian
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Yuhan Liao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Qi Wu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
30
|
Morán-Serradilla C, Angulo-Elizari E, Henriquez-Figuereo A, Sanmartín C, Sharma AK, Plano D. Seleno-Metabolites and Their Precursors: A New Dawn for Several Illnesses? Metabolites 2022; 12:874. [PMID: 36144278 PMCID: PMC9504997 DOI: 10.3390/metabo12090874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an essential element for human health as it is involved in different physiological functions. Moreover, a great number of Se compounds can be considered potential agents in the prevention and treatment of some diseases. It is widely recognized that Se activity is related to multiple factors, such as its chemical form, dose, and its metabolism. The understanding of its complex biochemistry is necessary as it has been demonstrated that the metabolites of the Se molecules used to be the ones that exert the biological activity. Therefore, the aim of this review is to summarize the recent information about its most remarkable metabolites of acknowledged biological effects: hydrogen selenide (HSe-/H2Se) and methylselenol (CH3SeH). In addition, special attention is paid to the main seleno-containing precursors of these derivatives and their role in different pathologies.
Collapse
Affiliation(s)
- Cristina Morán-Serradilla
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Eduardo Angulo-Elizari
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
31
|
Wan Y, Dong P, Zhu X, Lei Y, Shen J, Liu W, Liu K, Zhang X. Bibliometric and visual analysis of intestinal ischemia reperfusion from 2004 to 2022. Front Med (Lausanne) 2022; 9:963104. [PMID: 36052333 PMCID: PMC9426633 DOI: 10.3389/fmed.2022.963104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Intestinal ischemia/reperfusion (I/R) injury is a common tissue-organ damage occurring in surgical practice. This study aims to comprehensively review the collaboration and impact of countries, institutions, authors, subject areas, journals, keywords, and critical literature on intestinal I/R injury from a bibliometric perspective, and to assess the evolution of clustering of knowledge structures and identify hot trends and emerging topics. Methods Articles and reviews related to intestinal I/R were retrieved through subject search from Web of Science Core Collection. Bibliometric analyses were conducted on Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio). Results A total of 1069 articles and reviews were included from 2004 to 2022. The number of articles on intestinal I/R injury gradually plateaued, but the number of citations increased. These publications were mainly from 985 institutions in 46 countries, led by China and the United States. Liu Kx published the most papers, while Chiu Cj had the largest number of co-citations. Analysis of the journals with the most outputs showed that most journals focused on surgical sciences, cell biology, and immunology. Macroscopic sketch and microscopic characterization of the entire knowledge domain were achieved through co-citation analysis. The roles of cell death, exosomes, intestinal flora, and anesthetics in intestinal I/R injury are the current and developing research focuses. The keywords "dexmedetomidine", "proliferation", and "ferroptosis" may also become new trends and focus of future research. Conclusion This study comprehensively reviews the research on intestinal I/R injury using bibliometric and visualization methods, and will help scholars better understand the dynamic evolution of intestinal I/R injury and provide directions for future research.
Collapse
Affiliation(s)
- Yantong Wan
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Xiaobing Zhu
- Department of Anesthesiology, Hospital of Traditional Chinese Medicine of Zhongshan City, Zhongshan, China
| | - Yuqiong Lei
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Weifeng Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Kexuan Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiyang Zhang
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|