1
|
Wen Y, Su Z, Zhu H, Liu M, Li Z, Zhang S, Cai S, Tang J, Ding H, Zeng H. Mannitol-facilitated entry of vancomycin into the central nervous system inhibits neuroinflammation in a rat model of MRSA intracranial infection by modulating brain endothelial cells. World J Emerg Med 2025; 16:239-247. [PMID: 40406305 PMCID: PMC12093437 DOI: 10.5847/wjem.j.1920-8642.2025.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/26/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND The present study aims to investigate whether mannitol facilitates central nervous system (CNS) entry of vancomycin and alleviates methicillin-resistant Staphylococcus aureus (MRSA) intracranial infection. METHODS Blood-brain barrier (BBB) permeability was assessed by measuring the concentration of sodium fluorescein (NaF) in the brain tissues of rats and fluorescein isothiocyanate-dextran (FITC-dextran) in a single-cell layer model. Neutrophil infiltration in the brain tissue, inflammatory cytokine levels in the serum, neurological function, and 7-day survival rates were used to evaluate therapeutic effects of mannitol and vancomycin in MRSA-infected rats. Syndecan-1 and filamentous actin (F-actin) levels were measured, and the relationship between F-actin and the endothelial glycocalyx layer (EGL) was explored via the depolymerization agent cytochalasin D and the polymerization agent jasplakinolide. RESULTS Following mannitol administration, the NaF and vancomycin concentrations in the brain tissue increased rapidly within 5 min and remained stable for 30 min, indicating that mannitol increased BBB permeability for 30 min. In vitro, mannitol treatment led to significantly greater FITC-dextran permeation through a single-cell layer compared to controls. In the MRSA intracranial infection model, rats treated with mannitol and vancomycin simultaneously presented less inflammation, improved neurological function, and increased 7-day survival rate compared to rats treated with vancomycin and mannitol at 10-hour intervals. Further experiments revealed that mannitol decreased the expression of syndecan-1 in brain tissues, which was confirmed by in vitro experiments showing that mannitol significantly decreased syndecan-1 via F-actin depolymerization. CONCLUSION Mannitol may enhance the therapeutic efficacy of vancomycin against intracranial MRSA infection by decreasing the endothelial glycocalyx of the BBB via F-actin depolymerization.
Collapse
Affiliation(s)
- Yin Wen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhiwei Su
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Huishan Zhu
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Mengting Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhuo Li
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shiying Zhang
- Department of Emergency Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shuangming Cai
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jiaqi Tang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hongguang Ding
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hongke Zeng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
2
|
Curry FE, Michel CC. Eugene M Renkin. His Many Contributions to Microvascular Research With Examples of How They Inform Current Investigations of Microvascular Dysfunction. Microcirculation 2025; 32:e70010. [PMID: 40402867 PMCID: PMC12097518 DOI: 10.1111/micc.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 05/24/2025]
Abstract
Eugene Renkin used simplified uniform models of microvascular exchange units to describe the fundamental functions of the microcirculation: a cylindrical pore to characterize the barriers to exchange of water and solutes; a uniformly perfused capillary to distinguish flow-limited exchange from diffusion-limited exchange; and a membrane with large and small pores to describe macromolecule exchange between blood and lymph. A key idea linking these concepts to microvascular dysfunction is that local blood flows, microvascular pressures, and the permeability of the vascular wall are not uniformly distributed within microvascular beds. Renkin's concept of microvascular clearance of small solute was extended to show how heterogeneity in blood transit times compromised exchange. It was also extended to evaluate the relative contribution of diffusion, convection, and vesicle exchange to microvascular exchange of macromolecules when there is heterogeneity in macromolecule permeability, measured by the presence of large pores. An extension of his analysis to smaller proteins (14-20 KDa) showed that convective transport may limit the diffusion of inflammatory peptides, therapeutic agents, and toxins from the tissue into circulating blood. We include recent examples of the growing understanding of microvascular dysfunction in chronic disease and approaches to modeling heterogeneity in normal and diseased states.
Collapse
Affiliation(s)
- FitzRoy E. Curry
- Department of Physiology and Membrane Biology and Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | | |
Collapse
|
3
|
Hu Z, Cano I, Lei F, Liu J, Bossardi Ramos R, Gordon H, Paschalis EI, Saint-Geniez M, Ng YSE, D'Amore PA. Loss of the Endothelial Glycocalyx Component EMCN Leads to Glomerular Impairment. Circ Res 2025; 136:59-74. [PMID: 39584795 DOI: 10.1161/circresaha.124.325218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND EMCN (endomucin), an endothelial-specific glycocalyx component, was found to be highly expressed by the endothelium of the renal glomerulus. We reported an anti-inflammatory role of EMCN and its involvement in the regulation of VEGF (vascular endothelial growth factor) activity through modulating VEGFR2 (VEGF receptor 2) endocytosis. The goal of this study is to investigate the phenotypic and functional effects of EMCN deficiency using the first global EMCN knockout mouse model. METHODS Global EMCN knockout mice were generated by crossing EMCN-floxed mice with ROSA26-Cre mice. Flow cytometry was used to analyze infiltrating myeloid cells in the kidneys. The ultrastructure of the glomerular filtration barrier was examined by transmission electron microscopy, whereas urinary albumin, creatinine, and total protein levels were analyzed from freshly collected urine samples. Expression and localization of EMCN, EGFP (enhanced green fluorescent protein), CD45 (cluster of differentiation 45), CD31, CD34, podocin, and albumin were examined by immunohistochemistry. Mice were weighed regularly, and their systemic blood pressure was measured using a noninvasive tail-cuff system. Glomerular endothelial cells and podocytes were isolated by fluorescence-activated cell sorting for RNA sequencing. Transcriptional profiles were analyzed to identify differentially expressed genes in both endothelium and podocytes, followed by gene ontology analysis. Protein levels of EMCN, albumin, and podocin were quantified by Western blot. RESULTS The EMCN-/- mice exhibited increased infiltration of CD45+ cells, with an increased proportion of Ly6GhighLy6Chigh myeloid cells and higher VCAM-1 (vascular cell adhesion molecule 1) expression. EMCN-/- mice displayed albuminuria with increased albumin in the Bowman's space compared with the EMCN+/+ littermates. Glomeruli in EMCN-/- mice revealed fused and effaced podocyte foot processes and disorganized endothelial fenestrations. We found no significant difference in blood pressure between EMCN knockout mice and their wild-type littermates. RNA sequencing of glomerular endothelial cells revealed downregulation of cell-cell adhesion and MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated kinase) pathways, along with glycocalyx and extracellular matrix remodeling. In podocytes, we observed reduced VEGF signaling and alterations in cytoskeletal organization. Notably, there was a significant decrease in both mRNA and protein levels of podocin, a key component of the slit diaphragm. CONCLUSION Our study demonstrates a critical role of the endothelial marker EMCN in supporting normal glomerular filtration barrier structure and function by maintaining glomerular endothelial tight junction and homeostasis and podocyte function through endothelial-podocyte crosstalk.
Collapse
Affiliation(s)
- Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
| | - Issahy Cano
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
| | - Fengyang Lei
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
| | - Jie Liu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
| | - Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical Center, NY (R.B.R.)
| | - Harper Gordon
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
| | - Eleftherios I Paschalis
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
- Now with Biomedical Research, Novartis, Cambridge, MA (M.S.-G.)
| | - Yin Shan Eric Ng
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
- Now with EyeBiotech Limited, a subsidiary of Merck & Co, Inc, Rahway, NJ (Y.S.E.N.)
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
- Department of Pathology (P.A.D.), Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Ilatovskaya DV, Behr A, Staruschenko A, Hall G, Palygin O. Mechanistic Insights Into Redox Damage of the Podocyte in Hypertension. Hypertension 2025; 82:14-25. [PMID: 39534957 PMCID: PMC11655258 DOI: 10.1161/hypertensionaha.124.22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Podocytes are specialized cells within the glomerular filtration barrier, which are crucial for maintaining glomerular structural integrity and convective ultrafiltration. Podocytes exhibit a unique arborized morphology with foot processes interfacing by slit diaphragms, ladder-like, multimolecular sieves, which provide size and charge selectivity for ultrafiltration and transmembrane signaling. Podocyte dysfunction, resulting from oxidative stress, dysregulated prosurvival signaling, or structural damage, can drive the development of proteinuria and glomerulosclerosis in hypertensive nephropathy. Functionally, podocyte injury leads to actin cytoskeleton rearrangements, foot process effacement, dysregulated slit diaphragm protein expression, and impaired ultrafiltration. Notably, the renin-angiotensin system plays a pivotal role in podocyte function, with beneficial AT2R (angiotensin receptor 2)-mediated nitric oxide (NO) signaling to counteract AT1R (angiotensin receptor 1)-driven calcium (Ca2+) influx and oxidative stress. Disruption of this balance contributes significantly to podocyte dysfunction and drives albuminuria, a marker of kidney damage and overall disease progression. Oxidative stress can also lead to sustained ion channel-mediated Ca2+ influx and precipitate cytoskeletal disorganization. The complex interplay between GPCR (G-protein coupled receptor) signaling, ion channel activation, and redox injury pathways underscores the need for additional research aimed at identifying targeted therapies to protect podocytes and preserve glomerular function. Earlier detection of albuminuria and podocyte injury through routine noninvasive diagnostics will also be critical in populations at the highest risk for the development of hypertensive kidney disease. In this review, we highlight the established mechanisms of oxidative stress-mediated podocyte damage in proteinuric kidney diseases, with an emphasis on a hypertensive renal injury. We will also consider emerging therapies that have the potential to selectively protect podocytes from redox-related injury.
Collapse
Affiliation(s)
- Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Amanda Behr
- Department of Medical Illustration, College of Allied Health Sciences, Augusta University, Augusta, GA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
- James A. Haley Veterans’ Hospital, Tampa, FL
| | - Gentzon Hall
- Division of Nephrology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC
- Department of Medicine, Division of Nephrology, Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
5
|
Sivananthan S, Bhakta V, Chaechi Tehrani N, Sheffield WP. Prolonging the circulatory half-life of C1 esterase inhibitor via albumin fusion. PLoS One 2024; 19:e0305719. [PMID: 39441778 PMCID: PMC11498661 DOI: 10.1371/journal.pone.0305719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/04/2024] [Indexed: 10/25/2024] Open
Abstract
Hereditary Angioedema (HAE) is an autosomal dominant disease characterized by episodic swelling, arising from genetic deficiency in C1-esterase inhibitor (C1INH), a regulator of several proteases including activated Plasma kallikrein (Pka). Many existing C1INH treatments exhibit short circulatory half-lives, precluding prophylactic use. Hexahistidine-tagged truncated C1INH (trC1INH lacking residues 1-97) with Mutated N-linked Glycosylation Sites N216Q/N231Q/N330Q (H6-trC1INH(MGS)), its murine serum albumin (MSA) fusion variant (H6-trC1INH(MGS)-MSA), and H6-MSA were expressed in Pichia pastoris and purified via nickel-chelate chromatography. Following intravenous injection in mice, the mean terminal half-life of H6-trC1INH(MGS)-MSA was significantly increased versus that of H6-trC1INH(MGS), by 3-fold, while remaining ~35% less than that of H6-MSA. The extended half-life was achieved with minimal, but significant, reduction in the mean second order rate constant of Pka inhibition of H6-trC1INH(MGS)-MSA by 33% relative to that of H6-trC1INH(MGS). Our results validate albumin fusion as a viable strategy for half-life extension of a natural inhibitor and suggest that H6-trC1INH(MGS)-MSA is worthy of investigation in a murine model of HAE.
Collapse
Affiliation(s)
- Sangavi Sivananthan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Varsha Bhakta
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Canadian Blood Services, Innovation and Portfolio Management, Hamilton, Ontario, Canada
| | - Negin Chaechi Tehrani
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - William P. Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Canadian Blood Services, Innovation and Portfolio Management, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Nagase M, Ando H, Beppu Y, Kurihara H, Oki S, Kubo F, Yamamoto K, Nagase T, Kaname S, Akimoto Y, Fukuhara H, Sakai T, Hirose S, Nakamura N. Glomerular Endothelial Cell Receptor Adhesion G-Protein-Coupled Receptor F5 (ADGRF5) and the Integrity of the Glomerular Filtration Barrier. J Am Soc Nephrol 2024; 35:1366-1380. [PMID: 38844335 PMCID: PMC11452135 DOI: 10.1681/asn.0000000000000427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/31/2024] [Indexed: 09/13/2024] Open
Abstract
Key Points Deletion of endothelial receptor adhesion G-protein–coupled receptor F5 in mice led to abnormal structural and functional properties of the glomerular filtration barrier. Adhesion G-protein–coupled receptor F5 regulates gene expression of glomerular basement membrane components and a mechanosensitive transcription factor. Background Glomerular endothelial cells are recognized to be important for maintaining the glomerular filtration barrier. Adhesion G-protein–coupled receptor F5 (ADGRF5), an adhesion G protein–coupled receptor, has been suggested to be involved in endothelial cell function. However, the role of ADGRF5 in the glomerular filtration barrier integrity remains elusive. Methods Cellular expression of ADGRF5 in mouse glomerulus was determined by histological analyses. The effect of ADGRF5 deletion on the glomerular morphology, kidney function, and glomerular endothelial gene/protein expression was then analyzed using ADGRF5 knockout (Adgrf5 −/−) mice and human primary glomerular endothelial cells. Results ADGRF5 was specifically expressed in the capillary endothelial cells within the glomerulus. Adgrf5 −/− mice developed albuminuria and impaired kidney function with morphological defects in the glomeruli, namely glomerular hypertrophy, glomerular basement membrane splitting and thickening, diaphragmed fenestration and detachment of the glomerular endothelial cells, and mesangial interposition. These defects were accompanied by the altered expression of genes responsible for glomerular basement membrane organization (type 4 collagens and laminins) and Krüppel-like factor 2 (Klf2 ) in glomerular endothelial cells. Moreover, ADGRF5 knockdown decreased COL4A3 and COL4A4 expression and increased KLF2 expression in human primary glomerular endothelial cells. Conclusions The loss of ADGRF5 resulted in altered gene expression in glomerular endothelial cells and perturbed the structure and permselectivity of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Miki Nagase
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
- Department of Anatomy and Life Structure, Juntendo University School of Medicine, Tokyo, Japan
| | - Hikaru Ando
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshiaki Beppu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hidetake Kurihara
- Department of Anatomy and Life Structure, Juntendo University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Faculty of Health Science, Aino University, Osaka, Japan
| | - Souta Oki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Fumimasa Kubo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazuki Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Nagase
- Kunitachi Aoyagien Tachikawa Geriatric Health Services Facility, Tokyo, Japan
| | - Shinya Kaname
- Department of Nephrology and Rheumatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoshihiro Akimoto
- Department of Microscopic Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University School of Medicine, Tokyo, Japan
| | - Tatsuo Sakai
- Department of Anatomy and Life Structure, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigehisa Hirose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Nobuhiro Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
7
|
Harris G, Bradshaw ML, Halsall DJ, Scott DJ, Unwin RJ, Norden AGW. Is there reversible dimerization of albumin in blood plasma? And does it matter? Exp Physiol 2024; 109:1663-1671. [PMID: 39177455 PMCID: PMC11442857 DOI: 10.1113/ep092012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
Most albumin in blood plasma is thought to be monomeric with some 5% covalently dimerized. However, many reports in the recent biophysics literature find that albumin is reversibly dimerized or even oligomerized. We review data on this from X-ray crystallography and diverse biophysical techniques. The number-average molecular weight of albumin would be increased by dimerization, affecting size-dependent filtration processes of albumin such as at the glycocalyx of the capillary endothelium and the podocyte slit-diaphragm of the renal glomerulus. If correct, and depending on characteristics of the process, such as Kd, reversible dimerization of albumin in plasma would have major implications for normal physiology and medicine. We present quantitative models of the impact of dimerization on albumin molecular forms, on the number-average molecular weight of albumin, and estimate the effect on the colloid osmotic pressure of albumin. Dimerization reduces colloid osmotic pressure as total albumin concentration increases below that expected in the absence of dimerization. Current models of albumin filtration by the renal glomerulus would need revision to account for the dynamic size of albumin molecules filtered. More robust biophysical data are needed to give a definitive answer to the questions posed and we suggest possible approaches to this.
Collapse
Affiliation(s)
- Gemma Harris
- Research Complex at Harwell, Rutherford Appleton LaboratoryDidcotUK
| | | | - David J. Halsall
- Department of Clinical BiochemistryAddenbrooke's HospitalCambridgeUK
| | - David J. Scott
- School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | | | | |
Collapse
|
8
|
Hu Z, Cano I, Lei F, Liu J, Ramos RB, Gordon H, Paschalis EI, Saint-Geniez M, Ng YSE, D'Amore PA. Deletion of the endothelial glycocalyx component endomucin leads to impaired glomerular structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603749. [PMID: 39071302 PMCID: PMC11275787 DOI: 10.1101/2024.07.16.603749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Endomucin (EMCN), an endothelial-specific glycocalyx component, was found to be highly expressed by the endothelium of the renal glomerulus. We reported an anti-inflammatory role of EMCN and its involvement in the regulation of vascular endothelial growth factor (VEGF) activity through modulating VEGF receptor 2 (VEGFR2) endocytosis. The goal of this study is to investigate the phenotypic and functional effects of EMCN deficiency using the first global EMCN knockout mouse model. Methods Global EMCN knockout mice were generated by crossing EMCN-floxed mice with ROSA26-Cre mice. Flow cytometry was employed to analyze infiltrating myeloid cells in the kidneys. The ultrastructure of the glomerular filtration barrier was examined by transmission electron microscopy, while urinary albumin, creatinine, and total protein levels were analyzed from freshly collected urine samples. Expression and localization of EMCN, EGFP, CD45, CD31, CD34, podocin, albumin, and α-smooth muscle actin were examined by immunohistochemistry. Mice were weighed regularly, and their systemic blood pressure was measured using a non-invasive tail-cuff system. Glomerular endothelial cells and podocytes were isolated by fluorescence-activated cell sorting for RNA-seq. Transcriptional profiles were analyzed to identify differentially expressed genes in both endothelium and podocytes, followed by gene ontology analysis of up- and down-regulated genes. Protein levels of EMCN, albumin, and podocin were quantified by Western blot. Results EMCN -/- mice were viable with no gross anatomical defects in kidneys. The EMCN -/- mice exhibited increased infiltration of CD45 + cells, with an increased proportion of Ly6G high Ly6C high myeloid cells and higher VCAM-1 expression. EMCN -/- mice displayed albuminuria with increased albumin in the Bowman's space compared to the EMCN +/+ littermates. Glomeruli in EMCN -/- mice revealed fused and effaced podocyte foot processes and disorganized endothelial fenestrations. We found no significant difference in blood pressure between EMCN knockout mice and their wild-type littermates. RNA-seq of glomerular endothelial cells revealed downregulation of cell-cell adhesion and MAPK/ERK pathways, along with glycocalyx and extracellular matrix remodeling. In podocytes, we observed reduced VEGF signaling and alterations in cytoskeletal organization. Notably, there was a significant decrease in both mRNA and protein levels of podocin, a key component of the slit diaphragm. Conclusion Our study demonstrates a critical role of the endothelial marker EMCN in supporting normal glomerular filtration barrier structure and function by maintaining glomerular endothelial tight junction and homeostasis and podocyte function through endothelial-podocyte crosstalk.
Collapse
|
9
|
Kakutani Y, Morioka T, Yamazaki Y, Ochi A, Fukumoto S, Shoji T, Emoto M. Association of serum syndecan-1 concentrations with albuminuria in type 2 diabetes. Diab Vasc Dis Res 2024; 21:14791641241278362. [PMID: 39155787 PMCID: PMC11331450 DOI: 10.1177/14791641241278362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
INTRODUCTION Syndecan (SDC)-1 is a transmembrane heparan sulfate proteoglycan and is a major component of endothelial glycocalyx (EG). This study aimed to investigate the association of serum SDC-1 concentration as a marker of EG degradation with albuminuria in type 2 diabetes. METHODS We included 370 patients with type 2 diabetes and 219 individuals with no diabetes. The individuals with estimate glomerular filtration rate <30 mL/min/1.73 m2 were excluded. RESULTS Serum SDC-1 concentration was higher in type 2 diabetes than in no diabetes. The presence of diabetes was independently associated with log [SDC-1] in multivariate analysis. In type 2 diabetes, serum SDC-1 concentration was correlated with log [urinary albumin-to-creatinine ratio (ACR)]. Moreover, log [SDC-1] was an independent determinant of log [ACR] after adjustment for known risk factors of albuminuria. CONCLUSIONS Serum SDC-1 concentration was higher in patients with type 2 diabetes compared to individuals with no diabetes and an independent determinant of ACR. This study implicates the role of the EG degradation in albuminuria in type 2 diabetes.
Collapse
Affiliation(s)
- Yoshinori Kakutani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tomoaki Morioka
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yuko Yamazaki
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Akinobu Ochi
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shinya Fukumoto
- Department of Premier Preventive Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
10
|
Dąbkowski K, Kreft E, Sałaga-Zaleska K, Chyła-Danił G, Mickiewicz A, Gruchała M, Kuchta A, Jankowski M. Human In Vitro Oxidized Low-Density Lipoprotein (oxLDL) Increases Urinary Albumin Excretion in Rats. Int J Mol Sci 2024; 25:5498. [PMID: 38791535 PMCID: PMC11122078 DOI: 10.3390/ijms25105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Hypercholesterolemia-associated oxidative stress increases the formation of oxidized low-density lipoprotein (oxLDL), which can affect endothelial cell function and potentially contribute to renal dysfunction, as reflected by changes in urinary protein excretion. This study aimed to investigate the impact of exogenous oxLDL on urinary excretion of albumin and nephrin. LDL was isolated from a patient with familial hypercholesterolemia (FH) undergoing lipoprotein apheresis (LA) and was oxidized in vitro with Cu (II) ions. Biochemical markers of LDL oxidation, such as TBARS, conjugated dienes, and free ε-amino groups, were measured. Wistar rats were treated with a single intraperitoneal injection of PBS, LDL, or oxLDL (4 mg of protein/kg b.w.). Urine was collected one day before and two days after the injection. We measured blood lipid profiles, urinary protein excretion (specifically albumin and nephrin), and markers of systemic oxidative stress (8-OHdG and 8-iso-PGF2α). The results showed that injection of oxLDL increased urinary albumin excretion by approximately 28% (310 ± 27 μg/24 h vs. 396 ± 26 μg/24 h, p = 0.0003) but had no effect on nephrin excretion. Neither PBS nor LDL had any effect on urinary albumin or nephrin excretion. Additionally, oxLDL did not affect systemic oxidative stress. In conclusion, hypercholesterolemia may adversely affect renal function through oxidatively modified LDL, which interferes with the renal handling of albumin and leads to the development of albuminuria.
Collapse
Affiliation(s)
- Kamil Dąbkowski
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.D.); (E.K.); (K.S.-Z.); (G.C.-D.); (A.K.)
| | - Ewelina Kreft
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.D.); (E.K.); (K.S.-Z.); (G.C.-D.); (A.K.)
| | - Kornelia Sałaga-Zaleska
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.D.); (E.K.); (K.S.-Z.); (G.C.-D.); (A.K.)
| | - Gabriela Chyła-Danił
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.D.); (E.K.); (K.S.-Z.); (G.C.-D.); (A.K.)
| | - Agnieszka Mickiewicz
- 1st Department of Cardiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (A.M.); (M.G.)
| | - Marcin Gruchała
- 1st Department of Cardiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (A.M.); (M.G.)
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.D.); (E.K.); (K.S.-Z.); (G.C.-D.); (A.K.)
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.D.); (E.K.); (K.S.-Z.); (G.C.-D.); (A.K.)
| |
Collapse
|
11
|
Balbotkina EV, Karavashkina TA, Seliverstova EV, Kutina AV. Microalbuminuria in Rats Treated with D-Nitroarginine Methyl Ether. Bull Exp Biol Med 2024; 176:437-441. [PMID: 38491255 DOI: 10.1007/s10517-024-06042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 03/18/2024]
Abstract
Microalbuminuria is an early symptom and prognostic marker of the progression of renal pathology. The analysis of the role of anionic components of the renal glomeruli in the albumin retention and the development of a model of minimal changes in the glomerular filter leading to the appearance of microalbuminuria are relevant. The effect of organic cations D-arginine methyl esters (D-AME) and D-nitroarginine (D-NAME) on the excretion of albumin by the kidneys in rats was studied. D-AME had no effect on urinary albumin excretion in rats. D-NAME caused microalbuminuria, which persisted for more than a day and sharply increased after injection of vasopressin. The number of anionic sites labeled with polyethyleneimine decreased in the structures of the glomerular filter. D-NAME-induced microalbuminuria can later serve as a model for studying nephroprotective or damaging factors.
Collapse
Affiliation(s)
- E V Balbotkina
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - T A Karavashkina
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - E V Seliverstova
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A V Kutina
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
12
|
Chen Y, Li H, Zhang D, Gong Y, Jiang H, Sun H, Wang Y. ANGPT2/CAV1 regulates albumin transcytosis of glomerular endothelial cells under high glucose exposure and is impaired by losartan. Nefrologia 2024; 44:50-60. [PMID: 36842857 DOI: 10.1016/j.nefroe.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND Microalbuminuria is a common clinical symptom that manifests in the early stages of diabetic kidney disease (DKD) and is also the main feature of glomerular endothelial cells (GECs) injury. There is increasing evidence that the transcytosis of albumin across GECs is closely related to the formation of albuminuria. Our previous studies have shown that angiopoietin 2 (ANGPT2) can inhibit albumin transcytosis across renal tubular epithelial cells by activating caveolin 1 (CAV1) phosphorylation during high glucose (HG) exposure. The role of ANGPT2 in albumin transcytosis across GECs remains unclear. Losartan significantly reduces albuminuria, but the mechanism has not been clarified. METHODS We established an in vitro albumin transcytosis model to investigate the change in albumin transcytosis across human renal glomerular endothelial cells (hrGECs) under normal glucose (NG), high glucose (HG) and losartan intervention. We knocked down ANGPT2 and CAV1 to evaluate their roles in albumin transcytosis across hrGECs and verified the relationship between them. In vivo, DKD mouse models were established and treated with different doses of losartan. Immunohistochemistry and Western blot were used to detect the expression of ANGPT2 and CAV1. RESULTS In vitro, the transcytosis of albumin across hrGECs was significantly increased under high glucose stimulation, and losartan inhibited this process. The expression of ANGPT2 and CAV1 were both increased in hrGECs under HG conditions and losartan intervention reduced the expression of them. Moreover, ANGPT2 downregulation reduced albumin transcytosis in hrGECs by regulating CAV1 expression. In vivo, the expression of ANGPT2 and CAV1 in the glomerulus was both increased significantly in DKD mice. Compared with DKD mice, losartan treatment reduced albuminuria and decreased the expression of ANGPT2 and CAV1 in a dose-dependent manner. CONCLUSIONS ANGPT2 exacerbated albumin transcytosis across GECs by increasing CAV1 expression during HG exposure, thereby increasing albuminuria. Losartan reduces albumin transcytosis and albuminuria formation in DKD by inhibiting the upregulation of ANGPT2 under HG conditions. Our findings suggest that ANGPT2 and CAV1 may be novel therapeutic targets for diabetic albuminuria. In addition, we provide new evidence to elaborate on the mechanism of losartan in the development of DKD.
Collapse
Affiliation(s)
- Yang Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huiqing Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Di Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Gong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huajun Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Sun
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Locatelli M, Rottoli D, Mahmoud R, Abbate M, Corna D, Cerullo D, Tomasoni S, Remuzzi G, Zoja C, Benigni A, Macconi D. Endothelial Glycocalyx of Peritubular Capillaries in Experimental Diabetic Nephropathy: A Target of ACE Inhibitor-Induced Kidney Microvascular Protection. Int J Mol Sci 2023; 24:16543. [PMID: 38003732 PMCID: PMC10671403 DOI: 10.3390/ijms242216543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Peritubular capillary rarefaction is a recurrent aspect of progressive nephropathies. We previously found that peritubular capillary density was reduced in BTBR ob/ob mice with type 2 diabetic nephropathy. In this model, we searched for abnormalities in the ultrastructure of peritubular capillaries, with a specific focus on the endothelial glycocalyx, and evaluated the impact of treatment with an angiotensin-converting enzyme inhibitor (ACEi). Mice were intracardially perfused with lanthanum to visualise the glycocalyx. Transmission electron microscopy analysis revealed endothelial cell abnormalities and basement membrane thickening in the peritubular capillaries of BTBR ob/ob mice compared to wild-type mice. Remodelling and focal loss of glycocalyx was observed in lanthanum-stained diabetic kidneys, associated with a reduction in glycocalyx components, including sialic acids, as detected through specific lectins. ACEi treatment preserved the endothelial glycocalyx and attenuated the ultrastructural abnormalities of peritubular capillaries. In diabetic mice, peritubular capillary damage was associated with an enhanced tubular expression of heparanase, which degrades heparan sulfate residues of the glycocalyx. Heparanase was also detected in renal interstitial macrophages that expressed tumor necrosis factor-α. All these abnormalities were mitigated by ACEi. Our findings suggest that, in experimental diabetic nephropathy, preserving the endothelial glycocalyx is important in order to protect peritubular capillaries from damage and loss.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy; (M.L.); (D.R.); (R.M.); (M.A.); (D.C.); (D.C.); (S.T.); (G.R.); (C.Z.); (D.M.)
| | | |
Collapse
|
14
|
Huijink TM, van 't Hof CJ, van Furth LA, de Haan NA, Maassen H, Venema LH, Lammerts RGM, van den Heuvel MC, Hillebrands JL, van den Born J, Berger SP, Leuvenink HGD. Loss of Endothelial Glycocalyx During Normothermic Machine Perfusion of Porcine Kidneys Irrespective of Pressure and Hematocrit. Transplant Direct 2023; 9:e1507. [PMID: 37456589 PMCID: PMC10348736 DOI: 10.1097/txd.0000000000001507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/18/2023] Open
Abstract
Normothermic machine perfusion (NMP) is a promising modality for marginal donor kidneys. However, little is known about the effects of NMP on causing endothelial glycocalyx (eGC) injury. This study aims to evaluate the effects of NMP on eGC injury in marginal donor kidneys and whether this is affected by perfusion pressures and hematocrits. Methods Porcine slaughterhouse kidneys (n = 6/group) underwent 35 min of warm ischemia. Thereafter, the kidneys were preserved with oxygenated hypothermic machine perfusion for 3 h. Subsequently, 4 h of NMP was applied using pressure-controlled perfusion with an autologous blood-based solution containing either 12%, 24%, or 36% hematocrit. Pressures of 55, 75, and 95 mm Hg were applied in the 24% group. Perfusate, urine, and biopsy samples were collected to determine both injury and functional parameters. Results During NMP, hyaluronan levels in the perfusate increased significantly (P < 0.0001). In addition, the positivity of glyco-stained glycocalyx decreased significantly over time, both in the glomeruli (P = 0.024) and peritubular capillaries (P = 0.003). The number of endothelial cells did not change during NMP (P = 0.157), whereas glomerular endothelial expression of vascular endothelial growth factor receptor-2 decreased significantly (P < 0.001). Microthrombi formation was significantly increased after NMP. The use of different pressures and hematocrits did not affect functional parameters during perfusion. Conclusions NMP is accompanied with eGC and vascular endothelial growth factor receptor-2 loss, without significant loss of endothelial cells. eGC loss was not affected by the different pressures and hematocrits used. It remains unclear whether endothelial injury during NMP has harmful consequences for the transplanted kidney.
Collapse
Affiliation(s)
- Tobias M Huijink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cor J van 't Hof
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - L Annick van Furth
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nora A de Haan
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hanno Maassen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonie H Venema
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rosa G M Lammerts
- Department of Transplantation Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Stefan P Berger
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Ingenbleek Y. Revisiting PINI Scoring in Light of Recent Biological Advances. Nutrients 2023; 15:1846. [PMID: 37111065 PMCID: PMC10146499 DOI: 10.3390/nu15081846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The prognostic inflammatory and nutritional index (PINI) is a simple scoring formula allowing the follow-up of dietary protein restriction and infectious complications affecting critically ill patients hospitalized in medical and surgical wards. The World Health organization (WHO) has recently recommended using the binary CRP (C-reactive protein) and AGP (α1-acid glycoprotein) numerators of the PINI formula in underprivileged inhabitants of developing countries to evaluate their (sub)clinical infectious states making their chronic malnutrition worse. These studies, mainly located in Africa and Asia, demonstrate that children and women enduring the combined effects of infectious burden and (micro)nutrient deprivation (principally retinol and iron) usually manifest persistent refractoriness and slackened recovery throughout dietary rehabilitation. The additive measurement of ALB (albumin) and TTR (transthyretin) composing the denominator of the PINI formula is shown to be helpful in grading the downsizing of lean body mass (LBM), a cornerstone of bodybuilding. The confrontation of these four objective parameters thus allows the quantification of the respective importance of nutritional and inflammatory components of any disease process, taking into account that TTR is the sole plasma protein remaining highly correlated to the fluctuations of LBM. The below review highlights the prevailing roles played by protein nutritional states in the release of plasma retinol to target tissues and to the restoration of iron-deficient anemias.
Collapse
Affiliation(s)
- Yves Ingenbleek
- Laboratory of Nutrition, Faculty of Pharmacy, University of Strasbourg, Route du Rhin, 67401 Illkirch-Graffenstaden, France
| |
Collapse
|
16
|
Kulkarni K, Patel S, Ali R, Hussain T. Angiotensin II type 2 receptor activation preserves megalin in the kidney and prevents proteinuria in high salt diet fed rats. Sci Rep 2023; 13:4277. [PMID: 36922642 PMCID: PMC10017765 DOI: 10.1038/s41598-023-31454-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Proteinuria is a risk factor for and consequence of kidney injury. Angiotensin II type 2 receptor (AT2R) is an emerging reno-protective target and is anti-proteinuric under pathological conditions, including high salt-fed obese animals. However, the mechanisms remain unknown, particularly whether the anti-proteinuric activity of AT2R is independent of its anti-hypertensive and anti-inflammatory effects. In the present study, obese Zucker rats were fed high sodium (4%) diet (HSD) for 48 h, a time in which blood pressure does not change. HSD caused proteinuria without affecting glomerular slit diaphragm proteins (nephrin and podocin), glomerular filtration rate, inflammatory and fibrotic markers (TNFα, IL-6, and TGF-β), ruling out glomerular injury, inflammation and fibrosis but indicating tubular mechanisms of proteinuria. At cellular and molecular levels, we observed a glycogen synthase kinase (GSK)-3β-mediated megalin phosphorylation, and its subsequent endocytosis and lysosomal degradation in HSD-fed rat kidneys. Megalin is a major proximal tubular endocytic protein transporter. The AT2R agonist C21 (0.3 mg/kg/day, i.p.) administration prevented proteinuria and rescued megalin surface expression potentially by activating Akt-mediated phosphorylation and inactivation of GSK-3β in HSD-fed rat kidneys. Overall, AT2R has a direct anti-proteinuric activity, potentially via megalin regulation, and is suggested as a novel target to limit kidney injury.
Collapse
Affiliation(s)
- Kalyani Kulkarni
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA
| | - Sanket Patel
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA
| | - Riyasat Ali
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA.
| |
Collapse
|
17
|
Comper WD, Vuchkova J, McCarthy KJ. New insights into proteinuria/albuminuria. Front Physiol 2022; 13:991756. [PMID: 36225307 PMCID: PMC9548894 DOI: 10.3389/fphys.2022.991756] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The fractional clearance of proteins as measured in healthy human subjects increases 10,000–100,000- fold when studied in nephrotic patients. This remarkable increase cannot be accounted for by extracellular biophysical mechanisms centered at the glomerular filtration barrier. Rather, it is the nephron and its combination of filtration and cellular uptake that can provide a plausible explanation of these fractional clearance changes. The nephron has two regions that critically determine the level proteinuria/albuminuria. Glomerular filtration of plasma proteins is primarily a size selective event that is basically unchanged in acquired and genetic kidney disease. The glomerular concepts of ‘charge selectivity’ and of ‘large pores’, previously used to explain proteinuria, are now recognized to be flawed and non-existent. Filtered proteins then encounter downstream two protein receptors of the Park and Maack type associated with the proximal tubular cell. The high capacity receptor is thought to retrieve the majority of filtered proteins and return them to the blood supply. Inhibition/saturation of this pathway in kidney disease may create the nephrotic condition and hypoproteinemia/hypoalbuminemia. Inhibitors of this pathway (possibly podocyte derived) are still to be identified. A relatively small proportion of the filtered protein is directed towards a high affinity, low capacity receptor that guides the protein to undergo lysosomal degradation. Proteinuria in normoproteinemic states is derived by inhibition of this pathway, such as in diabetes. The combination of glomerular sieving, and the degradation and retrieval pathways can quantitatively account for the changes in fractional clearance of proteins in the nephrotic condition. Finally, the general retrieval of filtered protein by the proximal tubular cell focuses on the teleological importance of this cell as this retrieval represents the third pillar of retrieval that this cell participates in (it also retrieves water and salt).
Collapse
Affiliation(s)
- Wayne D. Comper
- Salaqua Diagnostics Inc, New York, NY, United States
- *Correspondence: Wayne D. Comper,
| | | | - Kevin J. McCarthy
- Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
18
|
Locatelli M, Macconi D, Corna D, Cerullo D, Rottoli D, Remuzzi G, Benigni A, Zoja C. Sirtuin 3 Deficiency Aggravates Kidney Disease in Response to High-Fat Diet through Lipotoxicity-Induced Mitochondrial Damage. Int J Mol Sci 2022; 23:ijms23158345. [PMID: 35955472 PMCID: PMC9368634 DOI: 10.3390/ijms23158345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Sirtuin 3 (SIRT3) is the primary mitochondrial deacetylase that controls the antioxidant pathway and energy metabolism. We previously found that renal Sirt3 expression and activity were reduced in mice with type 2 diabetic nephropathy associated with oxidative stress and mitochondrial abnormalities and that a specific SIRT3 activator improved renal damage. SIRT3 is modulated by diet, and to assess whether Sirt3 deficiency aggravates mitochondrial damage and accelerates kidney disease in response to nutrient overloads, wild-type (WT) and Sirt3−/− mice were fed a high-fat-diet (HFD) or standard diet for 8 months. Sirt3−/− mice on HFD exhibited earlier and more severe albuminuria compared to WT mice, accompanied by podocyte dysfunction and glomerular capillary rarefaction. Mesangial matrix expansion, tubular vacuolization and inflammation, associated with enhanced lipid accumulation, were more evident in Sirt3−/− mice. After HFD, kidneys from Sirt3−/− mice showed more oxidative stress than WT mice, mitochondria ultrastructural damage in tubular cells, and a reduction in mitochondrial mass and energy production. Our data demonstrate that Sirt3 deficiency renders mice more prone to developing oxidative stress and mitochondrial abnormalities in response to HFD, resulting in more severe kidney diseases, and this suggests that mitochondria protection may be a method to prevent HFD-induced renal injury.
Collapse
|
19
|
Zha D, Fu M, Qian Y. Vascular Endothelial Glycocalyx Damage and Potential Targeted Therapy in COVID-19. Cells 2022; 11:cells11121972. [PMID: 35741101 PMCID: PMC9221624 DOI: 10.3390/cells11121972] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is a highly infectious respiratory disease caused by a new coronavirus known as SARS-CoV-2. COVID-19 is characterized by progressive respiratory failure resulting from diffuse alveolar damage, inflammatory infiltrates, endotheliitis, and pulmonary and systemic coagulopathy forming obstructive microthrombi with multi-organ dysfunction, indicating that endothelial cells (ECs) play a central role in the pathogenesis of COVID-19. The glycocalyx is defined as a complex gel-like layer of glycosylated lipid–protein mixtures, which surrounds all living cells and acts as a buffer between the cell and the extracellular matrix. The endothelial glycocalyx layer (EGL) plays an important role in vascular homeostasis via regulating vascular permeability, cell adhesion, mechanosensing for hemodynamic shear stresses, and antithrombotic and anti-inflammatory functions. Here, we review the new findings that described EGL damage in ARDS, coagulopathy, and the multisystem inflammatory disease associated with COVID-19. Mechanistically, the inflammatory mediators, reactive oxygen species (ROS), matrix metalloproteases (MMPs), the glycocalyx fragments, and the viral proteins may contribute to endothelial glycocalyx damage in COVID-19. In addition, the potential therapeutic strategies targeting the EGL for the treatment of severe COVID-19 are summarized and discussed.
Collapse
Affiliation(s)
- Duoduo Zha
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China;
| | - Mingui Fu
- Shock/Trauma Research Center, Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA;
| | - Yisong Qian
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China;
- Correspondence:
| |
Collapse
|
20
|
Comper WD. Commentary: The Glomerular Endothelium Restricts Albumin Filtration. Front Med (Lausanne) 2022; 9:861566. [PMID: 35295597 PMCID: PMC8919079 DOI: 10.3389/fmed.2022.861566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
|