1
|
Farkona S, Kotlyar M, Burns K, Knoll G, Brinc D, Jurisica I, Konvalinka A. Urine Measurements of the Renin-Angiotensin System-Regulated Proteins Predict Death and Graft Loss in Kidney Transplant Recipients Enrolled in a Ramipril versus Placebo Randomized Controlled Trial. J Proteome Res 2025; 24:2040-2052. [PMID: 40111290 DOI: 10.1021/acs.jproteome.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The renin-angiotensin system (RAS) is involved in kidney fibrosis. We previously identified six RAS-regulated proteins (RHOB, BST1, LYPA1, GLNA, TSP1, and LAMB2) that were increased in the urine of patients with kidney allograft fibrosis, compared to patients without fibrosis. We hypothesized that these urinary RAS-regulated proteins predicted primary outcomes in kidney transplant recipients enrolled in the largest RAS inhibitor randomized controlled trial. Urine excretion of 10 peptides corresponding to the six RAS-regulated proteins was quantified using parallel reaction monitoring mass spectrometry assays (normalized by urine creatinine) in a subset of patients in the trial. Machine learning models predicting outcomes based on urine peptide excretion rates were developed and evaluated. Urine samples (n = 111) from 56 patients were collected at 0, 6, 12, and 24 months. Twenty-four primary outcomes (doubling of serum creatinine, graft loss, or death) occurred in 17 patients. Logistic regression utilizing eight peptides of TSP1, BST1, LAMB2, LYPA1, and RHOB, from the last urine sample prior to outcomes, predicted a graft loss with an AUC of 0.78 (p = 0.00001). A random forest classifier utilizing BST1 and LYPA1 peptides predicted death with an AUC of 0.80 (p = 0.0016). Urine measurements of RAS-regulated proteins may predict outcomes in kidney transplant recipients, although further prospective studies are required.
Collapse
Affiliation(s)
- Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health, Toronto, ON M5T 0S8, Canada
| | - Kevin Burns
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Greg Knoll
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute and Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Kidney Research Centre, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Davor Brinc
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 3K3, Canada
- Division of Clinical Biochemistry, Laboratory Medicine Program, University Health Network, Toronto, Ontario M5S 3K3, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health, Toronto, ON M5T 0S8, Canada
- Departments of Medical Biophysics and Computer Science and Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1L7, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava 845 10, Slovakia
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 3K3, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON M5G 2N2, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3K3, Canada
| |
Collapse
|
2
|
Weyrich M, Zewinger S, Sarakpi T, Rasper T, Kleber ME, Cremer S, Zanders L, Fleck F, Siegbahn A, Wallentin L, Abplanalp WT, Nerbas L, Fay S, Eberle AL, Dimmeler S, März W, Speer T, Zeiher AM. Mosaic loss of Y chromosome and mortality after coronary angiography. Eur Heart J 2025:ehaf035. [PMID: 39935193 DOI: 10.1093/eurheartj/ehaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/30/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND AND AIMS Acquired somatic mutations emerged as important drivers of adverse cardiovascular disease outcomes. Recently, mosaic loss of Y chromosome (LOY) in haematopoietic cells was identified to induce diffuse cardiac fibrosis in male mice. The aim of the present study was to determine the association between LOY and cardiovascular mortality in patients undergoing coronary angiography. METHODS LOY was quantified in 1698 male participants of the LURIC study, who underwent coronary angiography, and its association with all-cause and cardiovascular mortality was determined. Furthermore, the interaction between LOY and inherited genetic susceptibility for cardiac fibrosis was assessed. RESULTS The frequency of LOY steeply increased in male participants of LURIC at the age of 60 years. Loss of Y chromosome > 17% was associated with significantly higher all-cause [hazard ratio (HR) 1.41, 95% confidence interval (CI) 1.09-1.82] and cardiovascular mortality (HR 1.49, 95% CI 1.09-2.03), which was driven by a higher risk for fatal myocardial infarction (HR 2.65, 95% CI 1.46-4.81). Loss of Y chromosome > 17% was associated with a profibrotic and proinflammatory plasma protein expression profile as characterized by higher plasma levels of osteoprotegerin, matrix metalloproteinase-12, growth differentiation factor 15, heparin-binding EGF-like growth factor, and resistin. Genetic predisposition for lower myocardial fibrosis attenuated the association between LOY and cardiovascular mortality. Genome-wide methylation analyses identified differential methylation in 298 genes including ACTB, RPS5, WDR1, CD151, and ARAP1. Single-cell RNA sequencing further confirmed differential gene expression of 37 of these genes in LOY in peripheral blood mononuclear cells comprising a set of fibrosis-regulating genes including RPS5. RPS5 silencing in macrophages induced a paracrine induction of collagen expression in cardiac fibroblasts documenting a functional role in vitro. CONCLUSIONS LOY represents an important independent risk factor for cardiovascular mortality in male patients with coronary artery disease. Targeting LOY may represent a sex-specific personalized medicine approach.
Collapse
Affiliation(s)
- Michael Weyrich
- Department of Internal Medicine 4, Nephrology, Goethe University Frankfurt, University Hospital, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
- Else Kroener-Fresenius Center for Nephrological Research, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Stephen Zewinger
- Department of Internal Medicine 4, Nephrology, Goethe University Frankfurt, University Hospital, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
- Hôpital Robert Schumann, Hôpital Kirchberg, Luxemburg, Luxemburg
- Medical Faculty, Saarland University, Homburg/Saar, Germany
| | - Tamim Sarakpi
- Department of Internal Medicine 4, Nephrology, Goethe University Frankfurt, University Hospital, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
- Else Kroener-Fresenius Center for Nephrological Research, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Tina Rasper
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
| | - Marcus E Kleber
- Vth Department of Medicine, University of Heidelberg, University Medical Center, Medical Faculty Mannheim, Mannheim, Germany
- SYNLAB MVZ Humangenetik Mannheim GmbH, Mannheim, Germany
| | - Sebastian Cremer
- Department of Medicine, Cardiology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Lukas Zanders
- Department of Medicine, Cardiology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Fenja Fleck
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
| | - Agneta Siegbahn
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Wallentin
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
| | - Wesley Tyler Abplanalp
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Linda Nerbas
- Department of Internal Medicine 4, Nephrology, Goethe University Frankfurt, University Hospital, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
- Else Kroener-Fresenius Center for Nephrological Research, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Sandra Fay
- Department of Internal Medicine 4, Nephrology, Goethe University Frankfurt, University Hospital, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
- Else Kroener-Fresenius Center for Nephrological Research, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Aaron L Eberle
- Department of Internal Medicine 4, Nephrology, Goethe University Frankfurt, University Hospital, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
- Else Kroener-Fresenius Center for Nephrological Research, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Winfried März
- Vth Department of Medicine, University of Heidelberg, University Medical Center, Medical Faculty Mannheim, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- SYNLAB Holding Deutschland GmbH, SYNLAB Academy, Mannheim, Germany
| | - Thimoteus Speer
- Department of Internal Medicine 4, Nephrology, Goethe University Frankfurt, University Hospital, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
- Else Kroener-Fresenius Center for Nephrological Research, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Andreas M Zeiher
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| |
Collapse
|
3
|
Schwalm S, Manaila R, Oftring A, Schaefer L, von Gunten S, Pfeilschifter J. The contribution of the sphingosine 1-phosphate signaling pathway to chronic kidney diseases: recent findings and new perspectives. Pflugers Arch 2024; 476:1845-1861. [PMID: 39384640 PMCID: PMC11582123 DOI: 10.1007/s00424-024-03029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Chronic kidney disease (CKD) is a multifactorial condition with diverse etiologies, such as diabetes mellitus, hypertension, and genetic disorders, often culminating in end-stage renal disease (ESRD). A hallmark of CKD progression is kidney fibrosis, characterized by the excessive accumulation of extracellular matrix components, for which there is currently no effective anti-fibrotic therapy. Recent literature highlights the critical role of sphingosine 1-phosphate (S1P) signaling in CKD pathogenesis and renal fibrosis. This review provides an in-depth analysis of the latest findings on S1P metabolism and signaling in renal fibrosis and in specific CKDs, including diabetic nephropathy (DN), lupus nephritis (LN), focal segmental glomerulosclerosis (FSGS), Fabry disease (FD), and IgA nephropathy (IgAN). Emerging studies underscore the therapeutic potential of modulating S1P signaling with receptor modulators and inhibitors, such as fingolimod (FTY720) and more selective agents like ozanimod and cenerimod. Additionally, the current knowledge about the effects of established kidney protective therapies such as glucocorticoids and SGLT2 and ACE inhibitors on S1P signaling will be summarized. Furthermore, the review highlights the potential role of S1P as a biomarker for disease progression in CKD models, particularly in Fabry disease and diabetic nephropathy. Advanced technologies, including spatial transcriptomics, are further refining our understanding of S1P's role within specific kidney compartments. Collectively, these insights emphasize the need for continued research into S1P signaling pathways as promising targets for CKD treatment strategies.
Collapse
Affiliation(s)
- Stephanie Schwalm
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Roxana Manaila
- Institut für Pharmakologie, Universität Bern, Inselspital, INO-F, CH-3011, Bern, Switzerland
| | - Anke Oftring
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Liliana Schaefer
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Stephan von Gunten
- Institut für Pharmakologie, Universität Bern, Inselspital, INO-F, CH-3011, Bern, Switzerland
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| |
Collapse
|
4
|
Volk LM, Bruun JE, Trautmann S, Thomas D, Schwalm S, Pfeilschifter J, Zu Heringdorf DM. A role for plasma membrane Ca 2+ ATPases in regulation of cellular Ca 2+ homeostasis by sphingosine kinase-1. Pflugers Arch 2024; 476:1895-1911. [PMID: 39392480 PMCID: PMC11582158 DOI: 10.1007/s00424-024-03027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Sphingosine-1-phosphate (S1P) is a ubiquitous lipid mediator, acting via specific G-protein-coupled receptors (GPCR) and intracellularly. Previous work has shown that deletion of S1P lyase caused a chronic elevation of cytosolic [Ca2+]i and enhanced Ca2+ storage in mouse embryonic fibroblasts. Here, we studied the role of sphingosine kinase (SphK)-1 in Ca2+ signaling, using two independently generated EA.hy926 cell lines with stable knockdown of SphK1 (SphK1-KD1/2). Resting [Ca2+]i and thapsigargin-induced [Ca2+]i increases were reduced in both SphK1-KD1 and -KD2 cells. Agonist-induced [Ca2+]i increases, measured in SphK1-KD1, were blunted. In the absence of extracellular Ca2+, thapsigargin-induced [Ca2+]i increases declined rapidly, indicating enhanced removal of Ca2+ from the cytosol. In agreement, plasma membrane Ca2+ ATPase (PMCA)-1 and -4 and their auxiliary subunit, basigin, were strongly upregulated. Activation of S1P-GPCR by specific agonists or extracellular S1P did not rescue the effects of SphK1 knockdown, indicating that S1P-GPCR were not involved. Lipid measurements indicated that not only S1P but also dihydro-sphingosine, ceramides, and lactosylceramides were markedly depleted in SphK1-KD2 cells. SphK2 and S1P lyase were upregulated, suggesting enhanced flux via the sphingolipid degradation pathway. Finally, histone acetylation was enhanced in SphK1-KD2 cells, and the histone deacetylase inhibitor, vorinostat, induced upregulation of PMCA1 and basigin on mRNA and protein levels in EA.hy926 cells. These data show for the first time a transcriptional regulation of PMCA1 and basigin by S1P metabolism. It is concluded that SphK1 knockdown in EA.hy926 cells caused long-term alterations in cellular Ca2+ homeostasis by upregulating PMCA via increased histone acetylation.
Collapse
Affiliation(s)
- Luisa Michelle Volk
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Jan-Erik Bruun
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Sandra Trautmann
- Institut Für Klinische Pharmakologie, Goethe-Universität Frankfurt, Universitätsklinikum, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Dominique Thomas
- Institut Für Klinische Pharmakologie, Goethe-Universität Frankfurt, Universitätsklinikum, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stephanie Schwalm
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Xu J, Fei P, Simon DW, Morowitz MJ, Mehta PA, Du W. Crosstalk between DNA Damage Repair and Metabolic Regulation in Hematopoietic Stem Cells. Cells 2024; 13:733. [PMID: 38727270 PMCID: PMC11083014 DOI: 10.3390/cells13090733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Self-renewal and differentiation are two characteristics of hematopoietic stem cells (HSCs). Under steady physiological conditions, most primitive HSCs remain quiescent in the bone marrow (BM). They respond to different stimuli to refresh the blood system. The transition from quiescence to activation is accompanied by major changes in metabolism, a fundamental cellular process in living organisms that produces or consumes energy. Cellular metabolism is now considered to be a key regulator of HSC maintenance. Interestingly, HSCs possess a distinct metabolic profile with a preference for glycolysis rather than oxidative phosphorylation (OXPHOS) for energy production. Byproducts from the cellular metabolism can also damage DNA. To counteract such insults, mammalian cells have evolved a complex and efficient DNA damage repair (DDR) system to eliminate various DNA lesions and guard genomic stability. Given the enormous regenerative potential coupled with the lifetime persistence of HSCs, tight control of HSC genome stability is essential. The intersection of DDR and the HSC metabolism has recently emerged as an area of intense research interest, unraveling the profound connections between genomic stability and cellular energetics. In this brief review, we delve into the interplay between DDR deficiency and the metabolic reprogramming of HSCs, shedding light on the dynamic relationship that governs the fate and functionality of these remarkable stem cells. Understanding the crosstalk between DDR and the cellular metabolism will open a new avenue of research designed to target these interacting pathways for improving HSC function and treating hematologic disorders.
Collapse
Affiliation(s)
- Jian Xu
- Division of Hematology and Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Peiwen Fei
- Cancer Biology, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96812, USA
| | - Dennis W. Simon
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael J. Morowitz
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Parinda A. Mehta
- Division of Blood and Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wei Du
- Division of Hematology and Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Collett JA, Basile DP. Beast of (renal) burden? Bst1-expressing neutrophils in kidney injury. Am J Physiol Renal Physiol 2024; 326:F165-F166. [PMID: 38095024 DOI: 10.1152/ajprenal.00386.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024] Open
Affiliation(s)
- Jason A Collett
- Department of Anatomy Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - David P Basile
- Department of Anatomy Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
7
|
Inoue T, Umene R, Sung SSJ, Tanaka S, Huang L, Yao J, Hashimoto N, Wu CH, Nakamura Y, Nishino T, Ye H, Rosin DL, Ishihara K, Okusa MD. Bone marrow stromal cell antigen-1 deficiency protects from acute kidney injury. Am J Physiol Renal Physiol 2024; 326:F167-F177. [PMID: 37969103 PMCID: PMC11967511 DOI: 10.1152/ajprenal.00175.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
This study aimed to investigate the role of bone marrow stromal cell antigen-1 (Bst1; also known as CD157) in acute kidney injury (AKI). Bst1 is a cell surface molecule with various enzymatic activities and downstream intracellular signaling pathways that modulate the immune response. Previous research has linked Bst1 to diseases such as ovarian cancer, Parkinson's disease, and rheumatoid arthritis. We used bilateral ischemia-reperfusion injury (IRI) as an AKI model and created bone marrow chimeric mice to evaluate the role of Bst1 in bone marrow-derived cells. We also used flow cytometry to identify Bst1/CD157 expression in hematopoietic cells and evaluate immune cell dynamics in the kidney. The findings showed that Bst1-deficient (Bst1-/-) mice were protected against renal bilateral IRI. Bone marrow chimera experiments revealed that Bst1 expression on hematopoietic cells, but not parenchymal cells, induced renal IRI. Bst1 was mainly found in B cells and neutrophils by flow cytometry of the spleen and bone marrow. In vitro, migration of neutrophils from Bst1-/- mice was suppressed, and adoptive transfer of neutrophils from wild-type Bst1+/+ mice abolished the renal protective effect in Bst1 knockout mice. In conclusion, the study demonstrated that Bst1-/- mice are protected against renal IRI and that Bst1 expression in neutrophils plays a crucial role in inducing renal IRI. These findings suggest that targeting Bst1 in neutrophils could be a potential therapeutic strategy for AKI.NEW & NOTEWORTHY Acute kidney injury (AKI), a serious disease for which there is no effective Federal Drug Administration-approved treatment, is associated with high mortality rates. Bone marrow stromal cell antigen-1 (Bst1) is a cell surface molecule that can cause kidney fibrosis, but its role in AKI is largely unknown. Our study showed that Bst1-/- mice revealed a protective effect against renal bilateral ischemia-reperfusion injury (IRI). Adoptive transfer studies confirmed that Bst1 expression in hematopoietic cells, especially neutrophils, contributed to renal bilateral IRI.
Collapse
Affiliation(s)
- Tsuyoshi Inoue
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ryusuke Umene
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Nephrology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Sun-Sang J Sung
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Shinji Tanaka
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Liping Huang
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Junlan Yao
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Noritatsu Hashimoto
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chia-Hsien Wu
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomoya Nishino
- Department of Nephrology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hong Ye
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Diane L Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, United States
| | - Katsuhiko Ishihara
- Department of Design for Medical and Health Care, Faculty of Health and Welfare Services Administration, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Mark D Okusa
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
8
|
Sophocarpine Alleviates Isoproterenol-Induced Kidney Injury by Suppressing Inflammation, Apoptosis, Oxidative Stress and Fibrosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227868. [PMID: 36431969 PMCID: PMC9694211 DOI: 10.3390/molecules27227868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
One of the most common diseases affecting people and leading to high morbidity is kidney injury. The alleviation of inflammation and apoptosis is considered a potential therapeutic approach for kidney injury. Sophocarpine (SOP), a tetracyclic quinolizidine alkaloid, exhibits various beneficial biological properties. To investigate the effects of SOP on isoproterenol (ISO)-induced kidney injury, we randomly divided mice into four groups: Control, ISO, ISO+SOP (20 mg/kg) and ISO+SOP (40 mg/kg). SOP was administered intraperitoneally to the mice over two weeks, accompanied by intraperitoneal stimulation of ISO (10 mg/kg) for another four weeks. After the mice were sacrificed, several methods such as ELISA, staining (H&E, TUNEL, DHE and Masson) and Western blotting were applied to detect the corresponding indicators. The kidney injury serum biomarkers SCr and BUN increased after the ISO challenge, while this effect was reversed by treatment with SOP. Pathological changes induced by ISO were also reversed by treatment with SOP in the staining. The inflammatory cytokines IL-β, IL-6, TNF-α, MCP-1 and NLRP3 increased after the challenge with ISO, while they were decreased by treatment with SOP. The apoptotic proteins cleaved-caspase-3 and Bax increased, while Bcl-2 decreased, after the challenge with ISO, and these effects were reversed by treatment with SOP. The antioxidant proteins SOD-1 and SOD-2 decreased after being stimulated by ISO, while they increased after the treatment with SOP. The fibrotic proteins collagen I, collagen III, α-SMA, fibronectin, MMP-2 and MMP-9 increased after the challenge with ISO, while they decreased after the treatment with SOP. We further discovered that the TLR-4/NF-κB and TGF-β1/Smad3 signaling pathways were suppressed, while the Nrf2/HO-1 signaling pathway was activated. In summary, SOP could alleviate ISO-induced kidney injury by inhibiting inflammation, apoptosis, oxidative stress and fibrosis. The molecular mechanisms were suppression of the TLR-4/NF-κB and TGF-β1/Smad3 signaling pathways and activation of the Nrf2/HO-1 signaling pathway, indicating that SOP might serve as a novel therapeutic strategy for kidney injury.
Collapse
|