1
|
Cortines JR, Bridges CM, Subramanian S, Schrad JR, Araújo GRS, Nunes GHP, Oliveira JDS, Essus VA, Abrahão JS, White S, Parent KN, Teschke C. Transition metals and oxidation reactions trigger stargate opening during the initial stages of the replicative cycle of the giant Tupanvirus. mBio 2024; 15:e0219224. [PMID: 39324795 PMCID: PMC11481487 DOI: 10.1128/mbio.02192-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Tupanviruses, members of the family Mimiviridae, infect phagocytic cells. Particle uncoating begins inside the phagosome, with capsid opening via the stargate. The mechanism through which this opening takes place is unknown. Once phagocytized, metal ion flux control and ROS are induced to inactivate foreign particles, including viruses. Here, we studied the effect of iron ions, copper ions, and H2O2 on Tupanvirus particles. Such treatments induced stargate opening in vitro, as observed by different microscopy techniques. Metal-treated viruses were found to be non-infectious, leading to the hypothesis that stargate opening likely resulted in the release of the viral seed, which is required for infection initiation. To the best of our knowledge, this is the first description of a giant virus capsid morphological change induced by transition metals and H2O2, which may be important to describe new virulence factors and capsid uncoating mechanisms.
Collapse
Affiliation(s)
- Juliana R. Cortines
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Charles M. Bridges
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jason R. Schrad
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Glauber R. S. Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Henrique Pereira Nunes
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana dos Santos Oliveira
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Alejandro Essus
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jônatas S. Abrahão
- Department of Microbiology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Minas Gerais, Brazil
| | - Simon White
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Kristin N. Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Carolyn Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
2
|
Hadinejad F, Morad H, Jahanshahi M, Zarrabi A, Pazoki-Toroudi H, Mostafavi E. A Novel Vision of Reinforcing Nanofibrous Masks with Metal Nanoparticles: Antiviral Mechanisms Investigation. ADVANCED FIBER MATERIALS 2023; 5:1-45. [PMID: 37361103 PMCID: PMC10088653 DOI: 10.1007/s42765-023-00275-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/13/2023] [Indexed: 06/28/2023]
Abstract
Prevention of spreading viral respiratory disease, especially in case of a pandemic such as coronavirus disease of 2019 (COVID-19), has been proved impossible without considering obligatory face mask-wearing protocols for both healthy and contaminated populations. The widespread application of face masks for long hours and almost everywhere increases the risks of bacterial growth in the warm and humid environment inside the mask. On the other hand, in the absence of antiviral agents on the surface of the mask, the virus may have a chance to stay alive and be carried to different places or even put the wearers at risk of contamination when touching or disposing the masks. In this article, the antiviral activity and mechanism of action of some of the potent metal and metal oxide nanoparticles in the role of promising virucidal agents have been reviewed, and incorporation of them in an electrospun nanofibrous structure has been considered an applicable method for the fabrication of innovative respiratory protecting materials with upgraded safety levels. Graphical Abstract
Collapse
Affiliation(s)
- Farinaz Hadinejad
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Hamed Morad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, 1475886973 Iran
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, 4691710001 Iran
| | - Mohsen Jahanshahi
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396 Turkey
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
3
|
Mordecai GJ, Verret F, Highfield A, Schroeder DC. Schrödinger's Cheshire Cat: Are Haploid Emiliania huxleyi Cells Resistant to Viral Infection or Not? Viruses 2017; 9:v9030051. [PMID: 28335465 PMCID: PMC5371806 DOI: 10.3390/v9030051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 11/16/2022] Open
Abstract
Emiliania huxleyi is the main calcite producer on Earth and is routinely infected by a virus (EhV); a double stranded DNA (dsDNA) virus belonging to the family Phycodnaviridae. E. huxleyi exhibits a haplodiploid life cycle; the calcified diploid stage is non-motile and forms extensive blooms. The haploid phase is a non-calcified biflagellated cell bearing organic scales. Haploid cells are thought to resist infection, through a process deemed the “Cheshire Cat” escape strategy; however, a recent study detected the presence of viral lipids in the same haploid strain. Here we report on the application of an E. huxleyi CCMP1516 EhV-86 combined tiling array (TA) that further confirms an EhV infection in the RCC1217 haploid strain, which grew without any signs of cell lysis. Reverse transcription polymerase chain reaction (RT-PCR) and PCR verified the presence of viral RNA in the haploid cells, yet indicated an absence of viral DNA, respectively. These infected cells are an alternative stage of the virus life cycle deemed the haplococcolithovirocell. In this instance, the host is both resistant to and infected by EhV, i.e., the viral transcriptome is present in haploid cells whilst there is no evidence of viral lysis. This superimposed state is reminiscent of Schrödinger’s cat; of being simultaneously both dead and alive.
Collapse
Affiliation(s)
- Gideon J Mordecai
- Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK.
| | - Frederic Verret
- Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK.
| | - Andrea Highfield
- Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK.
| | - Declan C Schroeder
- Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK.
| |
Collapse
|
4
|
Sheyn U, Rosenwasser S, Ben-Dor S, Porat Z, Vardi A. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. THE ISME JOURNAL 2016; 10:1742-54. [PMID: 26784355 PMCID: PMC4918435 DOI: 10.1038/ismej.2015.228] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 10/13/2014] [Accepted: 11/06/2015] [Indexed: 11/09/2022]
Abstract
The cosmopolitan coccolithophore Emiliania huxleyi is a unicellular eukaryotic alga responsible for vast blooms in the ocean. These blooms have immense impact on large biogeochemical cycles and are terminated by a specific large double-stranded DNA E. huxleyi virus (EhV, Phycodnaviridae). EhV infection is accompanied by induction of hallmarks of programmed cell death and production of reactive oxygen species (ROS). Here we characterized alterations in ROS metabolism and explored its role during infection. Transcriptomic analysis of ROS-related genes predicted an increase in glutathione (GSH) and H2O2 production during infection. In accordance, using biochemical assays and specific fluorescent probes we demonstrated the overproduction of GSH during lytic infection. We also showed that H2O2 production, rather than superoxide, is the predominant ROS during the onset of the lytic phase of infection. Using flow cytometry, confocal microscopy and multispectral imaging flow cytometry, we showed that the profound co-production of H2O2 and GSH occurred in the same subpopulation of cells but at different subcellular localization. Positively stained cells for GSH and H2O2 were highly infected compared with negatively stained cells. Inhibition of ROS production by application of a peroxidase inhibitor or an H2O2 scavenger inhibited host cell death and reduced viral production. We conclude that viral infection induced remodeling of the host antioxidant network that is essential for a successful viral replication cycle. This study provides insight into viral replication strategy and suggests the use of specific cellular markers to identify and quantify the extent of active viral infection during E. huxleyi blooms in the ocean.
Collapse
Affiliation(s)
- Uri Sheyn
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shilo Rosenwasser
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Roncarati F, Sáez CA, Greco M, Gledhill M, Bitonti MB, Brown MT. Response differences between Ectocarpus siliculosus populations to copper stress involve cellular exclusion and induction of the phytochelatin biosynthetic pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:167-75. [PMID: 25546007 DOI: 10.1016/j.aquatox.2014.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
Some populations of brown seaweed species inhabit metal-polluted environments and can develop tolerance to metal stress, but the mechanisms by which this is accomplished are still to be elucidated. To address this, the responses of two strains of the model brown alga Ectocarpus siliculosus isolated from sites with different histories of metal contamination exposed to total copper (CuT) concentrations ranging between 0 and 2.4 μM for 10 days were investigated. The synthesis of the metal-chelator phytochelatin (PCs) and relative levels of transcripts encoding the enzymes γ-glutamylcysteine synthetase (γ-GCS), glutathione synthase (GS) and phytochelatin synthase (PCS) that participate in the PC biosynthetic pathway were measured, along with the effects on growth, and adsorption and uptake of Cu. Growth of strain LIA, from a pristine site in Scotland, was inhibited to a greater extent, and at lower concentrations, than that of Es524, isolated from a Cu-contaminated site in Chile. Concentrations of intra-cellular Cu were higher and the exchangeable fraction was lower in LIA than Es524, especially at the highest exposure levels. Total glutathione concentrations increased in both strains with Cu exposure, whereas total PCs levels were higher in Es524 than LIA; PC2 and PC3 were detected in Es524 but PC2 only was found in LIA. The greater production and levels of polymerisation of PCs in Es524 can be explained by the up-regulation of genes encoding for key enzymes involved in the synthesis of PCs. In Es524 there was an increase in the transcripts of γ-GCS, GS and PCS, particularly under high Cu exposure, whereas in LIA4 transcripts of γ-GCS1 increased only slightly, γ-GCS2 and GS decreased and PCS did not change. The consequences of higher intra-cellular concentrations of Cu, lower production of PCs, and lower expression of enzymes involved in GSH-PCs synthesis may be contributing to an induced oxidative stress condition in LIA, which explains, at least in part, the observed sensitivity of LIA to Cu. Therefore, responses to Cu exposure in E. siliculosus relate to the contamination histories of the locations from where the strains were isolated and differences in Cu exclusion and PCs production are in part responsible for the development of intra-specific resistance.
Collapse
Affiliation(s)
- Francesca Roncarati
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | - Claudio A Sáez
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, casilla 40 correo 33, Santiago, Chile; Departamento de Medio Ambiente, Facultad de Ingeniería, Universidad de Playa Ancha, Casilla 34-V, Valparaíso, Chile
| | - Maria Greco
- Laboratory of Plant Cyto-Physiology, University of Calabria, Arcavata di Rende, Cosenza 87036, Italy
| | - Martha Gledhill
- Helmholtz Centre for Ocean Research, GEOMAR, Wischhofstrasse 1-3, Build. 12, D-24148 Kiel, Germany
| | - Maria B Bitonti
- Laboratory of Plant Cyto-Physiology, University of Calabria, Arcavata di Rende, Cosenza 87036, Italy
| | - Murray T Brown
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
6
|
Gledhill M, Hassler CS, Schoemann V. The environmental bioinorganic chemistry of aquatic microbial organisms. Front Microbiol 2013; 4:100. [PMID: 23630522 PMCID: PMC3635032 DOI: 10.3389/fmicb.2013.00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/08/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Martha Gledhill
- National Oceanography Centre, School of Ocean and Earth Science, University of Southampton Southampton, UK
| | | | | |
Collapse
|