1
|
Osorio-Pando LS, Hernández-Guzmán M, Sidón-Ceseña K, Ortega-Saad Y, Camacho-Ibar VF, Chong-Robles J, Lago-Lestón A. The Meso- and Bathypelagic Archaeal and Bacterial Communities of the Southern Gulf of Mexico Are Dominated by Nitrifiers and Hydrocarbon Degraders. Microorganisms 2025; 13:1106. [PMID: 40431279 PMCID: PMC12113859 DOI: 10.3390/microorganisms13051106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/28/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
The Gulf of Mexico (GoM) is a complex oceanic basin with a maximum depth of 4000 m. It is a complex hydrodynamic system formed by different water masses with distinctive physical and biological characteristics that shape its rich biodiversity. In this study, as a contribution to better understanding the microbial communities inhabiting the meso- and bathypelagic zones of the Mexican Exclusive Economic Zone (EEZ) of the GoM, an extensive set of seawater samples was collected at three depths (350-3700 m) during three oceanographic cruises. The V4-16S rRNA gene analysis identified Pseudomonadota (27.1 ± 9.8%) and Nitrosopumilales (26.4 ± 2.3%) as the dominant bacterial and archaeal members, respectively. The depth, salinity, and apparent oxygen utilization were key environmental drivers, which explained 35% of the community variability. The mesopelagic zone presented a more homogeneous structure characterized by a nitrifier community, while the bathypelagic was more heterogeneous, with hydrocarbon-degrading bacteria and methanogens serving as the key players. This study is the first to report the archaeal community in the deeper waters of the Mexican EEZ of the GoM, playing crucial roles in the nitrogen and carbon cycles, highlighting the region's ecological complexity and the need for further research to understand the broader biogeochemical implications of these processes.
Collapse
Affiliation(s)
- Lizt Selene Osorio-Pando
- Posgrado de Ciencias de la Vida, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico; (L.S.O.-P.)
| | - Mario Hernández-Guzmán
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico; (M.H.-G.); (Y.O.-S.); (J.C.-R.)
| | - Karla Sidón-Ceseña
- Posgrado de Ciencias de la Vida, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico; (L.S.O.-P.)
| | - Yamne Ortega-Saad
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico; (M.H.-G.); (Y.O.-S.); (J.C.-R.)
| | - Victor F. Camacho-Ibar
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico;
| | - Jennyfers Chong-Robles
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico; (M.H.-G.); (Y.O.-S.); (J.C.-R.)
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico; (M.H.-G.); (Y.O.-S.); (J.C.-R.)
| |
Collapse
|
2
|
Henson MW, Thrash JC. Microbial ecology of northern Gulf of Mexico estuarine waters. mSystems 2024; 9:e0131823. [PMID: 38980056 PMCID: PMC11334486 DOI: 10.1128/msystems.01318-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Estuarine and coastal ecosystems are of high economic and ecological importance, owing to their diverse communities and the disproportionate role they play in carbon cycling, particularly in carbon sequestration. Organisms inhabiting these environments must overcome strong natural fluctuations in salinity, nutrients, and turbidity, as well as numerous climate change-induced disturbances such as land loss, sea level rise, and, in some locations, increasingly severe tropical cyclones that threaten to disrupt future ecosystem health. The northern Gulf of Mexico (nGoM) along the Louisiana coast contains dozens of estuaries, including the Mississippi-Atchafalaya River outflow, which dramatically influence the region due to their vast upstream watershed. Nevertheless, the microbiology of these estuaries and surrounding coastal environments has received little attention. To improve our understanding of microbial ecology in the understudied coastal nGoM, we conducted a 16S rRNA gene amplicon survey at eight sites and multiple time points along the Louisiana coast and one inland swamp spanning freshwater to high brackish salinities, totaling 47 duplicated Sterivex (0.2-2.7 µm) and prefilter (>2.7 µm) samples. We cataloged over 13,000 Amplicon Sequence ariants (ASVs) from common freshwater and marine clades such as SAR11 (Alphaproteobacteria), Synechococcus (Cyanobacteria), and acI and Candidatus Actinomarina (Actinobacteria). We observed correlations with freshwater or marine habitats in many organisms and characterized a group of taxa with specialized distributions across brackish water sites, supporting the hypothesis of an endogenous brackish-water community. Additionally, we observed brackish-water associations for several aquatic clades typically considered marine or freshwater taxa, such as SAR11 subclade II, SAR324, and the acI Actinobacteria. The data presented here expand the geographic coverage of microbial ecology in estuarine communities, help delineate the native and transitory members of these environments, and provide critical aquatic microbiological baseline data for coastal and estuarine sites in the nGoM.IMPORTANCEEstuarine and coastal waters are diverse ecosystems influenced by tidal fluxes, interconnected wetlands, and river outflows, which are of high economic and ecological importance. Microorganisms play a pivotal role in estuaries as "first responders" and ecosystem architects, yet despite their ecological importance, they remain underrepresented in microbial studies compared to open ocean environments. This leads to substantial knowledge gaps that are important for understanding global biogeochemical cycling and making decisions about conservation and management strategies in these environments. Our study makes key contributions to the microbial ecology of estuarine and coastal habitats in the northern Gulf of Mexico. Our microbial community data support the concept of a globally distributed, core brackish microbiome and emphasize previously underrecognized brackish-water taxa. Given the projected worsening of land loss, oil spills, and natural disasters in this region, our results will serve as important baseline data for researchers investigating the microbial communities found across estuaries.
Collapse
Affiliation(s)
- Michael W. Henson
- Department of Biological Sciences, Northern University, DeKalb, Illinois, USA
| | - J. Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Valencia‐Agami SS, Cerqueda‐García D, Gamboa‐Muñoz AM, Aguirre‐Macedo ML, García‐Maldonado JQ. Structure and composition of microbial communities in the water column from Southern Gulf of Mexico and detection of putative hydrocarbon-degrading microorganisms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13264. [PMID: 38692840 PMCID: PMC11062854 DOI: 10.1111/1758-2229.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
This study assessed the bacterioplankton community and its relationship with environmental variables, including total petroleum hydrocarbon (TPH) concentration, in the Yucatan shelf area of the Southern Gulf of Mexico. Beta diversity analyses based on 16S rRNA sequences indicated variations in the bacterioplankton community structure among sampling sites. PERMANOVA indicated that these variations could be mainly related to changes in depth (5 to 180 m), dissolved oxygen concentration (2.06 to 5.93 mg L-1), and chlorophyll-a concentration (0.184 to 7.65 mg m3). Moreover, SIMPER and one-way ANOVA analyses showed that the shifts in the relative abundances of Synechococcus and Prochlorococcus were related to changes in microbial community composition and chlorophyll-a values. Despite the low TPH content measured in the studied sites (0.01 to 0.86 μL L-1), putative hydrocarbon-degrading bacteria such as Alteromonas, Acinetobacter, Balneola, Erythrobacter, Oleibacter, Roseibacillus, and the MWH-UniP1 aquatic group were detected. The relatively high copy number of the alkB gene detected in the water column by qPCR and the enrichment of hydrocarbon-degrading bacteria obtained during lab crude oil tests exhibited the potential of bacterioplankton communities from the Yucatan shelf to respond to potential hydrocarbon impacts in this important area of the Gulf Mexico.
Collapse
Affiliation(s)
- Sonia S. Valencia‐Agami
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoMexico CityMexico
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del MarMeridaYucatánMexico
| | - Daniel Cerqueda‐García
- Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y VectoresInstituto de Ecología, AC–INECOLXalapaVeracruzMexico
| | - Abril M. Gamboa‐Muñoz
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del MarMeridaYucatánMexico
| | - M. Leopoldina Aguirre‐Macedo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del MarMeridaYucatánMexico
| | - José Q. García‐Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del MarMeridaYucatánMexico
| |
Collapse
|
4
|
Huete-Stauffer TM, Logares R, Ansari MI, Røstad A, Calleja ML, Morán XAG. Increased prokaryotic diversity in the Red Sea deep scattering layer. ENVIRONMENTAL MICROBIOME 2023; 18:87. [PMID: 38098078 PMCID: PMC10722844 DOI: 10.1186/s40793-023-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The diel vertical migration (DVM) of fish provides an active transport of labile dissolved organic matter (DOM) to the deep ocean, fueling the metabolism of heterotrophic bacteria and archaea. We studied the impact of DVM on the mesopelagic prokaryotic diversity of the Red Sea focusing on the mesopelagic deep scattering layer (DSL) between 450-600 m. RESULTS Despite the general consensus of homogeneous conditions in the mesopelagic layer, we observed variability in physico-chemical variables (oxygen, inorganic nutrients, DOC) in the depth profiles. We also identified distinct seasonal indicator prokaryotes inhabiting the DSL, representing between 2% (in spring) to over 10% (in winter) of total 16S rRNA gene sequences. The dominant indicator groups were Alteromonadales in winter, Vibrionales in spring and Microtrichales in summer. Using multidimensional scaling analysis, the DSL samples showed divergence from the surrounding mesopelagic layers and were distributed according to depth (47% of variance explained). We identified the sources of diversity that contribute to the DSL by analyzing the detailed profiles of spring, where 3 depths were sampled in the mesopelagic. On average, 7% was related to the epipelagic, 34% was common among the other mesopelagic waters and 38% was attributable to the DSL, with 21% of species being unique to this layer. CONCLUSIONS We conclude that the mesopelagic physico-chemical properties shape a rather uniform prokaryotic community, but that the 200 m deep DSL contributes uniquely and in a high proportion to the diversity of the Red Sea mesopelagic.
Collapse
Affiliation(s)
- Tamara Megan Huete-Stauffer
- Red Sea Research Center, Blg 2, Level 2, Office 2217-WS05, BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Mohd Ikram Ansari
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Anders Røstad
- Red Sea Research Center, Blg 2, Level 2, Office 2217-WS05, BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Maria Lluch Calleja
- Marine Ecology and Systematics, Biology Department, University of the Balearic Islands (UIB), Palma, Spain
| | - Xosé Anxelu G Morán
- Red Sea Research Center, Blg 2, Level 2, Office 2217-WS05, BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Centro Oceanográfico de Gijón/Xixón (IEO), CSIC, Gijón, Spain
| |
Collapse
|
5
|
Water Column Microbial Communities Vary along Salinity Gradients in the Florida Coastal Everglades Wetlands. Microorganisms 2022; 10:microorganisms10020215. [PMID: 35208670 PMCID: PMC8874701 DOI: 10.3390/microorganisms10020215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/04/2023] Open
Abstract
Planktonic microbial communities mediate many vital biogeochemical processes in wetland ecosystems, yet compared to other aquatic ecosystems, like oceans, lakes, rivers or estuaries, they remain relatively underexplored. Our study site, the Florida Everglades (USA)—a vast iconic wetland consisting of a slow-moving system of shallow rivers connecting freshwater marshes with coastal mangrove forests and seagrass meadows—is a highly threatened model ecosystem for studying salinity and nutrient gradients, as well as the effects of sea level rise and saltwater intrusion. This study provides the first high-resolution phylogenetic profiles of planktonic bacterial and eukaryotic microbial communities (using 16S and 18S rRNA gene amplicons) together with nutrient concentrations and environmental parameters at 14 sites along two transects covering two distinctly different drainages: the peat-based Shark River Slough (SRS) and marl-based Taylor Slough/Panhandle (TS/Ph). Both bacterial as well as eukaryotic community structures varied significantly along the salinity gradient. Although freshwater communities were relatively similar in both transects, bacterioplankton community composition at the ecotone (where freshwater and marine water mix) differed significantly. The most abundant taxa in the freshwater marshes include heterotrophic Polynucleobacter sp. and potentially phagotrophic cryptomonads of the genus Chilomonas, both of which could be key players in the transfer of detritus-based biomass to higher trophic levels.
Collapse
|
6
|
Shafiee RT, Diver PJ, Snow JT, Zhang Q, Rickaby REM. Marine ammonia-oxidising archaea and bacteria occupy distinct iron and copper niches. ISME COMMUNICATIONS 2021; 1:1. [PMID: 37938628 PMCID: PMC9723733 DOI: 10.1038/s43705-021-00001-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Abstract
Ammonia oxidation by archaea and bacteria (AOA and AOB), is the first step of nitrification in the oceans. As AOA have an ammonium affinity 200-fold higher than AOB isolates, the chemical niche allowing AOB to persist in the oligotrophic ocean remains unclear. Here we show that marine isolates, Nitrosopumilus maritimus strain SCM1 (AOA) and Nitrosococcus oceani strain C-107 (AOB) have contrasting physiologies in response to the trace metals iron (Fe) and copper (Cu), holding potential implications for their niche separation in the oceans. A greater affinity for unchelated Fe may allow AOB to inhabit shallower, euphotic waters where ammonium supply is high, but competition for Fe is rife. In contrast to AOB, AOA isolates have a greater affinity and toxicity threshold for unchelated Cu providing additional explanation to the greater success of AOA in the marine environment where Cu availability can be highly variable. Using comparative genomics, we predict that the proteomic and metal transport basis giving rise to contrasting physiologies in isolates is widespread across phylogenetically diverse marine AOA and AOB that are not yet available in pure culture. Our results develop the testable hypothesis that ammonia oxidation may be limited by Cu in large tracts of the open ocean and suggest a relatively earlier emergence of AOB than AOA when considered in the context of evolving trace metal availabilities over geologic time.
Collapse
Affiliation(s)
- Roxana T Shafiee
- Department of Earth Sciences, University of Oxford, Oxfordshire, UK.
| | - Poppy J Diver
- Department of Earth Sciences, University of Oxford, Oxfordshire, UK
| | - Joseph T Snow
- Department of Earth Sciences, University of Oxford, Oxfordshire, UK
| | - Qiong Zhang
- Department of Earth Sciences, University of Oxford, Oxfordshire, UK
| | | |
Collapse
|
7
|
Keating C, Bolton-Warberg M, Hinchcliffe J, Davies R, Whelan S, Wan AHL, Fitzgerald RD, Davies SJ, Ijaz UZ, Smith CJ. Temporal changes in the gut microbiota in farmed Atlantic cod (Gadus morhua) outweigh the response to diet supplementation with macroalgae. Anim Microbiome 2021; 3:7. [PMID: 33500003 PMCID: PMC7934267 DOI: 10.1186/s42523-020-00065-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Aquaculture successfully meets global food demands for many fish species. However, aquaculture production of Atlantic cod (Gadus morhua) is just 2.5% of total market production. For cod farming to be a viable economic venture specific challenges on how to increase growth, health and farming productivity need to be addressed. Feed ingredients play a key role here. Macroalgae (seaweeds) have been suggested as a functional feed supplement with both health and economic benefits for terrestrial farmed animals and fish. The impact of such dietary supplements to cod gut integrity and microbiota, which contribute to overall fish robustness is unknown. The objective of this study was to supplement the diet of juvenile Atlantic cod with macroalgae and determine the impacts on fish condition and growth, gut morphology and hindgut microbiota composition (16S rRNA amplicon sequencing). Fish were fed one of three diets: control (no macroalgal inclusion), 10% inclusion of either egg wrack (Ascophyllum nodosum) or sea lettuce (Ulva rigida) macroalgae in a 12-week trial. RESULTS The results demonstrated there was no significant difference in fish condition, gut morphology or hindgut microbiota between the U. rigida supplemented fish group and the control group at any time-point. This trend was not observed with the A. nodosum treatment. Fish within this group were further categorised as either 'Normal' or 'Lower Growth'. 'Lower Growth' individuals found the diet unpalatable resulting in reduced weight and condition factor combined with an altered gut morphology and microbiome relative to the other treatments. Excluding this group, our results show that the hindgut microbiota was largely driven by temporal pressures with the microbial communities becoming more similar over time irrespective of dietary treatment. The core microbiome at the final time-point consisted of the orders Vibrionales (Vibrio and Photobacterium), Bacteroidales (Bacteroidetes and Macellibacteroides) and Clostridiales (Lachnoclostridium). CONCLUSIONS Our study indicates that U. rigida macroalgae can be supplemented at 10% inclusion levels in the diet of juvenile farmed Atlantic cod without any impact on fish condition or hindgut microbial community structure. We also conclude that 10% dietary inclusion of A. nodosum is not a suitable feed supplement in a farmed cod diet.
Collapse
Affiliation(s)
- C Keating
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, H91 TK33, Ireland.
- Water and Environment Group, Infrastructure and Environment Division, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| | - M Bolton-Warberg
- Carna Research Station, Ryan Institute, National University of Ireland Galway, Carna, Co, Galway, H91 V8Y1, Ireland
| | - J Hinchcliffe
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - R Davies
- AquaBioTech Group, Central Complex, Naggar Street, Targa Gap, Mosta, G.C, MST 1761, Malta
| | - S Whelan
- Carna Research Station, Ryan Institute, National University of Ireland Galway, Carna, Co, Galway, H91 V8Y1, Ireland
| | - A H L Wan
- Irish Seaweed Research Group, Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Galway, H91 TK33, Ireland
- Aquaculture Nutrition and Aquafeed Research Unit, Carna Research Station, Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Carna, Co, Galway, H91 V8Y1, Ireland
| | - R D Fitzgerald
- Carna Research Station, Ryan Institute, National University of Ireland Galway, Carna, Co, Galway, H91 V8Y1, Ireland
| | - S J Davies
- Department of Animal Production, Welfare and Veterinary Science, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - U Z Ijaz
- Water and Environment Group, Infrastructure and Environment Division, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| | - C J Smith
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, H91 TK33, Ireland.
- Water and Environment Group, Infrastructure and Environment Division, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| |
Collapse
|
8
|
Adyasari D, Hassenrück C, Montiel D, Dimova N. Microbial community composition across a coastal hydrological system affected by submarine groundwater discharge (SGD). PLoS One 2020; 15:e0235235. [PMID: 32598345 PMCID: PMC7323985 DOI: 10.1371/journal.pone.0235235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/10/2020] [Indexed: 11/18/2022] Open
Abstract
Mobile Bay, the fourth largest estuary in the USA located in the northern Gulf of Mexico, is known for extreme hypoxia in the water column during dry season caused by NH4+-rich and anoxic submarine groundwater discharge (SGD). Nutrient dynamics in the coastal ecosystem point to potentially elevated microbial activities; however, little is known about microbial community composition and their functional roles in this area. In this study, we investigated microbial community composition, distribution, and metabolic prediction along the coastal hydrological compartment of Mobile Bay using 16S rRNA gene sequencing. We collected microbial samples from surface (river and bay water) and subsurface water (groundwater and coastal pore water from two SGD sites with peat and sandy lithology, respectively). Salinity was identified as the primary factor affecting the distribution of microbial communities across surface water samples, while DON and PO43- were the major predictor of community shift within subsurface water samples. Higher microbial diversity was found in coastal pore water in comparison to surface water samples. Gammaproteobacteria, Bacteroidia, and Oxyphotobacteria dominated the bacterial community. Among the archaea, methanogens were prevalent in the peat-dominated SGD site, while the sandy SGD site was characterized by a higher proportion of ammonia-oxidizing archaea. Cyanobium PCC-6307 and unclassified Thermodesulfovibrionia were identified as dominant taxa strongly associated with trends in environmental parameters in surface and subsurface samples, respectively. Microbial communities found in the groundwater and peat layer consisted of taxa known for denitrification and dissimilatory nitrate reduction to ammonium (DNRA). This finding suggested that microbial communities might also play a significant role in mediating nitrogen transformation in the SGD flow path and in affecting the chemical composition of SGD discharging to the water column. Given the ecological importance of microorganisms, further studies at higher taxonomic and functional resolution are needed to accurately predict chemical biotransformation processes along the coastal hydrological continuum, which influence water quality and environmental condition in Mobile Bay.
Collapse
Affiliation(s)
- Dini Adyasari
- Department of Biogeochemistry and Geology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Christiane Hassenrück
- Department of Biogeochemistry and Geology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Daniel Montiel
- Department of Geological Sciences, Coastal Hydrogeology Laboratory, University of Alabama, Alabama, AL, United States of America
- Geosyntec Consultants, Clearwater, FL, United States of America
| | - Natasha Dimova
- Department of Geological Sciences, Coastal Hydrogeology Laboratory, University of Alabama, Alabama, AL, United States of America
| |
Collapse
|
9
|
Jayanetti DR, Braun DR, Barns KJ, Rajski SR, Bugni TS. Bulbiferates A and B: Antibacterial Acetamidohydroxybenzoates from a Marine Proteobacterium, Microbulbifer sp. JOURNAL OF NATURAL PRODUCTS 2019; 82:1930-1934. [PMID: 31181927 PMCID: PMC6660402 DOI: 10.1021/acs.jnatprod.9b00312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Here we report the discovery of two new 3-acetamido-4-hydroxybenzoate esters, bulbiferates A (1) and B (2), isolated from Microbulbifer sp. cultivated from the marine tunicate Ecteinascidia turbinata. The structures of 1 and 2 were determined by analysis of 2D NMR and MS data. Additionally, three synthetic analogues (3-5), differing in ester sizes/lengths, were prepared for the purposes of evaluating potential structure-activity relationships; no clear correlations tying ester lengths to activity were evident. Bulbiferates A (1) and B (2) demonstrated antibacterial activity against both Escherichia coli (E. coli) and methicillin-sensitive Staphylococcus aureus (MSSA), whereas the synthetic analogues 3 and 4 displayed activity only against MSSA.
Collapse
Affiliation(s)
- Dinith R. Jayanetti
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Doug R. Braun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Kenneth J. Barns
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Scott Raymond Rajski
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
10
|
Campbell LG, Thrash JC, Rabalais NN, Mason OU. Extent of the annual Gulf of Mexico hypoxic zone influences microbial community structure. PLoS One 2019; 14:e0209055. [PMID: 31022199 PMCID: PMC6483191 DOI: 10.1371/journal.pone.0209055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/10/2019] [Indexed: 11/29/2022] Open
Abstract
Rich geochemical datasets generated over the past 30 years have provided fine-scale resolution on the northern Gulf of Mexico (nGOM) coastal hypoxic (≤ 2 mg of O2 L-1) zone. In contrast, little is known about microbial community structure and activity in the hypoxic zone despite the implication that microbial respiration is responsible for forming low dissolved oxygen (DO) conditions. Here, we hypothesized that the extent of the hypoxic zone is a driver in determining microbial community structure, and in particular, the abundance of ammonia-oxidizing archaea (AOA). Samples collected across the shelf for two consecutive hypoxic seasons in July 2013 and 2014 were analyzed using 16S rRNA gene sequencing, oligotyping, microbial co-occurrence analysis, and quantification of thaumarchaeal 16S rRNA and archaeal ammonia-monooxygenase (amoA) genes. In 2014 Thaumarchaeota were enriched and inversely correlated with DO while Cyanobacteria, Acidimicrobiia, and Proteobacteria where more abundant in oxic samples compared to hypoxic. Oligotyping analysis of Nitrosopumilus 16S rRNA gene sequences revealed that one oligotype was significantly inversely correlated with DO in both years. Oligotyping analysis revealed single nucleotide variation among all Nitrosopumilaceae, including Nitrosopumilus 16S rRNA gene sequences, with one oligotype possibly being better adapted to hypoxia. We further provide evidence that in the hypoxic zone of both year 2013 and 2014, low DO concentrations and high Thaumarchaeota abundances influenced microbial co-occurrence patterns. Taken together, the data demonstrated that the extent of hypoxic conditions could potentially drive patterns in microbial community structure, with two years of data revealing the annual nGOM hypoxic zone to be emerging as a low DO adapted AOA hotspot.
Collapse
Affiliation(s)
- Lauren Gillies Campbell
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, United States of America
| | - J. Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Nancy N. Rabalais
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, United States of America
- Louisiana Universities Marine Consortium, Cocodrie, LA, United States of America
| | - Olivia U. Mason
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, United States of America
- * E-mail:
| |
Collapse
|
11
|
Easson CG, Lopez JV. Depth-Dependent Environmental Drivers of Microbial Plankton Community Structure in the Northern Gulf of Mexico. Front Microbiol 2019; 9:3175. [PMID: 30662434 PMCID: PMC6328475 DOI: 10.3389/fmicb.2018.03175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/07/2018] [Indexed: 02/01/2023] Open
Abstract
The Gulf of Mexico (GoM) is a dynamic marine ecosystem influenced by multiple natural and anthropogenic processes and inputs, such as the intrusion of warm oligotrophic water via the Loop Current, freshwater and nutrient input by the Mississippi River, and hydrocarbon inputs via natural seeps and industrial spills. Microbial plankton communities are important to pelagic food webs including in the GoM but understanding the drivers of the natural dynamics of these passively distributed microorganisms can be challenging in such a large and heterogeneous system. As part of the DEEPEND consortium, we applied high throughput 16S rRNA sequencing to investigate the spatial and temporal dynamics of pelagic microbial plankton related to several environmental conditions during two offshore cruises in 2015. Our results show dramatic community shifts across depths, especially between photic and aphotic zones. Though we only have two time points within a single year, observed temporal shifts in microbial plankton communities were restricted to the seasonally influenced epipelagic zone (0-200 m), and appear mainly driven by changes in temperature. Environmental selection in microbial plankton communities was depth-specific, with variables such as turbidity, salinity, and abundance of photosynthetic taxa strongly correlating with community structure in the epipelagic zone, while variables such as oxygen and specific nutrient concentrations were correlated with community structure at deeper depths.
Collapse
Affiliation(s)
- Cole G. Easson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Jose V. Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, United States
| |
Collapse
|
12
|
King GM. Microbiomes of the Enteropneust, Saccoglossus bromophenolosus, and Associated Marine Intertidal Sediments of Cod Cove, Maine. Front Microbiol 2018; 9:3066. [PMID: 30631312 PMCID: PMC6315191 DOI: 10.3389/fmicb.2018.03066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/28/2018] [Indexed: 11/13/2022] Open
Abstract
Enteropneusts are widely distributed marine invertebrates that accumulate high concentrations of halogenated aromatics. Some of these compounds affect benthic biogeochemistery (e.g., denitrification and ammonia oxidation), but little is known about interactions between enteropneusts and their associated microbial communities. Even less is known about enteropneust host-microbe relationships in the digestive tract. More generally, microbial community composition and diversity in intertidal sediments have received little attention. In this study, high throughput sequence analyses of 16S rRNA genes extracted from microbial communities associated with sediment-free whole individuals of Saccoglossus bromophenolosus and freshly excreted S. bromophenolosus gut sediments revealed a potential Spirochaete symbiont that was abundant, present in gut sediment, but absent in other sediments. Relative to surface sediments, gut communities also revealed evidence for selective losses of some groups and blooms of others, especially Colwellia, Photobacterium, Pseudoalteromonas, and Vibrio. After deposition, gut sediment communities rapidly resembled those of surface sediments. Although hierarchical cluster analysis and Linear Discriminant Analysis Effect Size (LEfSe) differentiated among burrow walls of S. bromophenolosus and a polychaete, Alitta virens, as well as between surface and sub-surface sediments, most operational taxonomic units (OTUs) were shared, with differences largely occurring in relative abundances. This suggests that sediment mixing through bioturbation might act to homogenize community composition, while species-specific impacts by infauna might alter local population abundances. Although Cod Cove is a relatively isolated intertidal system, microbial community members included groups with cosmopolitan distributions and roles in sulfur cycling, e.g., Gammaproteobacteria BD7 and Sva0071, as well as novel OTUs representing a large number of phyla.
Collapse
Affiliation(s)
- Gary M King
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
13
|
Sánchez-Soto Jiménez MF, Cerqueda-García D, Montero-Muñoz JL, Aguirre-Macedo ML, García-Maldonado JQ. Assessment of the bacterial community structure in shallow and deep sediments of the Perdido Fold Belt region in the Gulf of Mexico. PeerJ 2018; 6:e5583. [PMID: 30225176 PMCID: PMC6139248 DOI: 10.7717/peerj.5583] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022] Open
Abstract
The Mexican region of the Perdido Fold Belt (PFB), in northwestern Gulf of Mexico (GoM), is a geological province with important oil reservoirs that will be subjected to forthcoming oil exploration and extraction activities. To date, little is known about the native microbial communities of this region, and how these change relative to water depth. In this study we assessed the bacterial community structure of surficial sediments by high-throughput sequencing of the 16S rRNA gene at 11 sites in the PFB, along a water column depth gradient from 20 to 3,700 m, including five shallow (20–600 m) and six deep (2,800–3,700 m) samples. The results indicated that OTUs richness and diversity were higher for shallow sites (OTUs = 2,888.2 ± 567.88; H′ = 9.6 ± 0.85) than for deep sites (OTUs = 1,884.7 ± 464.2; H′ = 7.74 ± 1.02). Nonmetric multidimensional scaling (NMDS) ordination revealed that shallow microbial communities grouped separately from deep samples. Additionally, the shallow sites plotted further from each other on the NMDS whereas samples from the deeper sites (abyssal plains) plotted much more closely to each other. These differences were related to depth, redox potential, sulfur concentration, and grain size (lime and clay), based on the environmental variables fitted with the axis of the NMDS ordination. In addition, differential abundance analysis identified 147 OTUs with significant fold changes among the zones (107 from shallow and 40 from deep sites), which constituted 10 to 40% of the total relative abundances of the microbial communities. The most abundant OTUs with significant fold changes in shallow samples corresponded to Kordiimonadales, Rhodospirillales, Desulfobacterales (Desulfococcus), Syntrophobacterales and Nitrospirales (GOUTA 19, BD2-6, LCP-6), whilst Chromatiales, Oceanospirillales (Amphritea, Alcanivorax), Methylococcales, Flavobacteriales, Alteromonadales (Shewanella, ZD0117) and Rhodobacterales were the better represented taxa in deep samples. Several of the OTUs detected in both deep and shallow sites have been previously related to hydrocarbons consumption. Thus, this metabolism seems to be well represented in the studied sites, and it could abate future hydrocarbon contamination in this ecosystem. The results presented herein, along with biological and physicochemical data, constitute an available reference for further monitoring of the bacterial communities in this economically important region in the GoM.
Collapse
Affiliation(s)
- Ma Fernanda Sánchez-Soto Jiménez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del Mar, Mérida, Yucatán, México
| | - Daniel Cerqueda-García
- Consorcio de Investigación del Golfo de México (CIGOM). Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Departamento de Recursos del Mar, Mérida, Yucatán, México
| | - Jorge L Montero-Muñoz
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del Mar, Mérida, Yucatán, México
| | - Ma Leopoldina Aguirre-Macedo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del Mar, Mérida, Yucatán, México
| | - José Q García-Maldonado
- CONACYT - Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Departamento de Recursos del Mar, Mérida, Yucatán, México
| |
Collapse
|
14
|
Marietou A, Chastain R, Beulig F, Scoma A, Hazen TC, Bartlett DH. The Effect of Hydrostatic Pressure on Enrichments of Hydrocarbon Degrading Microbes From the Gulf of Mexico Following the Deepwater Horizon Oil Spill. Front Microbiol 2018; 9:808. [PMID: 29755436 PMCID: PMC5932198 DOI: 10.3389/fmicb.2018.00808] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/10/2018] [Indexed: 01/13/2023] Open
Abstract
The Deepwater Horizon oil spill was one of the largest and deepest oil spills recorded. The wellhead was located at approximately 1500 m below the sea where low temperature and high pressure are key environmental characteristics. Using cells collected 4 months following the Deepwater Horizon oil spill at the Gulf of Mexico, we set up Macondo crude oil enrichments at wellhead temperature and different pressures to determine the effect of increasing depth/pressure to the in situ microbial community and their ability to degrade oil. We observed oil degradation under all pressure conditions tested [0.1, 15, and 30 megapascals (MPa)], although oil degradation profiles, cell numbers, and hydrocarbon degradation gene abundances indicated greatest activity at atmospheric pressure. Under all incubations the growth of psychrophilic bacteria was promoted. Bacteria closely related to Oleispira antarctica RB-8 dominated the communities at all pressures. At 30 MPa we observed a shift toward Photobacterium, a genus that includes piezophiles. Alphaproteobacterial members of the Sulfitobacter, previously associated with oil-degradation, were also highly abundant at 0.1 MPa. Our results suggest that pressure acts synergistically with low temperature to slow microbial growth and thus oil degradation in deep-sea environments.
Collapse
Affiliation(s)
- Angeliki Marietou
- Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.,Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Roger Chastain
- Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Felix Beulig
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Alberto Scoma
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Department of Earth and Planetary Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Douglas H Bartlett
- Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
15
|
Abstract
Marine regions that have seasonal to long-term low dissolved oxygen (DO) concentrations, sometimes called “dead zones,” are increasing in number and severity around the globe with deleterious effects on ecology and economics. One of the largest of these coastal dead zones occurs on the continental shelf of the northern Gulf of Mexico (nGOM), which results from eutrophication-enhanced bacterioplankton respiration and strong seasonal stratification. Previous research in this dead zone revealed the presence of multiple cosmopolitan bacterioplankton lineages that have eluded cultivation, and thus their metabolic roles in this ecosystem remain unknown. We used a coupled shotgun metagenomic and metatranscriptomic approach to determine the metabolic potential of Marine Group II Euryarchaeota, SAR406, and SAR202. We recovered multiple high-quality, nearly complete genomes from all three groups as well as candidate phyla usually associated with anoxic environments—Parcubacteria (OD1) and Peregrinibacteria. Two additional groups with putative assignments to ACD39 and PAUC34f supplement the metabolic contributions by uncultivated taxa. Our results indicate active metabolism in all groups, including prevalent aerobic respiration, with concurrent expression of genes for nitrate reduction in SAR406 and SAR202, and dissimilatory nitrite reduction to ammonia and sulfur reduction by SAR406. We also report a variety of active heterotrophic carbon processing mechanisms, including degradation of complex carbohydrate compounds by SAR406, SAR202, ACD39, and PAUC34f. Together, these data help constrain the metabolic contributions from uncultivated groups in the nGOM during periods of low DO and suggest roles for these organisms in the breakdown of complex organic matter. Dead zones receive their name primarily from the reduction of eukaryotic macrobiota (demersal fish, shrimp, etc.) that are also key coastal fisheries. Excess nutrients contributed from anthropogenic activity such as fertilizer runoff result in algal blooms and therefore ample new carbon for aerobic microbial metabolism. Combined with strong stratification, microbial respiration reduces oxygen in shelf bottom waters to levels unfit for many animals (termed hypoxia). The nGOM shelf remains one of the largest eutrophication-driven hypoxic zones in the world, yet despite its potential as a model study system, the microbial metabolisms underlying and resulting from this phenomenon—many of which occur in bacterioplankton from poorly understood lineages—have received only preliminary study. Our work details the metabolic potential and gene expression activity for uncultivated lineages across several low DO sites in the nGOM, improving our understanding of the active biogeochemical cycling mediated by these “microbial dark matter” taxa during hypoxia.
Collapse
|
16
|
Handley KM, Piceno YM, Hu P, Tom LM, Mason OU, Andersen GL, Jansson JK, Gilbert JA. Metabolic and spatio-taxonomic response of uncultivated seafloor bacteria following the Deepwater Horizon oil spill. ISME JOURNAL 2017; 11:2569-2583. [PMID: 28777379 DOI: 10.1038/ismej.2017.110] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/10/2017] [Accepted: 05/30/2017] [Indexed: 11/09/2022]
Abstract
The release of 700 million liters of oil into the Gulf of Mexico over a few months in 2010 produced dramatic changes in the microbial ecology of the water and sediment. Here, we reconstructed the genomes of 57 widespread uncultivated bacteria from post-spill deep-sea sediments, and recovered their gene expression pattern across the seafloor. These genomes comprised a common collection of bacteria that were enriched in heavily affected sediments around the wellhead. Although rare in distal sediments, some members were still detectable at sites up to 60 km away. Many of these genomes exhibited phylogenetic clustering indicative of common trait selection by the environment, and within half we identified 264 genes associated with hydrocarbon degradation. Alkane degradation ability was near ubiquitous among candidate hydrocarbon degraders, whereas just three harbored elaborate gene inventories for the degradation of alkanes and aromatic and polycyclic aromatic hydrocarbons (PAHs). Differential gene expression profiles revealed a spill-promoted microbial sulfur cycle alongside gene upregulation associated with PAH degradation. Gene expression associated with alkane degradation was widespread, although active alkane degrader identities changed along the pollution gradient. Analyses suggest that a broad metabolic capacity to respond to oil inputs exists across a large array of usually rare indigenous deep-sea bacteria.
Collapse
Affiliation(s)
- K M Handley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.,Institute for Genomic and Systems Biology, Argonne National Laboratory, Lemont, IL, USA
| | - Y M Piceno
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - P Hu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - L M Tom
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - O U Mason
- Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| | - G L Andersen
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - J K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - J A Gilbert
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.,Institute for Genomic and Systems Biology, Argonne National Laboratory, Lemont, IL, USA.,The Microbiome Center, Department of Surgery, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Doherty M, Yager PL, Moran MA, Coles VJ, Fortunato CS, Krusche AV, Medeiros PM, Payet JP, Richey JE, Satinsky BM, Sawakuchi HO, Ward ND, Crump BC. Bacterial Biogeography across the Amazon River-Ocean Continuum. Front Microbiol 2017; 8:882. [PMID: 28588561 PMCID: PMC5440517 DOI: 10.3389/fmicb.2017.00882] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/02/2017] [Indexed: 12/26/2022] Open
Abstract
Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.
Collapse
Affiliation(s)
- Mary Doherty
- Horn Point Laboratory, University of Maryland Center for Environmental Science, CambridgeMD, United States
| | - Patricia L Yager
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Victoria J Coles
- Horn Point Laboratory, University of Maryland Center for Environmental Science, CambridgeMD, United States
| | - Caroline S Fortunato
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods HoleMA, United States
| | - Alex V Krusche
- Center of Nuclear Energy in Agriculture, University of São PauloPiracicaba, Brazil
| | - Patricia M Medeiros
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Jérôme P Payet
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, CorvallisOR, United States
| | - Jeffrey E Richey
- School of Oceanography, University of Washington, SeattleWA, United States
| | | | - Henrique O Sawakuchi
- Center of Nuclear Energy in Agriculture, University of São PauloPiracicaba, Brazil
| | - Nicholas D Ward
- Marine Sciences Laboratory, Pacific Northwest National Laboratory, SequimWA, United States
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, CorvallisOR, United States
| |
Collapse
|
18
|
Scoma A, Yakimov MM, Boon N. Challenging Oil Bioremediation at Deep-Sea Hydrostatic Pressure. Front Microbiol 2016; 7:1203. [PMID: 27536290 PMCID: PMC4971052 DOI: 10.3389/fmicb.2016.01203] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022] Open
Abstract
The Deepwater Horizon accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (bio)technology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons within deep-sea environments remain unanswered, as well as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil bioassimilation are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled oil. The fate of solid alkanes (tar), hydrocarbon degradation rates and the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea despite being present at hydrocarbon seeps at the Gulf of Mexico have been largely overlooked. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.
Collapse
Affiliation(s)
- Alberto Scoma
- Center of Microbial Ecology and Technology, University of Gent Gent, Belgium
| | - Michail M Yakimov
- Institute for Coastal Marine Environment - National Council of ResearchMessina, Italy; Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| | - Nico Boon
- Center of Microbial Ecology and Technology, University of Gent Gent, Belgium
| |
Collapse
|
19
|
Tsementzi D, Wu J, Deutsch S, Nath S, Rodriguez-R LM, Burns AS, Ranjan P, Sarode N, Malmstrom RR, Padilla CC, Stone BK, Bristow LA, Larsen M, Glass JB, Thamdrup B, Woyke T, Konstantinidis KT, Stewart FJ. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature 2016; 536:179-83. [PMID: 27487207 PMCID: PMC4990128 DOI: 10.1038/nature19068] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/30/2016] [Indexed: 01/25/2023]
Abstract
Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group.
Collapse
|
20
|
Mason OU, Canter EJ, Gillies LE, Paisie TK, Roberts BJ. Mississippi River Plume Enriches Microbial Diversity in the Northern Gulf of Mexico. Front Microbiol 2016; 7:1048. [PMID: 27458442 PMCID: PMC4936242 DOI: 10.3389/fmicb.2016.01048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/22/2016] [Indexed: 11/29/2022] Open
Abstract
The Mississippi River (MR) serves as the primary source of freshwater and nutrients to the northern Gulf of Mexico (nGOM). Whether this input of freshwater also enriches microbial diversity as the MR plume migrates and mixes with the nGOM serves as the central question addressed herein. Specifically, in this study physicochemical properties and planktonic microbial community composition and diversity was determined using iTag sequencing of 16S rRNA genes in 23 samples collected along a salinity (and nutrient) gradient from the mouth of the MR, in the MR plume, in the canyon, at the Deepwater Horizon wellhead and out to the loop current. Analysis of these datasets revealed that the MR influenced microbial diversity as far offshore as the Deepwater Horizon wellhead. The MR had the highest microbial diversity, which decreased with increasing salinity. MR bacterioplankton communities were distinct compared to the nGOM, particularly in the surface where Actinobacteria and Proteobacteria dominated, while the deeper MR was also enriched in Thaumarchaeota. Statistical analyses revealed that nutrients input by the MR, along with salinity and depth, were the primary drivers in structuring the microbial communities. These results suggested that the reduced salinity, nutrient enriched MR plume could act as a seed bank for microbial diversity as it mixes with the nGOM. Whether introduced microorganisms are active at higher salinities than freshwater would determine if this seed bank for microbial diversity is ecologically significant. Alternatively, microorganisms that are physiologically restricted to freshwater habitats that are entrained in the plume could be used as tracers for freshwater input to the marine environment.
Collapse
Affiliation(s)
- Olivia U Mason
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee FL, USA
| | - Erin J Canter
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee FL, USA
| | - Lauren E Gillies
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee FL, USA
| | - Taylor K Paisie
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee FL, USA
| | | |
Collapse
|
21
|
Meziti A, Tsementzi D, Ar. Kormas K, Karayanni H, Konstantinidis KT. Anthropogenic effects on bacterial diversity and function along a river-to-estuary gradient in Northwest Greece revealed by metagenomics. Environ Microbiol 2016; 18:4640-4652. [DOI: 10.1111/1462-2920.13303] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/11/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Alexandra Meziti
- Department of Biological Applications and Technology; University of Ioannina; 45110 Ioannina Greece
| | - Despina Tsementzi
- School of Civil and Environmental Engineering; Georgia Institute of Technology, Ford Environmental Science & Technology Building; 311 Ferst Drive Atlanta GA 30332 USA
| | - Konstantinos Ar. Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly; 38446 Volos Greece
| | - Hera Karayanni
- Department of Biological Applications and Technology; University of Ioannina; 45110 Ioannina Greece
| | - Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering; Georgia Institute of Technology, Ford Environmental Science & Technology Building; 311 Ferst Drive Atlanta GA 30332 USA
- School of Biology; Georgia Institute of Technology, Ford Environmental Sciences & Technology Building; 311 Ferst Drive Atlanta GA 30332 USA
| |
Collapse
|
22
|
Viggor S, Jõesaar M, Vedler E, Kiiker R, Pärnpuu L, Heinaru A. Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water. MARINE POLLUTION BULLETIN 2015; 101:507-516. [PMID: 26541986 DOI: 10.1016/j.marpolbul.2015.10.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
Formation of specific oil degrading bacterial communities in diesel fuel, crude oil, heptane and hexadecane supplemented microcosms of the Baltic Sea surface water samples was revealed. The 475 sequences from constructed alkane hydroxylase alkB gene clone libraries were grouped into 30 OPFs. The two largest groups were most similar to Pedobacter sp. (245 from 475) and Limnobacter sp. (112 from 475) alkB gene sequences. From 56 alkane-degrading bacterial strains 41 belonged to the Pseudomonas spp. and 8 to the Rhodococcus spp. having redundant alkB genes. Together 68 alkB gene sequences were identified. These genes grouped into 20 OPFs, half of them being specific only to the isolated strains. Altogether 543 diverse alkB genes were characterized in the brackish Baltic Sea water; some of them representing novel lineages having very low sequence identities with corresponding genes of the reference strains.
Collapse
Affiliation(s)
- Signe Viggor
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia.
| | - Merike Jõesaar
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Eve Vedler
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Riinu Kiiker
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Liis Pärnpuu
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Ain Heinaru
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| |
Collapse
|
23
|
Bacosa HP, Liu Z, Erdner DL. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters. Front Microbiol 2015; 6:1325. [PMID: 26648916 PMCID: PMC4664628 DOI: 10.3389/fmicb.2015.01325] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/11/2015] [Indexed: 01/06/2023] Open
Abstract
Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.
Collapse
Affiliation(s)
- Hernando P Bacosa
- Marine Science Institute, The University of Texas at Austin Port Aransas, TX, USA
| | - Zhanfei Liu
- Marine Science Institute, The University of Texas at Austin Port Aransas, TX, USA
| | - Deana L Erdner
- Marine Science Institute, The University of Texas at Austin Port Aransas, TX, USA
| |
Collapse
|
24
|
Cuadrat RRC, Cury JC, Dávila AMR. Metagenomic Analysis of Upwelling-Affected Brazilian Coastal Seawater Reveals Sequence Domains of Type I PKS and Modular NRPS. Int J Mol Sci 2015; 16:28285-95. [PMID: 26633360 PMCID: PMC4691048 DOI: 10.3390/ijms161226101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 11/23/2022] Open
Abstract
Marine environments harbor a wide range of microorganisms from the three domains of life. These microorganisms have great potential to enable discovery of new enzymes and bioactive compounds for industrial use. However, only ~1% of microorganisms from the environment can currently be identified through cultured isolates, limiting the discovery of new compounds. To overcome this limitation, a metagenomics approach has been widely adopted for biodiversity studies on samples from marine environments. In this study, we screened metagenomes in order to estimate the potential for new natural compound synthesis mediated by diversity in the Polyketide Synthase (PKS) and Nonribosomal Peptide Synthetase (NRPS) genes. The samples were collected from the Praia dos Anjos (Angel’s Beach) surface water—Arraial do Cabo (Rio de Janeiro state, Brazil), an environment affected by upwelling. In order to evaluate the potential for screening natural products in Arraial do Cabo samples, we used KS (keto-synthase) and C (condensation) domains (from PKS and NRPS, respectively) to build Hidden Markov Models (HMM) models. From both samples, a total of 84 KS and 46 C novel domain sequences were obtained, showing the potential of this environment for the discovery of new genes of biotechnological interest. These domains were classified by phylogenetic analysis and this was the first study conducted to screen PKS and NRPS genes in an upwelling affected sample
Collapse
Affiliation(s)
- Rafael R C Cuadrat
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Rio de Janeiro CEP 21040-360, Brazil.
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhuette 2, OT Neuglobsow, Stechlin 16775, Germany.
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Straße 6-8, Berlin 14195, Germany.
| | - Juliano C Cury
- Molecular Microbiology Laboratory, Federal University of São João del-Rei, Sete Lagoas Campus Rua Sétimo Moreira Martins 188, Itapoã II, Sete Lagoas CEP 35702-031, Brazil.
| | - Alberto M R Dávila
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Rio de Janeiro CEP 21040-360, Brazil.
| |
Collapse
|
25
|
Microbial Community Composition, Functions, and Activities in the Gulf of Mexico 1 Year after the Deepwater Horizon Accident. Appl Environ Microbiol 2015; 81:5855-66. [PMID: 26092461 DOI: 10.1128/aem.01470-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/14/2015] [Indexed: 11/20/2022] Open
Abstract
Several studies have assessed the effects of the released oil on microbes, either during or immediately after the Deepwater Horizon accident. However, little is known about the potential longer-term persistent effects on microbial communities and their functions. In this study, one water column station near the wellhead (3.78 km southwest of the wellhead), one water column reference station outside the affected area (37.77 km southeast of the wellhead), and deep-sea sediments near the wellhead (3.66 km southeast of the wellhead) were sampled 1 year after the capping of the well. In order to analyze microbial community composition, function, and activity, we used metagenomics, metatranscriptomics, and mineralization assays. Mineralization of hexadecane was significantly higher at the wellhead station at a depth of ∼1,200 m than at the reference station. Community composition based on taxonomical or functional data showed that the samples taken at a depth of ∼1,200 m were significantly more dissimilar between the stations than at other depths (surface, 100 m, 750 m, and >1,500 m). Both Bacteria and Archaea showed reduced activity at depths of ∼1,200 m when the wellhead station was compared to the reference station, and their activity was significantly higher in surficial sediments than in 10-cm sediments. Surficial sediments also harbored significantly different active genera than did 5- and 10-cm sediments. For the remaining microbial parameters assessed, no significant differences could be observed between the wellhead and reference stations and between surface and 5- to 10-cm-deep sediments.
Collapse
|
26
|
Meziti A, Kormas KA, Moustaka-Gouni M, Karayanni H. Spatially uniform but temporally variable bacterioplankton in a semi-enclosed coastal area. Syst Appl Microbiol 2015; 38:358-67. [PMID: 25976032 DOI: 10.1016/j.syapm.2015.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
Studies focusing on the temporal and spatial dynamics of bacterioplankton communities within littoral areas undergoing direct influences from the coast are quite limited. In addition, they are more complicated to resolve compared to communities in the open ocean. In order to elucidate the effects of spatial vs. temporal variability on bacterial communities in a highly land-influenced semi-enclosed gulf, surface bacterioplankton communities from five coastal sites in Igoumenitsa Gulf (Ionian Sea, Greece) were analyzed over a nine-month period using 16S rDNA 454-pyrosequencing. Temporal differences were more pronounced than spatial ones, with lower diversity indices observed during the summer months. During winter and early spring, bacterial communities were dominated by SAR11 representatives, while this pattern changed in May when they were abruptly replaced by members of Flavobacteriales, Pseudomonadales, and Alteromonadales. Additionally, correlation analysis showed high negative correlations between the presence of SAR11 OTUs in relation to temperature and sunlight that might have driven, directly or indirectly, the disappearance of these OTUs in the summer months. The dominance of SAR11 during the winter months further supported the global distribution of the clade, not only in the open-sea, but also in coastal systems. This study revealed that specific bacteria exhibited distinct succession patterns in an anthropogenic-impacted coastal system. The major bacterioplankton component was represented by commonly found marine bacteria exhibiting seasonal dynamics, while freshwater and terrestrial-related phylotypes were absent.
Collapse
Affiliation(s)
- Alexandra Meziti
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos A Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38446 Volos, Greece
| | - Maria Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Hera Karayanni
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
27
|
Gillies LE, Thrash JC, deRada S, Rabalais NN, Mason OU. Archaeal enrichment in the hypoxic zone in the northern Gulf of Mexico. Environ Microbiol 2015; 17:3847-56. [DOI: 10.1111/1462-2920.12853] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Lauren E. Gillies
- Department of Earth, Ocean and Atmospheric Science; Florida State University; Tallahassee FL 32306 USA
| | - J. Cameron Thrash
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA 70803 USA
| | - Sergio deRada
- Ocean Sciences Branch; Naval Research Laboratory; Stennis Space Center; MS 39529 USA
| | | | - Olivia U. Mason
- Department of Earth, Ocean and Atmospheric Science; Florida State University; Tallahassee FL 32306 USA
| |
Collapse
|
28
|
King GM, Kostka JE, Hazen TC, Sobecky PA. Microbial responses to the Deepwater Horizon oil spill: from coastal wetlands to the deep sea. ANNUAL REVIEW OF MARINE SCIENCE 2015; 7:377-401. [PMID: 25251273 DOI: 10.1146/annurev-marine-010814-015543] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Deepwater Horizon oil spill in the northern Gulf of Mexico represents the largest marine accidental oil spill in history. It is distinguished from past spills in that it occurred at the greatest depth (1,500 m), the amount of hydrocarbon gas (mostly methane) lost was equivalent to the mass of crude oil released, and dispersants were used for the first time in the deep sea in an attempt to remediate the spill. The spill is also unique in that it has been characterized with an unprecedented level of resolution using next-generation sequencing technologies, especially for the ubiquitous hydrocarbon-degrading microbial communities that appeared largely to consume the gases and to degrade a significant fraction of the petroleum. Results have shown an unexpectedly rapid response of deep-sea Gammaproteobacteria to oil and gas and documented a distinct succession correlated with the control of the oil flow and well shut-in. Similar successional events, also involving Gammaproteobacteria, have been observed in nearshore systems as well.
Collapse
Affiliation(s)
- G M King
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803;
| | | | | | | |
Collapse
|
29
|
Thrash JC, Temperton B, Swan BK, Landry ZC, Woyke T, DeLong EF, Stepanauskas R, Giovannoni SJ. Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME JOURNAL 2014; 8:1440-51. [PMID: 24451205 DOI: 10.1038/ismej.2013.243] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/07/2013] [Accepted: 12/10/2013] [Indexed: 11/09/2022]
Abstract
Bacterioplankton of the SAR11 clade are the most abundant microorganisms in marine systems, usually representing 25% or more of the total bacterial cells in seawater worldwide. SAR11 is divided into subclades with distinct spatiotemporal distributions (ecotypes), some of which appear to be specific to deep water. Here we examine the genomic basis for deep ocean distribution of one SAR11 bathytype (depth-specific ecotype), subclade Ic. Four single-cell Ic genomes, with estimated completeness of 55%-86%, were isolated from 770 m at station ALOHA and compared with eight SAR11 surface genomes and metagenomic datasets. Subclade Ic genomes dominated metagenomic fragment recruitment below the euphotic zone. They had similar COG distributions, high local synteny and shared a large number (69%) of orthologous clusters with SAR11 surface genomes, yet were distinct at the 16S rRNA gene and amino-acid level, and formed a separate, monophyletic group in phylogenetic trees. Subclade Ic genomes were enriched in genes associated with membrane/cell wall/envelope biosynthesis and showed evidence of unique phage defenses. The majority of subclade Ic-specfic genes were hypothetical, and some were highly abundant in deep ocean metagenomic data, potentially masking mechanisms for niche differentiation. However, the evidence suggests these organisms have a similar metabolism to their surface counterparts, and that subclade Ic adaptations to the deep ocean do not involve large variations in gene content, but rather more subtle differences previously observed deep ocean genomic data, like preferential amino-acid substitutions, larger coding regions among SAR11 clade orthologs, larger intergenic regions and larger estimated average genome size.
Collapse
Affiliation(s)
- J Cameron Thrash
- 1] Department of Microbiology, Oregon State University, Corvallis, OR, USA [2] Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Ben Temperton
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Brandon K Swan
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Zachary C Landry
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | - Edward F DeLong
- 1] Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA [2] Center for Microbial Ecology: Research and Education, Honolulu, HI, USA
| | | | | |
Collapse
|
30
|
Smith CB, Tolar BB, Hollibaugh JT, King GM. Alkane hydroxylase gene (alkB) phylotype composition and diversity in northern Gulf of Mexico bacterioplankton. Front Microbiol 2013; 4:370. [PMID: 24376439 PMCID: PMC3860262 DOI: 10.3389/fmicb.2013.00370] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/20/2013] [Indexed: 11/13/2022] Open
Abstract
Natural and anthropogenic activities introduce alkanes into marine systems where they are degraded by alkane hydroxylases expressed by phylogenetically diverse bacteria. Partial sequences for alkB, one of the structural genes of alkane hydroxylase, have been used to assess the composition of alkane-degrading communities, and to determine their responses to hydrocarbon inputs. We present here the first spatially extensive analysis of alkB in bacterioplankton of the northern Gulf of Mexico (nGoM), a region that experiences numerous hydrocarbon inputs. We have analyzed 401 partial alkB gene sequences amplified from genomic extracts collected during March 2010 from 17 water column samples that included surface waters and bathypelagic depths. Previous analyses of 16S rRNA gene sequences for these and related samples have shown that nGoM bacterial community composition and structure stratify strongly with depth, with distinctly different communities above and below 100 m. Although we hypothesized that alkB gene sequences would exhibit a similar pattern, PCA analyses of operational protein units (OPU) indicated that community composition did not vary consistently with depth or other major physical-chemical variables. We observed 22 distinct OPUs, one of which was ubiquitous and accounted for 57% of all sequences. This OPU clustered with AlkB sequences from known hydrocarbon oxidizers (e.g., Alcanivorax and Marinobacter). Some OPUs could not be associated with known alkane degraders, however, and perhaps represent novel hydrocarbon-oxidizing populations or genes. These results indicate that the capacity for alkane hydrolysis occurs widely in the nGoM, but that alkane degrader diversity varies substantially among sites and responds differently than bulk communities to physical-chemical variables.
Collapse
Affiliation(s)
- Conor B. Smith
- Department of Biological Sciences, Louisiana State UniversityBaton Rouge, LA, USA
| | - Bradley B. Tolar
- Department of Marine Studies, University of GeorgiaAthens, GA, USA
| | | | - Gary M. King
- Department of Biological Sciences, Louisiana State UniversityBaton Rouge, LA, USA
| |
Collapse
|
31
|
Desriac F, Jégou C, Balnois E, Brillet B, Le Chevalier P, Fleury Y. Antimicrobial peptides from marine proteobacteria. Mar Drugs 2013; 11:3632-60. [PMID: 24084784 PMCID: PMC3826127 DOI: 10.3390/md11103632] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 01/03/2023] Open
Abstract
After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of "classical" antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs.
Collapse
Affiliation(s)
- Florie Desriac
- University of Brest, LUBEM EA 3882, SFR 148, Quimper 29000, France.
| | | | | | | | | | | |
Collapse
|
32
|
Rivers AR, Sharma S, Tringe SG, Martin J, Joye SB, Moran MA. Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill. ISME JOURNAL 2013; 7:2315-29. [PMID: 23902988 DOI: 10.1038/ismej.2013.129] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/29/2013] [Accepted: 07/01/2013] [Indexed: 02/01/2023]
Abstract
The Deepwater Horizon blowout released a massive amount of oil and gas into the deep ocean between April and July 2010, stimulating microbial blooms of petroleum-degrading bacteria. To understand the metabolic response of marine microorganisms, we sequenced ≈ 66 million community transcripts that revealed the identity of metabolically active microbes and their roles in petroleum consumption. Reads were assigned to reference genes from ≈ 2700 bacterial and archaeal taxa, but most assignments (39%) were to just six genomes representing predominantly methane- and petroleum-degrading Gammaproteobacteria. Specific pathways for the degradation of alkanes, aromatic compounds and methane emerged from the metatranscriptomes, with some transcripts assigned to methane monooxygenases representing highly divergent homologs that may degrade either methane or short alkanes. The microbial community in the plume was less taxonomically and functionally diverse than the unexposed community below the plume; this was due primarily to decreased species evenness resulting from Gammaproteobacteria blooms. Surprisingly, a number of taxa (related to SAR11, Nitrosopumilus and Bacteroides, among others) contributed equal numbers of transcripts per liter in both the unexposed and plume samples, suggesting that some groups were unaffected by the petroleum inputs and blooms of degrader taxa, and may be important for re-establishing the pre-spill microbial community structure.
Collapse
Affiliation(s)
- Adam R Rivers
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | | | | | | | | | | |
Collapse
|
33
|
Tolar BB, King GM, Hollibaugh JT. An analysis of thaumarchaeota populations from the northern gulf of Mexico. Front Microbiol 2013; 4:72. [PMID: 23577005 PMCID: PMC3620491 DOI: 10.3389/fmicb.2013.00072] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/14/2013] [Indexed: 02/02/2023] Open
Abstract
We sampled Thaumarchaeota populations in the northern Gulf of Mexico, including shelf waters under the Mississippi River outflow plume that are subject to recurrent hypoxia. Data from this study allowed us to: (1) test the hypothesis that Thaumarchaeota would be abundant in this region; (2) assess phylogenetic composition of these populations for comparison with other regions; (3) compare the efficacy of quantitative PCR (qPCR) based on primers for 16S rRNA genes (rrs) with primers for genes in the ammonia oxidation (amoA) and carbon fixation (accA, hcd) pathways; (4) compare distributions obtained by qPCR with the relative abundance of Thaumarchaeota rrs in pyrosequenced libraries; (5) compare Thaumarchaeota distributions with environmental variables to help us elucidate the factors responsible for the distributions; (6) compare the distribution of Thaumarchaeota with Nitrite-Oxidizing Bacteria (NOB) to gain insight into the coupling between ammonia and nitrite oxidation. We found up to 108 copies L−1 of Thaumarchaeota rrs in our samples (up to 40% of prokaryotes) by qPCR, with maximum abundance in slope waters at 200–800 m. Thaumarchaeota rrs were also abundant in pyrosequenced libraries and their relative abundance correlated well with values determined by qPCR (r2 = 0.82). Thaumarchaeota populations were strongly stratified by depth. Canonical correspondence analysis using a suite of environmental variables explained 92% of the variance in qPCR-estimated gene abundances. Thaumarchaeota rrs abundance was correlated with salinity and depth, while accA abundance correlated with fluorescence and pH. Correlations of Archaeal amoA abundance with environmental variables were primer-dependent, suggesting differential responses of sub-populations to environmental variables. Bacterial amoA was at the limit of qPCR detection in most samples. NOB and Euryarchaeota rrs were found in the pyrosequenced libraries; NOB distribution was correlated with that of Thaumarchaeota (r2 = 0.49).
Collapse
Affiliation(s)
- Bradley B Tolar
- Department of Marine Sciences, University of Georgia Athens, GA, USA ; Department of Microbiology, University of Georgia Athens, GA, USA
| | | | | |
Collapse
|