1
|
Yang J, Zhang S, Geng L, Zhao D, Xing S, Ji X, Yan L. Comparative genomics analysis of the reason for 12C 6+ heavy-ion irradiation in improving Fe 3O 4 nanoparticle yield of Acidithiobacillus ferrooxidans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117668. [PMID: 39799915 DOI: 10.1016/j.ecoenv.2025.117668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
The Fe3O4 nanoparticle synthesized by Acidithiobacillus ferrooxidans have a broad practical value, while the low yield limits their commercial application. Herein, we employed a 12C6+ heavy-ion beam to induce mutagenesis of A. ferrooxidans BYM and successfully screened a mutant BYMT-200 with a 1.36 mg/L Fe3O4 nanoparticle yield, which could stably inherit over many generations based on assessing cell magnetism and Fe3O4 nanoparticle synthesis. Comparative genome analysis detected 14 mutation sites, causing six synonymous mutations, one missense mutation, and one nonsense mutation. We further annotated the genes involved in the mutation, such as hcp, hsdM, yghU, K7B00_11365, and K7B00_11355, which are responsible for the substantial changes in the Fe3O4 nanoparticle yield of A. ferrooxidans. Additionally, we performed a pan-genome analysis to understand how these genes regulate Fe3O4 nanoparticle synthesis. The core genome of 2376 orthologous clusters was identified and visualized by progressive Mauve alignment and OrthoVenn. A total of 109 regulatory genes related to iron metabolism were identified, mainly involved in electron transport, iron acquisition, iron storage, and oxidative stress. The mutant genes are closely related to iron-sulfur clusters and oxidative stress. Accordingly, we proposed a hypothetical mechanism for increasing Fe3O4 nanoparticle production in A. ferrooxidans BYMT-200 to withstand high oxidative stress caused by heavy ion radiation. Our study offers significant theoretical guidance for further acquiring the high-yield Fe3O4 nanoparticle-producing bacteria and studying the mechanism of its synthesis.
Collapse
Affiliation(s)
- Jiani Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| | - Lirong Geng
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Siyu Xing
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Low‑carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Xinyue Ji
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Low‑carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
2
|
Zhou X, Zhang L, Zhang P, Xu H, Song J, Chang Y, Cai T, Xie C. Comparative transcriptomic analysis revealed important processes underlying the static magnetic field effects on Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1390031. [PMID: 38863539 PMCID: PMC11165219 DOI: 10.3389/fpls.2024.1390031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
Static magnetic field (SMF) plays important roles in various biological processes of many organisms including plants, though the molecular mechanism remains largely unclear. Here in this study, we evaluated different magnetic setups to test their effects on growth and development on Arabidopsis (Arabidopsis thaliana), and discovered that plant growth was significantly enhanced by inhomogeneous SMF generated by a regular triangular prism magnet perpendicular to the direction of gravity. Comparative transcriptomic analysis revealed that auxin synthesis and signal transduction genes were upregulated by SMF exposure. SMF also facilitated plants to maintain the iron homeostasis. The expression of iron metabolism-related genes was downregulated by SMF, however, the iron content in plant tissues remains relatively unchanged. Furthermore, SMF exposure also helped the plants to reduce ROS level and synergistically maintain the oxidant balance by enhanced activity of antioxidant enzymes and accumulation of nicotinamide. Taken together, our data suggested that SMF is involved in regulating the growth and development of Arabidopsis thaliana through maintaining iron homeostasis and balancing oxidative stress, which could be beneficial for plant survival and growth. The work presented here would extend our understanding of the mechanism and the regulatory network of how magnetic field affects the plant growth, which would provide insights into the development of novel plant synthetic biology technologies to engineer stress-resistant and high-yielding crops.
Collapse
Affiliation(s)
- Xiujuan Zhou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Lin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China
| | - Peng Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Hang Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jialei Song
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yafei Chang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Tiantian Cai
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Institute of Quantum Sensing, Zhejiang University, Hangzhou, China
| | - Can Xie
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Institute of Quantum Sensing, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Dziuba MV, Müller FD, Pósfai M, Schüler D. Exploring the host range for genetic transfer of magnetic organelle biosynthesis. NATURE NANOTECHNOLOGY 2024; 19:115-123. [PMID: 37735601 DOI: 10.1038/s41565-023-01500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/04/2023] [Indexed: 09/23/2023]
Abstract
Magnetosomes produced by magnetotactic bacteria have great potential for application in biotechnology and medicine due to their unique physicochemical properties and high biocompatibility. Attempts to transfer the genes for magnetosome biosynthesis into non-magnetic organisms have had mixed results. Here we report on a systematic study to identify key components needed for magnetosome biosynthesis after gene transfer. We transfer magnetosome genes to 25 proteobacterial hosts, generating seven new magnetosome-producing strains. We characterize the recombinant magnetosomes produced by these strains and demonstrate that denitrification and anaerobic photosynthesis are linked to the ability to synthesize magnetosomes upon the gene transfer. In addition, we show that the number of magnetosomes synthesized by a foreign host negatively correlates with the guanine-cytosine content difference between the host and the gene donor. Our findings have profound implications for the generation of magnetized living cells and the potential for transgenic biogenic magnetic nanoparticle production.
Collapse
Affiliation(s)
- Marina V Dziuba
- Department of Microbiology, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, Bayreuth, Germany
| | - Frank-Dietrich Müller
- Department of Microbiology, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, Bayreuth, Germany
| | - Mihály Pósfai
- ELKH-PE Environmental Mineralogy Research Group, Veszprém, Hungary
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary
| | - Dirk Schüler
- Department of Microbiology, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
4
|
Shabrangy A. Using Magnetic Fields to Enhance the Seed Germination, Growth, and Yield of Plants. Methods Mol Biol 2024; 2788:375-395. [PMID: 38656526 DOI: 10.1007/978-1-0716-3782-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Geomagnetic field (GMF) protects living organisms on the Earth from the radiation coming from space along with other environmental factors during evolution, and it has affected the growth and development of plants. Many researchers have always been interested in investigating these effects in different aspects. In this chapter, we focus on the methods of using different types of magnetic fields (MFs) to investigate the dimensions of their biological effects on plants. The aim is to increase seed germination, growth characters, and yield of plants using the following methods: (1) Using MFs lower than GMF to study effects of GMF on the growth and yield of plants. (2) Using reversed magnetic fields (RMFs) lower than GMF to study its effects on the growth and development of plants during evolution. (3) Using static magnetic fields (SMFs) higher than GMF and reversed SMFs to study effects of the south (S) and north (N) magnetic pole on plants. (4) Using electromagnetic fields (EMFs) to increase and accelerate seed germination, growth, and yield of plants, and establish the status of plants against other environmental stresses. (5) Using magnetized water (MW) to improve plant seed germination, growth, and yield. (6) Using high gradient magnetic field (HGMF) to study magneto-tropism in plants. In this chapter, we recommend application of various types of MFs to study their biological effects on plants to improve crop production.
Collapse
Affiliation(s)
- Azita Shabrangy
- Plant Functional Genomics Lab, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| |
Collapse
|
5
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
6
|
Masó-Martínez M, Fryer B, Aubert D, Peacock B, Lees R, Rance GA, Fay MW, Topham PD, Fernández-Castané A. Evaluation of cell disruption technologies on magnetosome chain length and aggregation behaviour from Magnetospirillum gryphiswaldense MSR-1. Front Bioeng Biotechnol 2023; 11:1172457. [PMID: 37214292 PMCID: PMC10192567 DOI: 10.3389/fbioe.2023.1172457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Magnetosomes are biologically-derived magnetic nanoparticles (MNPs) naturally produced by magnetotactic bacteria (MTB). Due to their distinctive characteristics, such as narrow size distribution and high biocompatibility, magnetosomes represent an attractive alternative to existing commercially-available chemically-synthesized MNPs. However, to extract magnetosomes from the bacteria, a cell disruption step is required. In this study, a systematic comparison between three disruption techniques (enzymatic treatment, probe sonication and high-pressure homogenization) was carried out to study their effect on the chain length, integrity and aggregation state of magnetosomes isolated from Magnetospirillum gryphiswaldense MSR-1 cells. Experimental results revealed that all three methodologies show high cell disruption yields (>89%). Transmission electron microscopy (TEM), dynamic light scattering (DLS) and, for the first time, nano-flow cytometry (nFCM) were employed to characterize magnetosome preparations after purification. TEM and DLS showed that high-pressure homogenization resulted in optimal conservation of chain integrity, whereas enzymatic treatment caused higher chain cleavage. The data obtained suggest that nFCM is best suited to characterize single membrane-wrapped magnetosomes, which can be particularly useful for applications that require the use of individual magnetosomes. Magnetosomes were also successfully labelled (>90%) with the fluorescent CellMask™ Deep Red membrane stain and analysed by nFCM, demonstrating the promising capacity of this technique as a rapid analytical tool for magnetosome quality assurance. The results of this work contribute to the future development of a robust magnetosome production platform.
Collapse
Affiliation(s)
- Marta Masó-Martínez
- Energy and Bioproducts Research Institute, Aston University, Birmingham, United Kingdom
| | - Benjamin Fryer
- Energy and Bioproducts Research Institute, Aston University, Birmingham, United Kingdom
| | | | | | | | - Graham A. Rance
- Nanoscale and Microscale Research Centre (nmRC), University of Nottingham, Nottingham, United Kingdom
| | - Michael W. Fay
- Nanoscale and Microscale Research Centre (nmRC), University of Nottingham, Nottingham, United Kingdom
| | - Paul D. Topham
- Aston Institute of Materials Research, Aston University, Birmingham, United Kingdom
| | | |
Collapse
|
7
|
He S, Yang J, Fan X, Lu D, Zhang S, Yan L. Magnetosome yield characteristics modeling of acidithiobacillus ferrooxidans in airlift bioreactor using response surface methodology. J Biomater Appl 2023; 37:1325-1338. [PMID: 36250565 DOI: 10.1177/08853282221133647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial magnetosomes had been proved to have great application potential in medicine and biotechnology. The objective of the present study was to obtain high yield of magnetosomes from Acidithiobacillus ferrooxidans (A. ferrooxidans) BYM in an airlift bioreactor using response surface methodology (RSM). The magnetosomes from A. ferrooxidans BYM were characterized using a transmission electron microscope and scanning electron microscopy. The maximum magnetosome yield of 0.4267 mg/L was achieved at ventilation capacity of 3.6 L/min and gluconic acid concentration of 10 mmol/L at 25oC. The correlation coefficient (R2) value of 0.8676 of the obtained model suggested a good correlation between the actual and predicted magnetosome yield. The confirmation experiment confirmed that the actual magnetosome yield of 0.391 mg/L obtained were in agreement with the predicted value of 0.398 mg/L. These results suggested that RSM can be employed to find out the optimum conditions for magnetosome formation in airlift bioreactor.
Collapse
Affiliation(s)
- Shuangjun He
- 91625Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Jiani Yang
- 91625Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Xinxin Fan
- 91625Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Dong Lu
- 53045Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shuang Zhang
- 91625Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Lei Yan
- 91625Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, PR China
| |
Collapse
|
8
|
de Souza Cabral A, Verdan M, Presciliano R, Silveira F, Correa T, Abreu F. Large-Scale Cultivation of Magnetotactic Bacteria and the Optimism for Sustainable and Cheap Approaches in Nanotechnology. Mar Drugs 2023; 21:60. [PMID: 36827100 PMCID: PMC9961000 DOI: 10.3390/md21020060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Magnetotactic bacteria (MTB), a diverse group of marine and freshwater microorganisms, have attracted the scientific community's attention since their discovery. These bacteria biomineralize ferrimagnetic nanocrystals, the magnetosomes, or biological magnetic nanoparticles (BMNs), in a single or multiple chain(s) within the cell. As a result, cells experience an optimized magnetic dipolar moment responsible for a passive alignment along the lines of the geomagnetic field. Advances in MTB cultivation and BMN isolation have contributed to the expansion of the biotechnological potential of MTB in recent decades. Several studies with mass-cultured MTB expanded the possibilities of using purified nanocrystals and whole cells in nano- and biotechnology. Freshwater MTB were primarily investigated in scaling up processes for the production of BMNs. However, marine MTB have the potential to overcome freshwater species applications due to the putative high efficiency of their BMNs in capturing molecules. Regarding the use of MTB or BMNs in different approaches, the application of BMNs in biomedicine remains the focus of most studies, but their application is not restricted to this field. In recent years, environment monitoring and recovery, engineering applications, wastewater treatment, and industrial processes have benefited from MTB-based biotechnologies. This review explores the advances in MTB large-scale cultivation and the consequent development of innovative tools or processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
9
|
Biomineralization and biotechnological applications of bacterial magnetosomes. Colloids Surf B Biointerfaces 2022; 216:112556. [PMID: 35605573 DOI: 10.1016/j.colsurfb.2022.112556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 05/07/2022] [Indexed: 01/13/2023]
Abstract
Magnetosomes intracellularly biomineralized by Magnetotactic bacteria (MTB) are membrane-enveloped nanoparticles of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4). MTB thrive in oxic-anoxic interface and exhibit magnetotaxis due to the presence of magnetosomes. Because of the unique characteristic and bionavigation inspiration of magnetosomes, MTB has been a subject of study focused on by biologists, medical pharmacologists, geologists, and physicists since the discovery. We herein first briefly review the features of MTB and magnetosomes. The recent insights into the process and mechanism for magnetosome biomineralization including iron uptake, magnetosome membrane invagination, iron mineralization and magnetosome chain assembly are summarized in detail. Additionally, the current research progress in biotechnological applications of magnetosomes is also elucidated, such as drug delivery, MRI image contrast, magnetic hyperthermia, wastewater treatment, and cell separation. This review would expand our understanding of biomineralization and biotechnological applications of bacterial magnetosomes.
Collapse
|
10
|
Abstract
Magnetotactic bacteria (MTB) belong to several phyla. This class of microorganisms exhibits the ability of magneto-aerotaxis. MTB synthesize biominerals in organelle-like structures called magnetosomes, which contain single-domain crystals of magnetite (Fe3O4) or greigite (Fe3S4) characterized by a high degree of structural and compositional perfection. Magnetosomes from dead MTB could be preserved in sediments (called fossil magnetosomes or magnetofossils). Under certain conditions, magnetofossils are capable of retaining their remanence for millions of years. This accounts for the growing interest in MTB and magnetofossils in paleo- and rock magnetism and in a wider field of biogeoscience. At the same time, high biocompatibility of magnetosomes makes possible their potential use in biomedical applications, including magnetic resonance imaging, hyperthermia, magnetically guided drug delivery, and immunomagnetic analysis. In this review, we attempt to summarize the current state of the art in the field of MTB research and applications.
Collapse
|
11
|
Fernández-Castané A, Li H, Joseph S, Ebeler M, Franzreb M, Bracewell DG, Overton TW, Thomas OR. Nanoparticle tracking analysis as a process analytical tool for characterising magnetosome preparations. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Maluckov BS. Biorecovery of nanogold and nanogold compounds from gold-containing ores and industrial wastes. Appl Microbiol Biotechnol 2021; 105:3471-3484. [PMID: 33880600 DOI: 10.1007/s00253-021-11277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 02/20/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Abstract
In nature, microorganisms developed at various places and adapted to the various weather and geological conditions. Microorganisms participate in geological transformations leading to the dissolution of some minerals and conversion to others. While some microorganisms with their metabolic activity increase the mobility of metals, others cause precipitation of metals and the formation of new minerals. These biogeochemical interactions found practical application in the recovery of metals. In the article, the proposals for improvement of existing engineering commercial processes for recovery of metals are given which can enable the formation of nanogold and nanogold compounds.Key points• Amino acids in pretreatment can increase the dissolution of the layer around the gold.• Amino acids in the complexing stage can increase gold leaching.• After the complexing stage, the bionanosynthesis of gold and its compounds is possible.
Collapse
Affiliation(s)
- Biljana S Maluckov
- Technical Faculty in Bor, University of Belgrade, Vojske Jugoslavije 12, Bor, 19210, Serbia.
| |
Collapse
|
13
|
Liu P, Tamaxia A, Liu Y, Qiu H, Pan J, Jin Z, Zhao X, Roberts AP, Pan Y, Li J. Identification and characterization of magnetotactic Gammaproteobacteria from a salt evaporation pool, Bohai Bay, China. Environ Microbiol 2021; 24:938-950. [PMID: 33876543 DOI: 10.1111/1462-2920.15516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 11/27/2022]
Abstract
Magnetotactic bacteria (MTB) are phylogenetically diverse prokaryotes that can produce intracellular chain-assembled nanocrystals of magnetite (Fe3 O4 ) or greigite (Fe3 S4 ). Compared with their wide distribution in the Alpha-, Eta- and Delta-proteobacteria classes, few MTB strains have been identified in the Gammaproteobacteria class, resulting in limited knowledge of bacterial diversity and magnetosome biomineralization within this phylogenetic branch. Here, we identify two magnetotactic Gammaproteobacteria strains (tentatively named FZSR-1 and FZSR-2 respectively) from a salt evaporation pool in Bohai Bay, at the Fuzhou saltern, Dalian City, eastern China. Phylogenetic analysis indicates that strain FZSR-2 is the same species as strains SHHR-1 and SS-5, which were discovered previously from brackish and hypersaline environments respectively. Strain FZSR-1 represents a novel species. Compared with strains FZSR-2, SHHR-1 and SS-5 in which magnetite particles are assembled into a single chain, FZSR-1 cells form relatively narrower magnetite nanoparticles that are often organized into double chains. We find a good relationship between magnetite morphology within strains FZSR-2, SHHR-1 and SS-5 and the salinity of the environment in which they live. This study expands the bacterial diversity of magnetotactic Gammaproteobacteria and provides new insights into magnetosome biomineralization within magnetotactic Gammaproteobacteria.
Collapse
Affiliation(s)
- Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Alima Tamaxia
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Qiu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juntong Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongke Jin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Genome-Wide Identification of Essential and Auxiliary Gene Sets for Magnetosome Biosynthesis in Magnetospirillum gryphiswaldense. mSystems 2020; 5:5/6/e00565-20. [PMID: 33203687 PMCID: PMC7676999 DOI: 10.1128/msystems.00565-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Magnetospirillum gryphiswaldense is one of the few tractable model magnetotactic bacteria (MTB) for studying magnetosome biomineralization. So far, knowledge on the genetic determinants of this complex process has been mainly gathered using reverse genetics and candidate approaches. In contrast, nontargeted forward genetics studies are lacking, since application of such techniques in MTB has been complicated for a number of technical reasons. Here, we report on the first comprehensive transposon mutagenesis study in MTB, aiming at systematic identification of auxiliary genes necessary to support magnetosome formation in addition to key genes harbored in the magnetosome island (MAI). Our work considerably extends the candidate set of novel subsidiary determinants and shows that the full gene complement underlying magnetosome biosynthesis is larger than assumed. In particular, we were able to define certain cellular pathways as specifically important for magnetosome formation that have not been implicated in this process so far. Magnetotactic bacteria (MTB) stand out by their ability to manufacture membrane-enclosed magnetic organelles, so-called magnetosomes. Previously, it has been assumed that a genomic region of approximately 100 kbp, the magnetosome island (MAI), harbors all genetic determinants required for this intricate biosynthesis process. Recent evidence, however, argues for the involvement of additional auxiliary genes that have not been identified yet. In the present study, we set out to delineate the full gene complement required for magnetosome production in the alphaproteobacterium Magnetospirillum gryphiswaldense using a systematic genome-wide transposon mutagenesis approach. By an optimized procedure, a Tn5 insertion library of 80,000 clones was generated and screened, yielding close to 200 insertants with mild to severe impairment of magnetosome biosynthesis. Approximately 50% of all Tn5 insertion sites mapped within the MAI, mostly leading to a nonmagnetic phenotype. In contrast, in the majority of weakly magnetic Tn5 insertion mutants, genes outside the MAI were affected, which typically caused lower numbers of magnetite crystals with partly aberrant morphology, occasionally combined with deviant intracellular localization. While some of the Tn5-struck genes outside the MAI belong to pathways that have been linked to magnetosome formation before (e.g., aerobic and anaerobic respiration), the majority of affected genes are involved in so far unsuspected cellular processes, such as sulfate assimilation, oxidative protein folding, and cytochrome c maturation, or are altogether of unknown function. We also found that signal transduction and redox functions are enriched in the set of Tn5 hits outside the MAI, suggesting that such processes are particularly important in support of magnetosome biosynthesis. IMPORTANCEMagnetospirillum gryphiswaldense is one of the few tractable model magnetotactic bacteria (MTB) for studying magnetosome biomineralization. So far, knowledge on the genetic determinants of this complex process has been mainly gathered using reverse genetics and candidate approaches. In contrast, nontargeted forward genetics studies are lacking, since application of such techniques in MTB has been complicated for a number of technical reasons. Here, we report on the first comprehensive transposon mutagenesis study in MTB, aiming at systematic identification of auxiliary genes necessary to support magnetosome formation in addition to key genes harbored in the magnetosome island (MAI). Our work considerably extends the candidate set of novel subsidiary determinants and shows that the full gene complement underlying magnetosome biosynthesis is larger than assumed. In particular, we were able to define certain cellular pathways as specifically important for magnetosome formation that have not been implicated in this process so far.
Collapse
|
15
|
Basit A, Wang J, Guo F, Niu W, Jiang W. Improved methods for mass production of magnetosomes and applications: a review. Microb Cell Fact 2020; 19:197. [PMID: 33081818 PMCID: PMC7576704 DOI: 10.1186/s12934-020-01455-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Magnetotactic bacteria have the unique ability to synthesize magnetosomes (nano-sized magnetite or greigite crystals arranged in chain-like structures) in a variety of shapes and sizes. The chain alignment of magnetosomes enables magnetotactic bacteria to sense and orient themselves along geomagnetic fields. There is steadily increasing demand for magnetosomes in the areas of biotechnology, biomedicine, and environmental protection. Practical difficulties in cultivating magnetotactic bacteria and achieving consistent, high-yield magnetosome production under artificial environmental conditions have presented an obstacle to successful development of magnetosome applications in commercial areas. Here, we review information on magnetosome biosynthesis and strategies for enhancement of bacterial cell growth and magnetosome formation, and implications for improvement of magnetosome yield on a laboratory scale and mass-production (commercial or industrial) scale.
Collapse
Affiliation(s)
- Abdul Basit
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
- Department of Microbiology, Faculty of Life Sciences, University of Okara, Okara, 56130 Pakistan
| | - Jiaojiao Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, BJ People’s Republic of China
| | - Wei Niu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Wei Jiang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
16
|
Jacob JJ, Suthindhiran K. Diversity of Uncultured Magnetospirillum sp. from the Sediments of South Kerala Sedimentary Basin, India. Curr Microbiol 2020; 77:2456-2464. [PMID: 32591924 DOI: 10.1007/s00284-020-02098-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/18/2020] [Indexed: 11/26/2022]
Abstract
Studies on the geographic distribution of Magnetotactic bacteria (MTB) revealed their ubiquitous presence in diverse habitats on all continents. However, little is known about MTB inhabitation in the Indian coastal ecosystem. Here, we investigate the diversity of Magnetospirillum sp. from the iron mineral sediments deposit of the South Kerala sedimentary basin, India using culture-independent methods. The collected sediment samples were analysed for the presence of nitrate (zinc reduction), sulphide (cline method), Fe2+, total iron (ferrozine assay) and iron minerals (XRD analysis). Based on the geochemical measurements, the sediment possesses major factors such as nutrients, pH, temperature and chemical gradients in metabolic accessible form for MTB. The cubo-octahedral crystals of the magnetosome are also evident from the TEM micrographs of magnetically enriched sediment. CARD-FISH analysis showed the presence of Magnetospirillum in all the six samples analysed. Phylogenetic analysis based on 16S rRNA gene library showed that the clones belong to the class Alphaproteobacteria and are members of the genus Magnetospirillum. The results of the species-specific PCR study are consistent with CARD-FISH analysis and the identified uncultured Magnetospirillum were morphologically and phylogenetically similar to the isolates from diverse habitat. The identification of Magnetospirillum from Indian coast supports the hypothesis of wide geographic distribution of these bacteria.
Collapse
Affiliation(s)
- Jobin J Jacob
- Marine Biotechnology and Bioproducts Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - K Suthindhiran
- Marine Biotechnology and Bioproducts Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
17
|
Berny C, Le Fèvre R, Guyot F, Blondeau K, Guizonne C, Rousseau E, Bayan N, Alphandéry E. A Method for Producing Highly Pure Magnetosomes in Large Quantity for Medical Applications Using Magnetospirillum gryphiswaldense MSR-1 Magnetotactic Bacteria Amplified in Minimal Growth Media. Front Bioeng Biotechnol 2020; 8:16. [PMID: 32133346 PMCID: PMC7041420 DOI: 10.3389/fbioe.2020.00016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
We report the synthesis in large quantity of highly pure magnetosomes for medical applications. For that, magnetosomes are produced by MSR-1 Magnetospirillum gryphiswaldense magnetotactic bacteria using minimal growth media devoid of uncharacterized and toxic products prohibited by pharmaceutical regulation, i.e., yeast extract, heavy metals different from iron, and carcinogenic, mutagenic and reprotoxic agents. This method follows two steps, during which bacteria are first pre-amplified without producing magnetosomes and are then fed with an iron source to synthesize magnetosomes, yielding, after 50 h of growth, an equivalent OD565 of ~8 and 10 mg of magnetosomes in iron per liter of growth media. Compared with magnetosomes produced in non-minimal growth media, those particles have lower concentrations in metals other than iron. Very significant reduction or disappearance in magnetosome composition of zinc, manganese, barium, and aluminum are observed. This new synthesis method paves the way towards the production of magnetosomes for medical applications.
Collapse
Affiliation(s)
- Clément Berny
- Nanobacterie SARL, Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | - François Guyot
- Paris Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Karine Blondeau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | | | - Nicolas Bayan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Edouard Alphandéry
- Nanobacterie SARL, Paris, France
- Paris Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| |
Collapse
|
18
|
Abstract
Many species of bacteria can manufacture materials on a finer scale than those that are synthetically made. These products are often produced within intracellular compartments that bear many hallmarks of eukaryotic organelles. One unique and elegant group of organisms is at the forefront of studies into the mechanisms of organelle formation and biomineralization. Magnetotactic bacteria (MTB) produce organelles called magnetosomes that contain nanocrystals of magnetic material, and understanding the molecular mechanisms behind magnetosome formation and biomineralization is a rich area of study. In this Review, we focus on the genetics behind the formation of magnetosomes and biomineralization. We cover the history of genetic discoveries in MTB and key insights that have been found in recent years and provide a perspective on the future of genetic studies in MTB.
Collapse
Affiliation(s)
- Hayley C. McCausland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Arash Komeili
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
19
|
Jin Y, Guo W, Hu X, Liu M, Xu X, Hu F, Lan Y, Lv C, Fang Y, Liu M, Shi T, Ma S, Fang Z, Huang J. Static magnetic field regulates Arabidopsis root growth via auxin signaling. Sci Rep 2019; 9:14384. [PMID: 31591431 PMCID: PMC6779896 DOI: 10.1038/s41598-019-50970-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Static magnetic field (SMF) plays important roles in biological processes of many living organisms. In plants, however, biological significance of SMF and molecular mechanisms underlying SMF action remain largely unknown. To address these questions, we treated Arabidopsis young seedlings with different SMF intensities and directions. Magnetic direction from the north to south pole was adjusted in parallel (N0) with, opposite (N180) and perpendicular to the gravity vector. We discovered that root growth is significantly inhanced by 600 mT treatments except for N180, but not by any 300 mT treatments. N0 treatments lead to more active cell division of the meristem, and higher auxin content that is regulated by coordinated expression of PIN3 and AUX1 in root tips. Consistently, N0-promoted root growth disappears in pin3 and aux1 mutants. Transcriptomic and gene ontology analyses revealed that in roots 85% of the total genes significantly down-regulated by N0 compared to untreatment are enriched in plastid biological processes, such as metabolism and chloroplast development. Lastly, no difference in root length is observed between N0-treated and untreated roots of the double cryptochrome mutant cry1 cry2. Taken together, our data suggest that SMF-regulated root growth is mediated by CRY and auxin signaling pathways in Arabidopsis.
Collapse
Affiliation(s)
- Yue Jin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wei Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xupeng Hu
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiang Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Fenhong Hu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yiheng Lan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chenkai Lv
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yanwen Fang
- Heye Health Industrial Research Institute of Zhejiang Heye Health Technology, Anji, Zhejiang, 313300, China
| | - Mengyu Liu
- Heye Health Industrial Research Institute of Zhejiang Heye Health Technology, Anji, Zhejiang, 313300, China
| | - Tieliu Shi
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shisong Ma
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Zhicai Fang
- Heye Health Industrial Research Institute of Zhejiang Heye Health Technology, Anji, Zhejiang, 313300, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
20
|
Abreu F, Leão P, Vargas G, Cypriano J, Figueiredo V, Enrich-Prast A, Bazylinski DA, Lins U. Culture-independent characterization of a novel magnetotactic member affiliated to the Beta class of the Proteobacteria phylum from an acidic lagoon. Environ Microbiol 2019; 20:2615-2624. [PMID: 29806735 DOI: 10.1111/1462-2920.14286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/08/2018] [Accepted: 03/22/2018] [Indexed: 01/22/2023]
Abstract
Magnetotactic bacteria (MTB) comprise a group of motile microorganisms common in most mesothermal aquatic habitats with pH values around neutrality. However, during the last two decades, a number of MTB from extreme environments have been characterized including: cultured alkaliphilic strains belonging to the Deltaproteobacteria class of the Proteobacteria phylum; uncultured moderately thermophilic strains belonging to the Nitrospirae phylum; cultured and uncultured moderately halophilic or strongly halotolerant bacteria affiliated with the Deltaproteobacteria and Gammaproteobacteria classes and an uncultured psychrophilic species belonging to the Alphaproteobacteria class. Here, we used culture-independent techniques to characterize MTB from an acidic freshwater lagoon in Brazil (pH ∼ 4.4). MTB morphotypes found in this acidic lagoon included cocci, rods, spirilla and vibrioid cells. Magnetite (Fe3 O4 ) was the only mineral identified in magnetosomes of these MTB while magnetite magnetosome crystal morphologies within the different MTB cells included cuboctahedral (present in spirilla), elongated prismatic (present in cocci and vibrios) and bullet-shaped (present in rod-shaped cells). Intracellular pH measurements using fluorescent dyes showed that the cytoplasmic pH was close to neutral in most MTB cells and acidic in some intracellular granules. Based on 16S rRNA gene phylogenetic analyses, some of the retrieved gene sequences belonged to the genus Herbaspirillum within the Betaproteobacteria class of the Proteobacteria phylum. Fluorescent in situ hybridization using a Herbaspirillum-specific probe hybridized with vibrioid MTB in magnetically-enriched samples. Transmission electron microscopy of the Herbaspirillum-like MTB revealed the presence of many intracellular granules and a single chain of elongated prismatic magnetite magnetosomes. Diverse populations of MTB have not seemed to have been described in detail in an acid environment. In addition, this is the first report of an MTB phylogenetically affiliated with Betaproteobacteria class.
Collapse
Affiliation(s)
- Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Gabriele Vargas
- Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Jefferson Cypriano
- Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Viviane Figueiredo
- Instituto de Biologia, Departamento de Botânica, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Alex Enrich-Prast
- Instituto de Biologia, Departamento de Botânica, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil.,Department of Thematic Studies - Environmental Change, Linköping University, Linköping, c- 58183, Sweden
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Ulysses Lins
- Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
21
|
Jajan LHG, Hosseini SN, Ghorbani M, Mousavi SF, Ghareyazie B, Abolhassani M. Effects of Environmental Conditions on High-Yield Magnetosome Production by Magnetospirillum gryphiswaldense MSR-1. IRANIAN BIOMEDICAL JOURNAL 2019. [PMID: 30797225 PMCID: PMC6462302 DOI: 10.29252/.23.3.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background Magnetotactic bacteria are a heterogeneous group of Gram-negative prokaryote cells that produce linear chains of magnetic particles called magnetosomes, intracellular organelles composed of magnetic iron particles. Many important applications have been defined for magnetic nanoparticles in biotechnology, such as cell separation applications, as well as acting as carriers of enzymes, antibodies, or anti-cancer drugs. Since the bacterial growth is difficult and the yield of magnetosome production is low, the application of magnetosome has not been developed on a commercial scale. Methods Magnetospirillum gryphiswaldense strain MSR-1 was used in a modified current culture medium supplemented by different concentrations of oxygen, iron, carbon, and nitrogen, to increase the yield of magnetosomes. Results Our improved MSR-1 culture medium increased magnetosome yield, magnetosome number per bacterial cell, magnetic response, and bacterial cell growth yield significantly. The yield of magnetosome increased approximately four times. The optimized culture medium containing 25 mM of Na-pyruvate, 40 mM of NaNO3, 200 µM of ferrous sulfate, and 5-10 ppm of dissolved oxygen (DO) resulted in 186.67 mg of magnetosome per liter of culture medium. The iron uptake increased significantly, and the magnetic response of the bacteria to the magnetic field was higher than threefold as compared to the previously reported procedures. Conclusion This technique not only decreases the cultivation time but also reduces the production cost. In this modified method, the iron and DO are the major factors affecting the production of magnetosome by M. gryphiswaldense strain MSR-1. However, refining this technique will enable a further yield of magnetosome and cell density.
Collapse
Affiliation(s)
- Leila Hatami-Giklou Jajan
- Department of Research and Development, Research and Production Complex, Pasteur Institute of Iran, Karaj, Iran
| | - Seyed Nezamedin Hosseini
- Department of Research and Development, Research and Production Complex, Pasteur Institute of Iran, Karaj, Iran
| | - Masoud Ghorbani
- Department of Research and Development, Research and Production Complex, Pasteur Institute of Iran, Karaj, Iran
| | | | - Behzad Ghareyazie
- Agriculture Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Abolhassani
- Hybridoma Lab., Department of immunology, Pasteur Institute of Iran, Tehran, Iran,Corresponding Author: Mohsen Abolhassani Hybridoma Lab. Dept. of Immunology, Pasteur Institute of Iran, Tehran, Iran; E-mail:
| |
Collapse
|
22
|
Olszewska-Widdrat A, Schiro G, Reichel VE, Faivre D. Reducing Conditions Favor Magnetosome Production in Magnetospirillum magneticum AMB-1. Front Microbiol 2019; 10:582. [PMID: 30984131 PMCID: PMC6450187 DOI: 10.3389/fmicb.2019.00582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/07/2019] [Indexed: 01/06/2023] Open
Abstract
Magnetotactic bacteria (MTB) are a heterogeneous group of Gram-negative prokaryotes, which all produce special magnetic organelles called magnetosomes. The magnetosome consists of a magnetic nanoparticle, either magnetite (Fe3O4) or greigite (Fe3S4), embedded in a membrane, which renders the systems colloidaly stable, a desirable property for biotechnological applications. Although these bacteria are able to regulate the formation of magnetosomes through a biologically-controlled mechanism, the environment in general and the physico–chemical conditions surrounding the cells in particular also influence biomineralization. This work thus aims at understanding how such external conditions, in particular the extracellular oxidation reduction potential, influence magnetite formation in the strain Magnetospirillum magneticum AMB-1. Controlled cultivation of the microorganisms was performed at different redox potential in a bioreactor and the formation of magnetosomes was assessed by microscopic and spectroscopic techniques. Our results show that the formation of magnetosomes is inhibited at the highest potential tested (0 mV), whereas biomineralization is facilitated under reduced conditions (-500 mV). This result improves the understanding of the biomineralization process in MTB and provides useful information in sight of a large scale production of magnetosomes for different applications.
Collapse
Affiliation(s)
| | - Gabriele Schiro
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
| | - Victoria E Reichel
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
| | - Damien Faivre
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany.,Aix-Marseille University, CEA, CNRS, BIAM, Saint-Paul-lés-Durance, France
| |
Collapse
|
23
|
Magnetic-field induced rotation of magnetosome chains in silicified magnetotactic bacteria. Sci Rep 2018; 8:7699. [PMID: 29769616 PMCID: PMC5955880 DOI: 10.1038/s41598-018-25972-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
Understanding the biological processes enabling magnetotactic bacteria to maintain oriented chains of magnetic iron-bearing nanoparticles called magnetosomes is a major challenge. The study aimed to constrain the role of an external applied magnetic field on the alignment of magnetosome chains in Magnetospirillum magneticum AMB-1 magnetotactic bacteria immobilized within a hydrated silica matrix. A deviation of the chain orientation was evidenced, without significant impact on cell viability, which was preserved after the field was turned-off. Transmission electron microscopy showed that the crystallographic orientation of the nanoparticles within the chains were preserved. Off-axis electron holography evidenced that the change in magnetosome orientation was accompanied by a shift from parallel to anti-parallel interactions between individual nanocrystals. The field-induced destructuration of the chain occurs according to two possible mechanisms: (i) each magnetosome responds individually and reorients in the magnetic field direction and/or (ii) short magnetosome chains deviate in the magnetic field direction. This work enlightens the strong dynamic character of the magnetosome assembly and widens the potentialities of magnetotactic bacteria in bionanotechnology.
Collapse
|
24
|
Islam T, Peng C, Ali I. Morphological and cellular diversity of magnetotactic bacteria: A review. J Basic Microbiol 2017; 58:378-389. [PMID: 29112284 DOI: 10.1002/jobm.201700383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 11/12/2022]
Abstract
Magnetotactic bacteria (MTB) are getting much attention in the recent years due to the biomineralization in their magnetosomes (MS). MS are unique organelles that are bio-mineralized due to MTB. MS contains nanosized crystal minerals of magnetite or greigite covered by bilayer lipid membrane, which are originated from cytoplasmic membrane (CM). MS are organized as an ordered chain into the cell which acts as a miniature compass needle. Furthermore, the biodiversity of MTB and their distribution is principally linked with the characteristics and growths of the MS. MTB are often considered as a part of the bacterial biomass from all of the aquatic environments. There have been a lot of genes that control the functions of MTB by accumulating as clusters of genomes such as magnetosomes genomic island (MAI). Therefore, in the present review, the function of the genes and proteins has been highlighted, which are mainly associated with the construction and formation of MS. In addition, the biodiversity, morphology and cell biology of MTB is discussed in greater detail to understand the formation of MS crystals by MTB.
Collapse
Affiliation(s)
- Tariqul Islam
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Changsheng Peng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Imran Ali
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
25
|
Talib A, Khan Z, Bokhari H, Hidayathula S, Jilani G, Khan AA. Respiring cellular nano-magnets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:526-531. [PMID: 28866196 DOI: 10.1016/j.msec.2017.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 05/30/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022]
Abstract
Magnetotactic bacteria provide an interesting example for the biosynthesis of magnetic (Fe3O4 or Fe3S4) nanoparticles, synthesized through a process known as biologically controlled mineralization, resulting in complex monodispersed, and nanostructures with unique magnetic properties. In this work, we report a novel aerobic bacterial strain isolated from sludge of an oil refinery. Microscopic and staining analysis revealed that it was a gram positive rod with the capability to thrive in a medium (9K) supplemented, with Fe2+ ions at an acidic pH (~3.2). The magnetic behaviour of these cells was tested by their alignment towards a permanent magnet, and later on confirmed by magnetometry analysis. The X-ray diffraction studies proved the cellular biosynthesis of magnetite nanoparticles inside the bacteria. This novel, bio-nano-magnet, could pave the way for green synthesis of magnetic nanoparticles to be used in industrial and medical applications such as MRI, magnetic hyperthermia and ferrofluids.
Collapse
Affiliation(s)
- Ayesha Talib
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Tarlai Kalan, 45550 Islamabad, Pakistan
| | - Zanib Khan
- Department of Microbiology, Government Post Graduate College No. 2, Mandian, Abbottabad, Pakistan
| | - Habib Bokhari
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Tarlai Kalan, 45550 Islamabad, Pakistan
| | - Syed Hidayathula
- College of Pharmacy, King Saud University, 11362 Riyadh, Saudi Arabia
| | - Ghulam Jilani
- Department of Soil Sciences, Pir Mehr Ali Shah ARID Agriculture University, Shamsabad, Murree Road, Rawalpindi, Pakistan
| | - Abid Ali Khan
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Tarlai Kalan, 45550 Islamabad, Pakistan.
| |
Collapse
|
26
|
Abstract
Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field.
Collapse
|
27
|
Ali I, Peng C, Khan ZM, Naz I. Yield cultivation of magnetotactic bacteria and magnetosomes: A review. J Basic Microbiol 2017; 57:643-652. [PMID: 28464298 DOI: 10.1002/jobm.201700052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/11/2017] [Accepted: 04/09/2017] [Indexed: 11/11/2022]
Abstract
Magnetotactic bacteria (MTB) have started to be employed for the biosynthesis of magnetic nanoparticles, due to the rapidly increasing demand for nanoparticles in biomedical, biotechnology and environmental protection. MBT are the group of prokaryotes that have the ability to produce bio-magnetic minerals or bio-magnetic crystals of either magnetite (Fe3 O4 ) or greigite (Fe3 S4 ) in numerous shapes and size ranges, known as magnetosomes (MS). MS compel MTB to respond to the applied external magnetic field. However, it is extremely difficult to grow MTB and produce high yield of MS under artificial environmental conditions, thus creating a major hurdle to relocate MTB technology from laboratory scale to industrial or commercial level. Therefore, to best of our knowledge this review is the first attempt to highlight existing research developments about the laboratory scale and mass production of MS by MTB. Moreover, the optimum culture media and environmental conditions used for the cultivation of MTB were also considered. Finally, future research is encouraged for the improvement of MS yield which will result in the development of advanced nanotechnology/magnetotechnology.
Collapse
Affiliation(s)
- Imran Ali
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Changsheng Peng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Zahid M Khan
- Department of Agricultural Engineering, Bahauddin Zakariya University, Multan, Pakistan
| | - Iffat Naz
- Department of Biology, Scientific Unit, Deanship of Educational services, Qassim University, Buraidah, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Marcano L, García-Prieto A, Muñoz D, Fernández Barquín L, Orue I, Alonso J, Muela A, Fdez-Gubieda ML. Influence of the bacterial growth phase on the magnetic properties of magnetosomes synthesized by Magnetospirillum gryphiswaldense. Biochim Biophys Acta Gen Subj 2017; 1861:1507-1514. [PMID: 28093197 DOI: 10.1016/j.bbagen.2017.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/23/2016] [Accepted: 01/10/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND The magnetosome biosynthesis is a genetically controlled process but the physical properties of the magnetosomes can be slightly tuned by modifying the bacterial growth conditions. METHODS We designed two time-resolved experiments in which iron-starved bacteria at the mid-logarithmic phase are transferred to Fe-supplemented medium to induce the magnetosomes biogenesis along the exponential growth or at the stationary phase. We used flow cytometry to determine the cell concentration, transmission electron microscopy to image the magnetosomes, DC and AC magnetometry methods for the magnetic characterization, and X-ray absorption spectroscopy to analyze the magnetosome structure. RESULTS When the magnetosomes synthesis occurs during the exponential growth phase, they reach larger sizes and higher monodispersity, displaying a stoichiometric magnetite structure, as fingerprinted by the well defined Verwey temperature. On the contrary, the magnetosomes synthesized at the stationary phase reach smaller sizes and display a smeared Verwey transition, that suggests that these magnetosomes may deviate slightly from the perfect stoichiometry. CONCLUSIONS Magnetosomes magnetically closer to stoichiometric magnetite are obtained when bacteria start synthesizing them at the exponential growth phase rather than at the stationary phase. GENERAL SIGNIFICANCE The growth conditions influence the final properties of the biosynthesized magnetosomes. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- L Marcano
- Dpto. de Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, Leioa 48940, Spain
| | - A García-Prieto
- Dpto. de Física Aplicada I, Universidad del País Vasco - UPV/EHU, Bilbao 48013, Spain; BCMaterials, Parque tecnológico de Zamudio, Derio 48160, Spain
| | - D Muñoz
- Dpto. de Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, Leioa 48940, Spain; Dpto. de Inmunología, Microbiología y Parasitología, Universidad del País Vasco - UPV/EHU, Leioa 48940, Spain
| | | | - I Orue
- SGIker, Universidad del País Vasco - UPV/EHU, Leioa 48940, Spain
| | - J Alonso
- BCMaterials, Parque tecnológico de Zamudio, Derio 48160, Spain
| | - A Muela
- BCMaterials, Parque tecnológico de Zamudio, Derio 48160, Spain; Dpto. de Inmunología, Microbiología y Parasitología, Universidad del País Vasco - UPV/EHU, Leioa 48940, Spain
| | - M L Fdez-Gubieda
- Dpto. de Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, Leioa 48940, Spain; BCMaterials, Parque tecnológico de Zamudio, Derio 48160, Spain
| |
Collapse
|
29
|
Wang X, Wang Q, Zhang Y, Wang Y, Zhou Y, Zhang W, Wen T, Li L, Zuo M, Zhang Z, Tian J, Jiang W, Li Y, Wang L, Li J. Transcriptome analysis reveals physiological characteristics required for magnetosome formation in Magnetospirillum gryphiswaldense MSR-1. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:371-381. [PMID: 27043321 DOI: 10.1111/1758-2229.12395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Magnetosome synthesis ability of Magnetospirillum gryphiswaldense MSR-1 in an autofermentor can be precisely controlled through strict control of dissolved oxygen concentration. In this study, using transcriptome data we discovered gene transcriptional differences and compared physiological characteristics of MSR-1 cells cultured under aerobic (high-oxygen) and micro-aerobic (low-oxygen) conditions. The results showed that 77 genes were up-regulated and 95 genes were down-regulated significantly under micro-aerobic situation. These genes were involved primarily in the categories of cell metabolism, transport, regulation and unknown-function proteins. The nutrient transport and physiological metabolism were slowed down under micro-aerobic condition, whereas dissimilatory denitrification pathways were activated and it may supplemental energy was made available for magnetosome synthesis. The result suggested that the genes of magnetosome membrane proteins (Mam and Mms) are not directly regulated by oxygen level, or are constitutively expressed. A proposed regulatory network of differentially expressed genes reflects the complexity of physiological metabolism in MSR-1, and suggests that some yet-unknown functional proteins play important roles such as ferric iron uptake and transport during magnetosome synthesis. The transcriptome data provides a holistic view of the responses of MSR-1 cells to differing oxygen levels. This approach will give new insights into general principles of magnetosome formation.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Qing Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Yang Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Yinjia Wang
- Tianjin Biochip Corporation, Tianjin, 300457, P. R. China
| | - Yuan Zhou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Weijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Tong Wen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Li Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Meiqing Zuo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Ziding Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Jiesheng Tian
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Wei Jiang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Ying Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Lei Wang
- Tianjin Biochip Corporation, Tianjin, 300457, P. R. China
| | - Jilun Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| |
Collapse
|
30
|
Dong Y, Li J, Zhang W, Zhang W, Zhao Y, Xiao T, Wu LF, Pan H. The detection of magnetotactic bacteria in deep sea sediments from the east Pacific Manganese Nodule Province. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:239-249. [PMID: 26742990 DOI: 10.1111/1758-2229.12374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Magnetotactic bacteria (MTB) are distributed ubiquitously in sediments from coastal environments to the deep sea. The Pacific Manganese Nodule Province contains numerous polymetallic nodules mainly composed of manganese, iron, cobalt, copper and nickel. In the present study we used Illumina MiSeq sequencing technology to assess the communities of putative MTB in deep sea surface sediments at nine stations in the east Pacific Manganese Nodule Province. A total of 402 sequence reads from MTB were classified into six operational taxonomic units (OTUs). Among these, OTU113 and OTU759 were affiliated with the genus Magnetospira, OTU2224 and OTU2794 were affiliated with the genus Magnetococcus and Magnetovibrio, respectively, OTU3017 had no known genus affiliation, and OTU2556 was most similar to Candidatus Magnetananas. Interestingly, OTU759 was widely distributed, occurring at all study sites. Magnetism measurements revealed that all sediments were dominated by low coercivity, non-interacting single domain magnetic minerals. Transmission electron microscopy confirmed that the magnetic minerals were magnetosomes. Our data suggest that diverse putative MTB are widely distributed in deep sea surface sediments from the east Pacific Manganese Nodule Province.
Collapse
Affiliation(s)
- Yi Dong
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Wuchang Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenyan Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Yuan Zhao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Tian Xiao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Long-Fei Wu
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
- Laboratoire de Chimie Bactérienne, UMR7283, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, CNRS, F-13402, Marseille, France
| | - Hongmiao Pan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| |
Collapse
|
31
|
Nudelman H, Valverde-Tercedor C, Kolusheva S, Perez Gonzalez T, Widdrat M, Grimberg N, Levi H, Nelkenbaum O, Davidov G, Faivre D, Jimenez-Lopez C, Zarivach R. Structure-function studies of the magnetite-biomineralizing magnetosome-associated protein MamC. J Struct Biol 2016; 194:244-52. [PMID: 26970040 DOI: 10.1016/j.jsb.2016.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/17/2016] [Accepted: 03/01/2016] [Indexed: 11/18/2022]
Abstract
Magnetotactic bacteria are Gram-negative bacteria that navigate along geomagnetic fields using the magnetosome, an organelle that consists of a membrane-enveloped magnetic nanoparticle. Magnetite formation and its properties are controlled by a specific set of proteins. MamC is a small magnetosome-membrane protein that is known to be active in iron biomineralization but its mechanism has yet to be clarified. Here, we studied the relationship between the MamC magnetite-interaction loop (MIL) structure and its magnetite interaction using an inert biomineralization protein-MamC chimera. Our determined structure shows an alpha-helical fold for MamC-MIL with highly charged surfaces. Additionally, the MamC-MIL induces the formation of larger magnetite crystals compared to protein-free and inert biomineralization protein control experiments. We suggest that the connection between the MamC-MIL structure and the protein's charged surfaces is crucial for magnetite binding and thus for the size control of the magnetite nanoparticles.
Collapse
Affiliation(s)
- Hila Nudelman
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Carmen Valverde-Tercedor
- Universidad de Granada, Departamento de Microbiologia, Campus de Fuentenueva, 18071 Granada, Spain; Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Sofiya Kolusheva
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Teresa Perez Gonzalez
- Universidad de Granada, Departamento de Microbiologia, Campus de Fuentenueva, 18071 Granada, Spain
| | - Marc Widdrat
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Noam Grimberg
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hilla Levi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Or Nelkenbaum
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Geula Davidov
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Damien Faivre
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Concepcion Jimenez-Lopez
- Universidad de Granada, Departamento de Microbiologia, Campus de Fuentenueva, 18071 Granada, Spain.
| | - Raz Zarivach
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
32
|
Pradel N, Cayol JL, Fardeau ML, Karray F, Sayadi S, Alazard D, Ollivier B. Analysis of a population of magnetotactic bacteria of the Gulf of Gabès, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4046-4053. [PMID: 25772882 DOI: 10.1007/s11356-015-4314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
The occurrence of magnetotactic bacteria (MTB) on a Tunisian marine coast exposed to heavy metals pollution (Sfax, Gulf of Gabès, Mediterranean Sea) was investigated. The MTB population of this Southern Mediterranean coast was compared to the MTB populations previously investigated on the French Northern Mediterranean coast. A dominant MTB coccus morphotype was observed by microscopy analysis. By pyrosequencing technology, the analysis of the 16S ribosomal RNA (rDNA) revealed as much as 33 operational taxonomic sequence units (OTUs) close to sequences of MTB accessible in the databases. The majority were close to MTB sequences of the "Med group" of α-Proteobacteria. Among them, a dominant OTU_001 (99 % of the MTB sequences) affiliated within the Magnetococcales order was highlighted. Investigating the capacities of this novel bacterium to be used in bioremediation and/or depollution processes could be envisaged.
Collapse
Affiliation(s)
- Nathalie Pradel
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, 13288, Marseille, France.
- Laboratoire Mixte International Contaminants et Ecosystèmes Marins Sud Méditerranéens (LMI COSYS-Med), Marseille, France.
| | - Jean-Luc Cayol
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, 13288, Marseille, France
| | - Marie-Laure Fardeau
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, 13288, Marseille, France
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Biotechnology Center of Sfax, Sfax, 3018, Tunisia
- Laboratoire Mixte International Contaminants et Ecosystèmes Marins Sud Méditerranéens (LMI COSYS-Med), Marseille, France
| | - Sami Sayadi
- Laboratory of Environmental Bioprocesses, Biotechnology Center of Sfax, Sfax, 3018, Tunisia
- Laboratoire Mixte International Contaminants et Ecosystèmes Marins Sud Méditerranéens (LMI COSYS-Med), Marseille, France
| | - Didier Alazard
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, 13288, Marseille, France
| | - Bernard Ollivier
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, 13288, Marseille, France
- Laboratoire Mixte International Contaminants et Ecosystèmes Marins Sud Méditerranéens (LMI COSYS-Med), Marseille, France
| |
Collapse
|
33
|
Zeth K, Hoiczyk E, Okuda M. Ferroxidase-Mediated Iron Oxide Biomineralization: Novel Pathways to Multifunctional Nanoparticles. Trends Biochem Sci 2016; 41:190-203. [DOI: 10.1016/j.tibs.2015.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 11/29/2022]
|
34
|
Pradel N, Fuduche M, Ollivier B. Magnetotactic bacteria population in a pristine French Atlantic lagoon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:691-697. [PMID: 26335530 DOI: 10.1007/s11356-015-5322-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
In this study, we report for the first time the presence of magnetotactic bacteria (MTB) on the Northeastern Atlantic coast. Microscopy observations indicated a heterogeneous population of MTB morphotypes. The analysis of the 16S rDNA by pyrosequencing technology revealed four operational taxonomic sequence units affiliated within the Magnetococcales order, class Alphaproteobacteria. One of them was closely related to sequences of MTB from the Tunisian coast, central Mediterranean Sea. This work offers information on anew environmental context and on biogeography of MTB, highlights the putative impact that marine currents may have on MTB distribution on Earth, and underlines the role that pristine or polluted areas may play on the structure of the MTB communites.
Collapse
Affiliation(s)
- Nathalie Pradel
- Aix Marseille Université, IRD, Université de Toulon, CNRS/INSU, MIO, UM 110, 13288, Marseille, cedex 09, France.
- Laboratoire Mixte International Contaminants et Ecosystèmes Marins Sud Méditerranéens (LMI COSYS-Med), Marseille, France.
| | - Maxime Fuduche
- Aix Marseille Université, IRD, Université de Toulon, CNRS/INSU, MIO, UM 110, 13288, Marseille, cedex 09, France
| | - Bernard Ollivier
- Aix Marseille Université, IRD, Université de Toulon, CNRS/INSU, MIO, UM 110, 13288, Marseille, cedex 09, France
- Laboratoire Mixte International Contaminants et Ecosystèmes Marins Sud Méditerranéens (LMI COSYS-Med), Marseille, France
| |
Collapse
|
35
|
Yan L, Zhang S, Liu H, Wang W, Chen P, Li H. Optimization of magnetosome production by Acidithiobacillus ferrooxidans using desirability function approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:731-739. [PMID: 26652427 DOI: 10.1016/j.msec.2015.10.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/24/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Present study aimed to resolve the conflict between cell growth and magnetosome formation of Acidithiobacillus ferrooxidans (A. ferrooxidans) in batch experiments by applying response surface methodology (RSM) integrated a desirability function approach. The effects of several operating parameters on cell growth (OD600) and magnetosome production (Cmag) were evaluated. The maximum overall desirability (D) of 0.923 was achieved at iron concentration of 125.07mM, shake speed of 122.37rpm and nitrogen concentration of 2.40g/L. Correspondingly, the OD600 and Cmag were 0.522 and 1.196, respectively. The confirmation experiment confirmed that the optimum OD600 and Cmag obtained were in good agreement with the predicted values. The inductively coupled plasma atomic emission spectrometer (ICP-AES) and transmission electron microscopy (TEM) analyses revealed that the production of magnetosomes could be improved via optimization. X-ray diffraction (XRD) showed the magnetosomes are magnetite. Results indicated that RSM with a desirability function was a useful technique to get the maximum OD600 and Cmag simultaneously.
Collapse
Affiliation(s)
- Lei Yan
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Shuang Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Hetao Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, PR China
| | - Weidong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Hongyu Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
36
|
Shimoshige H, Kobayashi H, Mizuki T, Nagaoka Y, Inoue A, Maekawa T. Effect of Polyethylene Glycol on the Formation of Magnetic Nanoparticles Synthesized by Magnetospirillum magnetotacticum MS-1. PLoS One 2015; 10:e0127481. [PMID: 25993286 PMCID: PMC4439050 DOI: 10.1371/journal.pone.0127481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/14/2015] [Indexed: 01/15/2023] Open
Abstract
Magnetotactic bacteria (MTB) synthesize intracellular magnetic nanocrystals called magnetosomes, which are composed of either magnetite (Fe3O4) or greigite (Fe3S4) and covered with lipid membranes. The production of magnetosomes is achieved by the biomineralization process with strict control over the formation of magnetosome membrane vesicles, uptake and transport of iron ions, and synthesis of mature crystals. These magnetosomes have high potential for both biotechnological and nanotechnological applications, but it is still extremely difficult to grow MTB and produce a large amount of magnetosomes under the conventional cultural conditions. Here, we investigate as a first attempt the effect of polyethylene glycol (PEG) added to the culture medium on the increase in the yield of magnetosomes formed in Magnetospirillum magnetotacticum MS-1. We find that the yield of the formation of magnetosomes can be increased up to approximately 130 % by adding PEG200 to the culture medium. We also measure the magnetization of the magnetosomes and find that the magnetosomes possess soft ferromagnetic characteristics and the saturation mass magnetization is increased by 7 %.
Collapse
Affiliation(s)
- Hirokazu Shimoshige
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Hideki Kobayashi
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Toru Mizuki
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
| | - Yutaka Nagaoka
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
| | - Akira Inoue
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
- * E-mail:
| |
Collapse
|
37
|
Magnetotactic bacteria as potential sources of bioproducts. Mar Drugs 2015; 13:389-430. [PMID: 25603340 PMCID: PMC4306944 DOI: 10.3390/md13010389] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/17/2014] [Indexed: 11/16/2022] Open
Abstract
Magnetotactic bacteria (MTB) produce intracellular organelles called magnetosomes which are magnetic nanoparticles composed of magnetite (Fe3O4) or greigite (Fe3S4) enveloped by a lipid bilayer. The synthesis of a magnetosome is through a genetically controlled process in which the bacterium has control over the composition, direction of crystal growth, and the size and shape of the mineral crystal. As a result of this control, magnetosomes have narrow and uniform size ranges, relatively specific magnetic and crystalline properties, and an enveloping biological membrane. These features are not observed in magnetic particles produced abiotically and thus magnetosomes are of great interest in biotechnology. Most currently described MTB have been isolated from saline or brackish environments and the availability of their genomes has contributed to a better understanding and culturing of these fastidious microorganisms. Moreover, genome sequences have allowed researchers to study genes related to magnetosome production for the synthesis of magnetic particles for use in future commercial and medical applications. Here, we review the current information on the biology of MTB and apply, for the first time, a genome mining strategy on these microorganisms to search for secondary metabolite synthesis genes. More specifically, we discovered that the genome of the cultured MTB Magnetovibrio blakemorei, among other MTB, contains several metabolic pathways for the synthesis of secondary metabolites and other compounds, thereby raising the possibility of the co-production of new bioactive molecules along with magnetosomes by this species.
Collapse
|
38
|
Fuduche M, Postec A, Davidson S, Chauvin JP, Galès G, Hirschler-Réa A, Ollivier B, Wu LF, Pradel N. Diversity of Magnetotactic Bacteria from a French Pristine Mediterranean Area. Curr Microbiol 2014; 70:499-505. [DOI: 10.1007/s00284-014-0745-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
|
39
|
Lin W, Benzerara K, Faivre D, Pan Y. Intracellular biomineralization in bacteria. Front Microbiol 2014; 5:293. [PMID: 24971081 PMCID: PMC4053769 DOI: 10.3389/fmicb.2014.00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/28/2014] [Indexed: 12/18/2022] Open
Affiliation(s)
- Wei Lin
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences Beijing, China ; France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences Beijing, China
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Université Pierre et Marie Curie, Sorbonne Universités, CNRS UMR 7590, Muséum National d'Histoire Naturelle, IRD UMR 206 Paris, France
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces Potsdam, Germany
| | - Yongxin Pan
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences Beijing, China ; France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences Beijing, China
| |
Collapse
|