1
|
Kulshrestha A, Gupta P. Multi-computational screening identifies homovanillic acid as a potential SAP5 inhibitor against Candida albicans biofilms. Comput Biol Chem 2025; 118:108453. [PMID: 40222055 DOI: 10.1016/j.compbiolchem.2025.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/15/2025]
Abstract
This work aims to find inhibitors of SAP5, a virulence factor in Candida albicans polymicrobial biofilms. The methodology included docking simulations, MMGBSA calculations, and molecular dynamics simulations. Of the 107 phenolic acids retrieved from PubChem, 20 passed ADMET screening. The research finds homovanillic acid to be a possible SAP5 inhibitor, with a binding energy of -19.92 kcal/mol as shown by molecular docking and MMGBSA analysis. The compound showed favorable ADMET properties, indicating low toxicity and high drug-likeness. Molecular dynamics simulations over 100 nanoseconds confirmed stable protein-ligand interactions. These findings suggest homovanillic acid's potential in treating AMR-associated biofilms and establish a foundation for experimental validation. The study demonstrates how computational methods can accelerate the discovery of novel antifungal medicines targeting polymicrobial infections.
Collapse
Affiliation(s)
- Anmol Kulshrestha
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India.
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
2
|
Kintner J, Callaghan M, Bulawa L, Chu A, Ma Z, Williams DL, Schoborg RV, Kruppa MD, Hall JV. Dectin-1 stimulating β-glucans inhibit Chlamydia infections both in vitro and in vivo. Pathog Dis 2025; 83:ftaf002. [PMID: 39886876 PMCID: PMC11840957 DOI: 10.1093/femspd/ftaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
Chlamydia trachomatis and Candida albicans are common inhabitants of the female genital tract. Candida albicans can impact the viability and pathogenesis of some bacteria. Previously, we investigated physical interactions between Ch. trachomatis elementary bodies (EBs) and Ca. albicans. This work indicated that EBs bind to Ca. albicans and become noninfectious by 24 h post-binding. Here, we continue our investigation of these interkingdom, polymicrobial interactions. Candida albicans adheres to bacteria or host surfaces via agglutinin-like sequence or heat shock 70 (Ssa) proteins. Chlamydia trachomatis EBs did not bind Ca. albicans Ssa2 deficient strains as efficiently as wild-type or complemented strains, indicating a role for this protein in chlamydial adherence to Candida. Additionally, Ca. albicans β-glucans inhibit chlamydial infection when exposure occurs during EB adsorption onto cervical cells. Laminarin, a β-glucan agonist of the C-type lectin receptor Dectin-1, inhibited chlamydial infection in both cervical epithelial cells and mice when exposure occurred prior to, during, or immediately following EB inoculation. Conversely, a Dectin-1 antagonist laminarin did not inhibit infection in vitro, suggesting that β-glucan inhibition of Ch. trachomatis requires C-type lectin receptor signaling. Overall, our data demonstrate that β-glucans from multiple species, including Ca. albicans, inhibit Chlamydia via stimulation of host-signaling pathways.
Collapse
Affiliation(s)
- Jennifer Kintner
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN 37614, USA
- Center for Infectious Disease, Inflammation and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Morgan Callaghan
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| | - Lillith Bulawa
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| | - Angela Chu
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| | - Zuchao Ma
- Center for Infectious Disease, Inflammation and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, USA
| | - David L Williams
- Center for Infectious Disease, Inflammation and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, USA
| | - Robert V Schoborg
- Center for Infectious Disease, Inflammation and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Medical Education at Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Michael D Kruppa
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN 37614, USA
- Center for Infectious Disease, Inflammation and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jennifer V Hall
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN 37614, USA
- Center for Infectious Disease, Inflammation and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
3
|
Janeczko M, Skrzypek T. Relationships Between Candida auris and the Rest of the Candida World-Analysis of Dual-Species Biofilms and Infections. Pathogens 2025; 14:40. [PMID: 39861001 PMCID: PMC11768094 DOI: 10.3390/pathogens14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
In this study, we investigated the interactions between Candida auris and C. albicans, C. tropicalis, C. glabrata, and C. krusei in mixed infections. Initially, these interactions were studied qualitatively and quantitatively in dual-species biofilms formed in vitro. The MTT assays, determination of the total CFU/mL, and SEM analysis showed that C. auris interacted differentially with the other Candida spp. during the dual-species biofilm formation. Depending on the stage of the biofilm development, C. auris was found to be a particularly dominant species during its interaction with the C. krusei biofilms but significantly submissive in the C. auris-C. albicans biofilms. These studies were then extended to in vivo host models of experimental candidiasis. G. mellonella larvae were inoculated with monotypic and heterotypic suspensions of Candida. The survival rates and quantification of fungal cells in the hemolymph showed that the highest mortality was exhibited by larvae in the C. auris-C. albicans co-infection (100% mortality after 36 h). The CFU/mL values of C. auris from the larval hemolymph were lower in the interactive groups compared to the mono-species group. As a newly emerging species, C. auris persists in environments in the presence of other Candida species and is involved in both competitive and noncompetitive interactions with other Candida species during biofilm formation and development of experimental candidiasis.
Collapse
Affiliation(s)
- Monika Janeczko
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland
| | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1j, 20-708 Lublin, Poland;
| |
Collapse
|
4
|
Buda De Cesare G, Sauer FM, Kolecka A, Stavrou AA, Verrips TC, Boekhout T, Dolk E, Munro CA. The development of single-domain VHH nanobodies that target the Candida albicans cell surface. Microbiol Spectr 2024; 12:e0426923. [PMID: 39373478 PMCID: PMC11572700 DOI: 10.1128/spectrum.04269-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/27/2024] [Indexed: 10/08/2024] Open
Abstract
Candida albicans causes life-threatening invasive infections that are hard to diagnose and treat, with drug resistance leading to treatment failure. The goal of this study was to develop VHH (single variable domain on a heavy chain) nanobodies to detect drug-resistant infections. Llamas were immunized with a mixture of heat killed and fixed C. albicans cells of different morphologies. Llama lymphocyte RNA was used to generate phage display libraries that were tested for binding to C. albicans cells or cell wall fractions, and single antibody domains were isolated. The libraries were panned against echinocandin-resistant C. albicans isolates and counter-selected against echinocandin-susceptible isolates with the aim of isolating binding domains specific for antigens on drug-resistant cells. Thirty diverse VHH nanobodies were selected, and binding characteristics were assessed via dose-response ELISA. Binding was tested against a variety of C. albicans isolates and other Candida species, indicating that the VHHs were specific for C. albicans. The VHH nanobodies were sorted into four distinct groups based on their binding patterns. Two of the groups bound preferentially to the yeast cell poles and hyphae, respectively. Nanobody binding to C. albicans deletion mutants was tested by fluorescence microscopy and ELISA to identify the antigen targets. VHH19 nanobody, belonging to the largest group, recognized the Als4 adhesin. VHH14 antibody in the hyphae-specific group recognized Als3. None of the isolated VHH nanobodies was selective for drug-resistant clinical isolates. Our data indicate that this approach can generate valuable single-domain antibodies specific to C. albicans proteins.IMPORTANCEThe human fungal pathogen Candida albicans causes a range of diseases from superficial mucosal infections such as oral and vaginal thrush to life-threatening, systemic infections. Accurate and rapid diagnosis of these infections remains challenging, and currently, there are no rapid ways to diagnose drug-resistant infections without performing drug susceptibility testing from blood culture, which can take several days. In this proof-of-concept study, we have generated a diverse set of single domain VHH antibodies (nanobodies) from llamas that recognize and bind specifically to C. albicans cell surface. The nanobodies were classified into four groups based on their binding patterns, for example, cell poles or hyphae. Specific nanobodies were verified as recognizing the important adhesin Als4 or the hyphae associated invasin Als3, respectively. The data validate the approach that small VHH antibody domains hold future promise for diagnostic applications and as probes to study the fungal cell surface.
Collapse
Affiliation(s)
- Giuseppe Buda De Cesare
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Institute of Medical Sciences, Foresterhill, United Kingdom
| | | | - Anna Kolecka
- Previous Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Aimilia A. Stavrou
- Previous Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
- GenDx, Utrecht, the Netherlands
| | | | - Teun Boekhout
- Previous Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Carol A. Munro
- Institute of Medical Sciences, Foresterhill, United Kingdom
| |
Collapse
|
5
|
Zaongo SD, Ouyang J, Isnard S, Zhou X, Harypursat V, Cui H, Routy JP, Chen Y. Candida albicans can foster gut dysbiosis and systemic inflammation during HIV infection. Gut Microbes 2023; 15:2167171. [PMID: 36722096 PMCID: PMC9897780 DOI: 10.1080/19490976.2023.2167171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Candida albicans (C. albicans) is a ubiquitous fungal commensal component of the human microbiota, and under certain circumstances, such as during an immunocompromised state, it may initiate different types of infection. Moreover, C. albicans continuously and reciprocally interacts with the host immune system as well as with other elements of the gut microbiota, thus contributing significantly to both gut homeostasis and host immunity. People living with HIV (PLWH), including those receiving antiretroviral therapy, are characterized by a depletion of CD4 + T-cells and dysbiosis in their gut. C. albicans colonization is frequent in PLWH, causing both a high prevalence and high morbidity. Gut barrier damage and elevated levels of microbial translocation are also fairly common in this population. Herein, we take a closer look at the reciprocity among C. albicans, gut microbiota, HIV, and the host immune system, thus throwing some light on this complex interplay.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, British Columbia, Canada
| | - Xin Zhou
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,CONTACT Yaokai Chen Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
6
|
Satala D, Gonzalez-Gonzalez M, Smolarz M, Surowiec M, Kulig K, Wronowska E, Zawrotniak M, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. The Role of Candida albicans Virulence Factors in the Formation of Multispecies Biofilms With Bacterial Periodontal Pathogens. Front Cell Infect Microbiol 2022; 11:765942. [PMID: 35071033 PMCID: PMC8766842 DOI: 10.3389/fcimb.2021.765942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
Periodontal disease depends on the presence of different microorganisms in the oral cavity that during the colonization of periodontal tissues form a multispecies biofilm community, thus allowing them to survive under adverse conditions or facilitate further colonization of host tissues. Not only numerous bacterial species participate in the development of biofilm complex structure but also fungi, especially Candida albicans, that often commensally inhabits the oral cavity. C. albicans employs an extensive armory of various virulence factors supporting its coexistence with bacteria resulting in successful host colonization and propagation of infection. In this article, we highlight various aspects of individual fungal virulence factors that may facilitate the collaboration with the associated bacterial representatives of the early colonizers of the oral cavity, the bridging species, and the late colonizers directly involved in the development of periodontitis, including the “red complex” species. In particular, we discuss the involvement of candidal cell surface proteins—typical fungal adhesins as well as originally cytosolic “moonlighting” proteins that perform a new function on the cell surface and are also present within the biofilm structures. Another group of virulence factors considered includes secreted aspartic proteases (Sap) and other secreted hydrolytic enzymes. The specific structure of the candidal cell wall, dynamically changing during morphological transitions of the fungus that favor the biofilm formation, is equally important and discussed. The non-protein biofilm-composing factors also show dynamic variability upon the contact with bacteria, and their biosynthesis processes could be involved in the stability of mixed biofilms. Biofilm-associated changes in the microbe communication system using different quorum sensing molecules of both fungal and bacterial cells are also emphasized in this review. All discussed virulence factors involved in the formation of mixed biofilm pose new challenges and influence the successful design of new diagnostic methods and the application of appropriate therapies in periodontal diseases.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland.,Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Smolarz
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamila Kulig
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
7
|
Proteinous Components of Neutrophil Extracellular Traps Are Arrested by the Cell Wall Proteins of Candida albicans during Fungal Infection, and Can Be Used in the Host Invasion. Cells 2021; 10:cells10102736. [PMID: 34685715 PMCID: PMC8534323 DOI: 10.3390/cells10102736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
One of defense mechanisms of the human immune system to counteract infection by the opportunistic fungal pathogen Candida albicans is the recruitment of neutrophils to the site of invasion, and the subsequent production of neutrophil extracellular traps (NETs) that efficiently capture and kill the invader cells. In the current study, we demonstrate that within these structures composed of chromatin and proteins, the latter play a pivotal role in the entrapment of the fungal pathogen. The proteinous components of NETs, such as the granular enzymes elastase, myeloperoxidase and lactotransferrin, as well as histones and cathelicidin-derived peptide LL-37, are involved in contact with the surface of C. albicans cells. The fungal partners in these interactions are a typical adhesin of the agglutinin-like sequence protein family Als3, and several atypical surface-exposed proteins of cytoplasmic origin, including enolase, triosephosphate isomerase and phosphoglycerate mutase. Importantly, the adhesion of both the elastase itself and the mixture of proteins originating from NETs on the C. albicans cell surface considerably increased the pathogen potency of human epithelial cell destruction compared with fungal cells without human proteins attached. Such an implementation of adsorbed NET-derived proteins by invading C. albicans cells might alter the effectiveness of the fungal pathogen entrapment and affect the further host colonization.
Collapse
|
8
|
Sánchez-Alonzo K, Silva-Mieres F, Arellano-Arriagada L, Parra-Sepúlveda C, Bernasconi H, Smith CT, Campos VL, García-Cancino A. Nutrient Deficiency Promotes the Entry of Helicobacter pylori Cells into Candida Yeast Cells. BIOLOGY 2021; 10:426. [PMID: 34065788 PMCID: PMC8151769 DOI: 10.3390/biology10050426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori, a Gram-negative bacterium, has as a natural niche the human gastric epithelium. This pathogen has been reported to enter into Candida yeast cells; however, factors triggering this endosymbiotic relationship remain unknown. The aim of this work was to evaluate in vitro if variations in nutrient concentration in the cultured medium trigger the internalization of H. pylori within Candida cells. We used H. pylori-Candida co-cultures in Brucella broth supplemented with 1%, 5% or 20% fetal bovine serum or in saline solution. Intra-yeast bacteria-like bodies (BLBs) were observed using optical microscopy, while intra-yeast BLBs were identified as H. pylori using FISH and PCR techniques. Intra-yeast H. pylori (BLBs) viability was confirmed using the LIVE/DEAD BacLight Bacterial Viability kit. Intra-yeast H. pylori was present in all combinations of bacteria-yeast strains co-cultured. However, the percentages of yeast cells harboring bacteria (Y-BLBs) varied according to nutrient concentrations and also were strain-dependent. In conclusion, reduced nutrients stresses H. pylori, promoting its entry into Candida cells. The starvation of both H. pylori and Candida strains reduced the percentages of Y-BLBs, suggesting that starving yeast cells may be less capable of harboring stressed H. pylori cells. Moreover, the endosymbiotic relationship between H. pylori and Candida is dependent on the strains co-cultured.
Collapse
Affiliation(s)
- Kimberly Sánchez-Alonzo
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción 4070386, Chile; (K.S.-A.); (F.S.-M.); (L.A.-A.); (C.P.-S.); (C.T.S.)
| | - Fabiola Silva-Mieres
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción 4070386, Chile; (K.S.-A.); (F.S.-M.); (L.A.-A.); (C.P.-S.); (C.T.S.)
| | - Luciano Arellano-Arriagada
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción 4070386, Chile; (K.S.-A.); (F.S.-M.); (L.A.-A.); (C.P.-S.); (C.T.S.)
| | - Cristian Parra-Sepúlveda
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción 4070386, Chile; (K.S.-A.); (F.S.-M.); (L.A.-A.); (C.P.-S.); (C.T.S.)
| | | | - Carlos T. Smith
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción 4070386, Chile; (K.S.-A.); (F.S.-M.); (L.A.-A.); (C.P.-S.); (C.T.S.)
| | - Víctor L. Campos
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4070386, Chile;
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción 4070386, Chile; (K.S.-A.); (F.S.-M.); (L.A.-A.); (C.P.-S.); (C.T.S.)
| |
Collapse
|
9
|
Van Dyck K, Pinto RM, Pully D, Van Dijck P. Microbial Interkingdom Biofilms and the Quest for Novel Therapeutic Strategies. Microorganisms 2021; 9:412. [PMID: 33671126 PMCID: PMC7921918 DOI: 10.3390/microorganisms9020412] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal and bacterial species interact with each other within polymicrobial biofilm communities in various niches of the human body. Interactions between these species can greatly affect human health and disease. Diseases caused by polymicrobial biofilms pose a major challenge in clinical settings because of their enhanced virulence and increased drug tolerance. Therefore, different approaches are being explored to treat fungal-bacterial biofilm infections. This review focuses on the main mechanisms involved in polymicrobial drug tolerance and the implications of the polymicrobial nature for the therapeutic treatment by highlighting clinically relevant fungal-bacterial interactions. Furthermore, innovative treatment strategies which specifically target polymicrobial biofilms are discussed.
Collapse
Affiliation(s)
- Katrien Van Dyck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rita M. Pinto
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, 4050-313 Porto, Portugal
| | - Durgasruthi Pully
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
10
|
Van Dyck K, Viela F, Mathelié-Guinlet M, Demuyser L, Hauben E, Jabra-Rizk MA, Vande Velde G, Dufrêne YF, Krom BP, Van Dijck P. Adhesion of Staphylococcus aureus to Candida albicans During Co-Infection Promotes Bacterial Dissemination Through the Host Immune Response. Front Cell Infect Microbiol 2021; 10:624839. [PMID: 33604309 PMCID: PMC7884861 DOI: 10.3389/fcimb.2020.624839] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023] Open
Abstract
Interspecies interactions greatly influence the virulence, drug tolerance and ultimately the outcome of polymicrobial biofilm infections. A synergistic interaction is observed between the fungus Candida albicans and the bacterium Staphylococcus aureus. These species are both normal commensals of most healthy humans and co-exist in several niches of the host. However, under certain circumstances, they can cause hospital-acquired infections with high morbidity and mortality rates. Using a mouse model of oral co-infection, we previously showed that an oral infection with C. albicans predisposes to a secondary systemic infection with S. aureus. Here, we unraveled this intriguing mechanism of bacterial dissemination. Using static and dynamic adhesion assays in combination with single-cell force spectroscopy, we identified C. albicans Als1 and Als3 adhesins as the molecular players involved in the interaction with S. aureus and in subsequent bacterial dissemination. Remarkably, we identified the host immune response as a key element required for bacterial dissemination. We found that the level of immunosuppression of the host plays a critical yet paradoxical role in this process. In addition, secretion of candidalysin, the C. albicans peptide responsible for immune activation and cell damage, is required for C. albicans colonization and subsequent bacterial dissemination. The physical interaction with C. albicans enhances bacterial uptake by phagocytic immune cells, thereby enabling an opportunity to disseminate.
Collapse
Affiliation(s)
- Katrien Van Dyck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Leuven, Belgium
| | - Felipe Viela
- Louvain Institute of Biomolecular Science and Technology (LIBST), UC Louvain, Louvain-la-Neuve, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology (LIBST), UC Louvain, Louvain-la-Neuve, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Leuven, Belgium
| | - Esther Hauben
- Laboratory for Pathology, UZ Leuven and Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, Baltimore, MD, United States.,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Greetje Vande Velde
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology (LIBST), UC Louvain, Louvain-la-Neuve, Belgium
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and the University of Amsterdam, Amsterdam, Netherlands
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Leuven, Belgium
| |
Collapse
|
11
|
Ponde NO, Lortal L, Ramage G, Naglik JR, Richardson JP. Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol 2021; 47:91-111. [PMID: 33482069 PMCID: PMC7903066 DOI: 10.1080/1040841x.2020.1843400] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022]
Abstract
Candida albicans is a common fungus of the human microbiota. While generally a harmless commensal in healthy individuals, several factors can lead to its overgrowth and cause a range of complications within the host, from localized superficial infections to systemic life-threatening disseminated candidiasis. A major virulence factor of C. albicans is its ability to form biofilms, a closely packed community of cells that can grow on both abiotic and biotic substrates, including implanted medical devices and mucosal surfaces. These biofilms are extremely hard to eradicate, are resistant to conventional antifungal treatment and are associated with high morbidity and mortality rates, making biofilm-associated infections a major clinical challenge. Here, we review the current knowledge of the processes involved in C. albicans biofilm formation and development, including the central processes of adhesion, extracellular matrix production and the transcriptional network that regulates biofilm development. We also consider the advantages of the biofilm lifestyle and explore polymicrobial interactions within multispecies biofilms that are formed by C. albicans and selected microbial species.
Collapse
Affiliation(s)
- Nicole O. Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental School and Hospital, Faculty of Medicine, University of Glasgow, G2 3JZ, United Kingdom
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
12
|
Černáková L, Rodrigues CF. Microbial interactions and immunity response in oral Candida species. Future Microbiol 2020; 15:1653-1677. [PMID: 33251818 DOI: 10.2217/fmb-2020-0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral candidiasis are among the most common noncommunicable diseases, related with serious local and systemic illnesses. Although these infections can occur in all kinds of patients, they are more recurrent in immunosuppressed ones such as patients with HIV, hepatitis, cancer or under long antimicrobial treatments. Candida albicans continues to be the most frequently identified Candida spp. in these disorders, but other non-C. albicans Candida are rising. Understanding the immune responses involved in oral Candida spp. infections is a key feature to a successful treatment and to the design of novel therapies. In this review, we performed a literature search in PubMed and WoS, in order to examine and analyze common oral Candida spp.-bacteria/Candida-Candida interactions and the host immunity response in oral candidiasis.
Collapse
Affiliation(s)
- Lucia Černáková
- Department of Microbiology & Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Célia F Rodrigues
- Department of Chemical Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering, University of Porto, Portugal
| |
Collapse
|
13
|
Kart D, Yabanoglu Ciftci S, Nemutlu E. Altered metabolomic profile of dual-species biofilm: Interactions between Proteus mirabilis and Candida albicans. Microbiol Res 2019; 230:126346. [PMID: 31563763 DOI: 10.1016/j.micres.2019.126346] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 01/04/2023]
Abstract
In this study, we aimed to determine the interspecies interactions between Proteus mirabilis and Candida albicans. Mono and dual-species biofilms were grown in a microtiter plate and metabolomic analysis of the biofilms was performed. The effects of togetherness of two species on the expression levels of candidal virulence genes and urease and swarming activities of P.mirabilis were investigated. The growth of C.albicans was inhibited by P.mirabilis whereas the growth and swarming activity of P.mirabilis were increased by C.albicans. The inhibition of Candida cell growth was found to be biofilm specific. The alteration was not detected in urease activity. The expressions of EFG1, HWP1 and SAP2 genes were significantly down-regulated, however, LIP1 was upregulated by P.mirabilis. In the presence of P.mirabilis carbonhydrates, amino acids, polyamine and lipid metabolisms were altered in C.albicans. Interestingly, the putrescine level was increased up to 230 fold in dual-species biofilm compared to monospecies C.albicans biofilm. To our knowledge, this is the first study to investigate the impact of each microbial pathogen on the dual microbial environment by integration of metabolomic data.
Collapse
Affiliation(s)
- Didem Kart
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Sıhhiye, Ankara, Turkey.
| | - Samiye Yabanoglu Ciftci
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, Sıhhiye, Ankara, Turkey
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Sıhhiye, Ankara, Turkey
| |
Collapse
|
14
|
Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ. Fungal-Bacterial Interactions in Health and Disease. Pathogens 2019; 8:E70. [PMID: 31117285 PMCID: PMC6630686 DOI: 10.3390/pathogens8020070] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host.
Collapse
Affiliation(s)
- Wibke Krüger
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Sarah Vielreicher
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany.
| | - Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| |
Collapse
|
15
|
Candida albicans Interactions with Mucosal Surfaces during Health and Disease. Pathogens 2019; 8:pathogens8020053. [PMID: 31013590 PMCID: PMC6631630 DOI: 10.3390/pathogens8020053] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
Flexible adaptation to the host environment is a critical trait that underpins the success of numerous microbes. The polymorphic fungus Candida albicans has evolved to persist in the numerous challenging niches of the human body. The interaction of C. albicans with a mucosal surface is an essential prerequisite for fungal colonisation and epitomises the complex interface between microbe and host. C. albicans exhibits numerous adaptations to a healthy host that permit commensal colonisation of mucosal surfaces without provoking an overt immune response that may lead to clearance. Conversely, fungal adaptation to impaired immune fitness at mucosal surfaces enables pathogenic infiltration into underlying tissues, often with devastating consequences. This review will summarise our current understanding of the complex interactions that occur between C. albicans and the mucosal surfaces of the human body.
Collapse
|
16
|
CORT0C04210 is required for Candida orthopsilosis adhesion to human buccal cells. Fungal Genet Biol 2018; 120:19-29. [DOI: 10.1016/j.fgb.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 01/09/2023]
|
17
|
Tipping the Balance: C. albicans Adaptation in Polymicrobial Environments. J Fungi (Basel) 2018; 4:jof4030112. [PMID: 30231476 PMCID: PMC6162738 DOI: 10.3390/jof4030112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is a pleiomorphic fungus which co-exists with commensal bacteria in mucosal and skin sites of mammalian hosts. It is also a major co-isolated organism from polymicrobial systemic infections, with high potential for morbidity or mortality in immunocompromised patients. Traditionally, resident mucosal bacteria have been thought to antagonize C. albicans in its ability to colonize or cause infection. However, recent investigations have revealed synergistic relationships with certain bacterial species that colonize the same mucosal sites with C. albicans. Such relationships broaden the research landscape in pathogenesis but also contribute to clinical challenges in the prevention or treatment of mucosal candidiasis. This review sheds light on interactions of C. albicans and mucosal bacteria, with special emphasis on the effects of the resident bacterial microbiota on C. albicans physiology as they relate to its adaptation in mucosal sites as a commensal colonizer or as a pathogenic organism.
Collapse
|
18
|
Yang C, Scoffield J, Wu R, Deivanayagam C, Zou J, Wu H. Antigen I/II mediates interactions between Streptococcus mutans and Candida albicans. Mol Oral Microbiol 2018; 33:283-291. [PMID: 29570954 DOI: 10.1111/omi.12223] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2018] [Indexed: 02/05/2023]
Abstract
Streptococcus mutans and Candida albicans are frequently co-isolated from dental plaque of children with early childhood caries (ECC) and are only rarely found in children without ECC, suggesting that these species interact in a manner that contributes to the pathogenesis of ECC. Previous studies have demonstrated that glucans produced by S. mutans are crucial for promoting the formation of biofilm and cariogenicity with C. albicans; however, it is unclear how non-glucan S. mutans biofilm factors contribute to increased biofilm formation in the presence of C. albicans. In this study we examined the role of S. mutans antigen I/II in two-species biofilms with C. albicans, and determined that antigen I/II is important for the incorporation of C. albicans into the two-species biofilm and is also required for increased acid production. The interaction is independent of the proteins Als1 and Als3, which are known streptococcal receptors of C. albicans. Moreover, antigen I/II is required for the colonization of both S. mutans and C. albicans during co-infection of Drosophila melanogaster in vivo. Taken together, these results demonstrate that antigen I/II mediates the increase of C. albicans numbers and acid production in the two-species biofilm, representing new activities associated with this known S. mutans adhesin.
Collapse
Affiliation(s)
- C Yang
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA.,State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - J Scoffield
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R Wu
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Deivanayagam
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Zou
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Wu
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Coassociation between Group B Streptococcus and Candida albicans Promotes Interactions with Vaginal Epithelium. Infect Immun 2018; 86:IAI.00669-17. [PMID: 29339458 DOI: 10.1128/iai.00669-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022] Open
Abstract
Group B Streptococcus (GBS) is a leading cause of neonatal sepsis, pneumonia, and meningitis worldwide. In the majority of cases, GBS is transmitted vertically from mother to neonate, making maternal vaginal colonization a key risk factor for neonatal disease. The fungus Candida albicans is an opportunistic pathogen of the female genitourinary tract and the causative agent of vaginal thrush. Carriage of C. albicans has been shown to be an independent risk factor for vaginal colonization by GBS. However, the nature of interactions between these two microbes is poorly understood. This study provides evidence of a reciprocal, synergistic interplay between GBS and C. albicans that may serve to promote their cocolonization of the vaginal mucosa. GBS strains NEM316 (serotype III) and 515 (serotype Ia) are shown to physically interact with C. albicans, with the bacteria exhibiting tropism for candidal hyphal filaments. This interaction enhances association levels of both microbes with the vaginal epithelial cell line VK2/E6E7. The ability of GBS to coassociate with C. albicans is dependent upon expression of the hypha-specific adhesin Als3. In turn, expression of GBS antigen I/II family adhesins (Bsp polypeptides) facilitates this coassociation and confers upon surrogate Lactococcus lactis the capacity to exhibit enhanced interactions with C. albicans on vaginal epithelium. As genitourinary tract colonization is an essential first step in the pathogenesis of GBS and C. albicans, the coassociation mechanism reported here may have important implications for the risk of disease involving both of these pathogens.
Collapse
|
20
|
Lyden A, Lombardi L, Sire W, Li P, Simpson JC, Butler G, Lee GU. Characterization of carboxylate nanoparticle adhesion with the fungal pathogen Candida albicans. NANOSCALE 2017; 9:15911-15922. [PMID: 29019498 DOI: 10.1039/c7nr04724j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Candida albicans is the lead fungal pathogen of nosocomial bloodstream infections worldwide and has mortality rates of 43%. Nanoparticles have been identified as a means to improve medical outcomes for Candida infections, enabling sample concentration, serving as contrast agents for in vivo imaging, and delivering therapeutics. However, little is known about how nanoparticles interact with the fungal cell wall. In this report we used laser scanning confocal microscopy to examine the interaction of fluorescent polystyrene nanoparticles of specific surface chemistry and diameter with C. albicans and mutant strains deficient in various C. albicans surface proteins. Carboxylate-functionalized nanoparticles adsorbed mainly to the hyphae of wild-type C. albicans. The dissociative binding constant of the nanoparticles was ∼150, ∼30 and ∼2.5 pM for 40, 100 nm and 200 nm diameter particles, respectively. A significant reduction in particle binding was observed with a Δals3 strain compared to wild-type strains, identifying the Als3 adhesin as the main mediator of this nanoparticle adhesion. In the absence of Als3, nanoparticles bound to germ tubes and yeast cells in a pattern resembling the localization of Als1, indicating Als1 also plays a role. Nanoparticle surface charge was shown to influence binding - positively charged amine-functionalized nanoparticles failed to bind to the hyphal cell wall. Binding of carboxylate-functionalized nanoparticles was observed in the presence of serum, though interactions were reduced. These observations show that Als3 and Als1 are important targets for nanoparticle-mediated diagnostics and therapeutics, and provide direction for optimal diameter and surface characteristics of nanoparticles that bind to the fungal cell wall.
Collapse
Affiliation(s)
- Amy Lyden
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Candida albicans is among the most prevalent fungal species of the human microbiota and asymptomatically colonizes healthy individuals. However, it is also an opportunistic pathogen that can cause severe, and often fatal, bloodstream infections. The medical impact of C. albicans typically depends on its ability to form biofilms, which are closely packed communities of cells that attach to surfaces, such as tissues and implanted medical devices. In this Review, we provide an overview of the processes involved in the formation of C. albicans biofilms and discuss the core transcriptional network that regulates biofilm development. We also consider some of the advantages that biofilms provide to C. albicans in comparison with planktonic growth and explore polymicrobial biofilms that are formed by C. albicans and certain bacterial species.
Collapse
|
22
|
Abstract
Candida species are the most common infectious fungal species in humans; out of the approximately 150 known species, Candida albicans is the leading pathogenic species, largely affecting immunocompromised individuals. Apart from its role as the primary etiology for various types of candidiasis, C. albicans is known to contribute to polymicrobial infections. Polymicrobial interactions, particularly between C. albicans and bacterial species, have gained recent interest in which polymicrobial biofilm virulence mechanisms have been studied including adhesion, invasion, quorum sensing, and development of antimicrobial resistance. These trans-kingdom interactions, either synergistic or antagonistic, may help modulate the virulence and pathogenicity of both Candida and bacteria while uniquely impacting the pathogen-host immune response. As antibiotic and antifungal resistance increases, there is a great need to explore the intermicrobial cross-talk with a focus on the treatment of Candida-associated polymicrobial infections. This article explores the current literature on the interactions between Candida and clinically important bacteria and evaluates these interactions in the context of pathogenesis, diagnosis, and disease management.
Collapse
|
23
|
Xu H, Sobue T, Bertolini M, Thompson A, Vickerman M, Nobile CJ, Dongari-Bagtzoglou A. S. oralis activates the Efg1 filamentation pathway in C. albicans to promote cross-kingdom interactions and mucosal biofilms. Virulence 2017; 8:1602-1617. [PMID: 28481721 DOI: 10.1080/21505594.2017.1326438] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Candida albicans and Streptococcus oralis are ubiquitous oral commensal organisms. Under host-permissive conditions these organisms can form hypervirulent mucosal biofilms. C. albicans biofilm formation is controlled by 6 master transcriptional regulators: Bcr1, Brg1, Efg1, Tec1, Ndt80, and Rob1. The objective of this work was to test whether any of these regulators play a role in cross-kingdom interactions between C. albicans and S. oralis in oral mucosal biofilms, and identify downstream target gene(s) that promote these interactions. Organotypic mucosal constructs and a mouse model of oropharyngeal infection were used to analyze mucosal biofilm growth and fungal gene expression. By screening 6 C. albicans transcription regulator reporter strains we discovered that EFG1 was strongly activated by interaction with S. oralis in late biofilm growth stages. EFG1 gene expression was increased in polymicrobial biofilms on abiotic surfaces, mucosal constructs and tongue tissues of mice infected with both organisms. EFG1 was required for robust Candida-streptococcal biofilm growth in organotypic constructs and mouse oral tissues. S. oralis stimulated C. albicans ALS1 gene expression in an EFG1-dependent manner, and Als1 was identified as a downstream effector of the Efg1 pathway which promoted C. albicans-S. oralis coaggregation interactions in mixed biofilms. We conclude that S. oralis induces an increase in EFG1 expression in C. albicans in late biofilm stages. This in turn increases expression of ALS1, which promotes coaggregation interactions and mucosal biofilm growth. Our work provides novel insights on C. albicans genes which play a role in cross-kingdom interactions with S. oralis in mucosal biofilms.
Collapse
Affiliation(s)
- Hongbin Xu
- a School of Dental Medicine, University of Connecticut , Farmington , CT , USA
| | - Takanori Sobue
- a School of Dental Medicine, University of Connecticut , Farmington , CT , USA
| | - Martinna Bertolini
- a School of Dental Medicine, University of Connecticut , Farmington , CT , USA
| | - Angela Thompson
- a School of Dental Medicine, University of Connecticut , Farmington , CT , USA
| | | | - Clarissa J Nobile
- c School of Natural Sciences, University of California , Merced, Merced , CA , USA
| | | |
Collapse
|
24
|
Hoyer LL, Cota E. Candida albicans Agglutinin-Like Sequence (Als) Family Vignettes: A Review of Als Protein Structure and Function. Front Microbiol 2016; 7:280. [PMID: 27014205 PMCID: PMC4791367 DOI: 10.3389/fmicb.2016.00280] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/22/2016] [Indexed: 01/09/2023] Open
Abstract
Approximately two decades have passed since the description of the first gene in the Candida albicans ALS (agglutinin-like sequence) family. Since that time, much has been learned about the composition of the family and the function of its encoded cell-surface glycoproteins. Solution of the structure of the Als adhesive domain provides the opportunity to evaluate the molecular basis for protein function. This review article is formatted as a series of fundamental questions and explores the diversity of the Als proteins, as well as their role in ligand binding, aggregative effects, and attachment to abiotic surfaces. Interaction of Als proteins with each other, their functional equivalence, and the effects of protein abundance on phenotypic conclusions are also examined. Structural features of Als proteins that may facilitate invasive function are considered. Conclusions that are firmly supported by the literature are presented while highlighting areas that require additional investigation to reveal basic features of the Als proteins, their relatedness to each other, and their roles in C. albicans biology.
Collapse
Affiliation(s)
- Lois L Hoyer
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana IL, USA
| | - Ernesto Cota
- Department of Life Sciences, Imperial College London London, UK
| |
Collapse
|
25
|
Bertini A, Zoppo M, Lombardi L, Rizzato C, De Carolis E, Vella A, Torelli R, Sanguinetti M, Tavanti A. Targeted gene disruption in Candida parapsilosis demonstrates a role for CPAR2_404800 in adhesion to a biotic surface and in a murine model of ascending urinary tract infection. Virulence 2015; 7:85-97. [PMID: 26632333 DOI: 10.1080/21505594.2015.1112491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Candida parapsilosis is an emerging opportunistic pathogen, second in frequency only to C. albicans and commonly associated with both mucosal and systemic infections. Adhesion to biotic surfaces is a key step for the development of mycoses. The C. parapsilosis genome encodes 5 predicted agglutinin-like sequence proteins and their precise role in the adhesion process still remains to be elucidated. In this study, we focused on the putative adhesin Cpar2_404800, in view of its high homology to the most important adhesion molecule in C. albicans. Two independent lineages of C. parapsilosis CPAR2_404800 heterozygous and null mutants were obtained by site-specific deletion. CPAR2_404800 mutants did not differ from wild-type strain in terms of in vitro growth or in their ability to undergo morphogenesis. However, when compared for adhesion to a biotic surface, CPAR2_404800 null mutants exhibited a marked reduction in their adhesion to buccal epithelial cells (>60% reduction of adhesion index). Reintroduction of one copy of CPAR2_404800 gene in the null background restored wild type phenotype. A murine model of urinary tract infection was used to elucidate the in vivo contribution of CPAR2_404800. A 0.5 and 1 log10 reduction in colony forming unit numbers (per gram) was observed respectively in bladder and kidneys obtained from mice infected with null mutant compared to wild-type infected ones. Taken together, these findings provide the first evidence for a direct role of CPAR2_404800 in C. parapsilosis adhesion to host surfaces and demonstrate its contribution to the pathogenesis of murine urinary candidiasis.
Collapse
Affiliation(s)
- Alessia Bertini
- a Department of Biology ; Genetic Unit; University of Pisa ; Pisa , Italy
| | - Marina Zoppo
- a Department of Biology ; Genetic Unit; University of Pisa ; Pisa , Italy
| | - Lisa Lombardi
- a Department of Biology ; Genetic Unit; University of Pisa ; Pisa , Italy
| | - Cosmeri Rizzato
- a Department of Biology ; Genetic Unit; University of Pisa ; Pisa , Italy
| | - Elena De Carolis
- b Institute of Microbiology; Catholic University of the Sacred Heart ; Rome , Italy
| | - Antonietta Vella
- b Institute of Microbiology; Catholic University of the Sacred Heart ; Rome , Italy
| | - Riccardo Torelli
- b Institute of Microbiology; Catholic University of the Sacred Heart ; Rome , Italy
| | - Maurizio Sanguinetti
- b Institute of Microbiology; Catholic University of the Sacred Heart ; Rome , Italy
| | - Arianna Tavanti
- a Department of Biology ; Genetic Unit; University of Pisa ; Pisa , Italy
| |
Collapse
|
26
|
Cota E, Hoyer LL. The Candida albicans agglutinin-like sequence family of adhesins: functional insights gained from structural analysis. Future Microbiol 2015; 10:1635-548. [PMID: 26438189 DOI: 10.2217/fmb.15.79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Candida albicans colonizes many host sites suggesting its interaction with diverse ligands. Candida albicans adhesion is mediated by a number of proteins including those in the Als (agglutinin-like sequence) family, which have been studied intensively. The recent solution of the Als binding domain structure ended years of speculation regarding the molecular mechanism for Als adhesive function. Als adhesins bind flexible C termini from a broad collection of proteins, providing the basis for adhesion to various cell types and perhaps for C. albicans broad tissue tropism. Understanding adhesive functions at the molecular level will reveal the sequence of events in C. albicans pathogenesis, from host recognition to complex interactions such as development of polymicrobial biofilms or disseminated disease.
Collapse
Affiliation(s)
- Ernesto Cota
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - Lois L Hoyer
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
27
|
O'Donnell LE, Millhouse E, Sherry L, Kean R, Malcolm J, Nile CJ, Ramage G. PolymicrobialCandidabiofilms: friends and foe in the oral cavity. FEMS Yeast Res 2015; 15:fov077. [DOI: 10.1093/femsyr/fov077] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2015] [Indexed: 12/26/2022] Open
|