1
|
Kang YS, Kirby JE. A Versatile Nanoluciferase Reporter Reveals Structural Properties Associated with a Highly Efficient, N-Terminal Legionella pneumophila Type IV Secretion Translocation Signal. Microbiol Spectr 2023; 11:e0233822. [PMID: 36815834 PMCID: PMC10100965 DOI: 10.1128/spectrum.02338-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Many Gram-negative pathogens rely on type IV secretion systems (T4SS) for infection. One limitation has been the lack of ideal reporters to identify T4SS translocated effectors and study T4SS function. Most reporter systems make use of fusions to reporter proteins, in particular, β-lactamase (TEM) and calmodulin-dependent adenylate cyclase (CYA), that allow detection of translocated enzymatic activity inside host cells. However, both systems require costly reagents and use complex, multistep procedures for loading host cells with substrate (TEM) or for analysis (CYA). Therefore, we have developed and characterized a novel reporter system using nanoluciferase (NLuc) fusions to address these limitations. Serendipitously, we discovered that Nluc itself is efficiently translocated by Legionella pneumophila T4SS in an IcmSW chaperone-dependent manner via an N-terminal translocation signal. Extensive mutagenesis in the NLuc N terminus suggested the importance of an α-helical domain spanning D5 to V9, as mutations predicted to disrupt this structure, with one exception, were translocation defective. Notably, NLuc was capable of translocating several proteins examined when fused to the N or C terminus, while maintaining robust luciferase activity. In particular, it delivered the split GFP11 fragment into J774 macrophages transfected with GFPopt, thereby resulting in in vivo assembly of superfolder green fluorescent protein (GFP). This provided a bifunctional assay in which translocation could be assayed by fluorescence microplate, confocal microscopy, and/or luciferase assays. We further identified an optimal NLuc substrate which allowed a robust, inexpensive, one-step, high-throughput screening assay to identify T4SS translocation substrates and inhibitors. Taken together, these results indicate that NLuc provides both new insight into and also tools for studying T4SS biology. IMPORTANCE Type IV secretion systems (T4SS) are used by Gram-negative pathogens to coopt host cell function. However, the translocation signals recognized by T4SS are not fully explained by primary amino acid sequence, suggesting yet-to-be-defined contributions of secondary and tertiary structure. Here, we unexpectedly identified nanoluciferase (NLuc) as an efficient IcmSW-dependent translocated T4SS substrate, and we provide extensive mutagenesis data suggesting that the first N-terminal, alpha-helix domain is a critical translocation recognition motif. Notably, most existing reporter systems for studying translocated proteins make use of fusions to reporters to permit detection of translocated enzymatic activity inside the host cell. However, existing systems require extremely costly substrates, complex technical procedures to isolate eukaryotic cytoplasm for analysis, and/or are insensitive. Importantly, we found that NLuc provides a powerful, cost-effective new tool to address these limitations and facilitate high-throughput exploration of secretion system biology.
Collapse
Affiliation(s)
- Yoon-Suk Kang
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - James E. Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Zhu Y, Li Z, Shen J, Wu K, Zhao P, Wu Z, Liu Z, Yang J, Liu H, Rensing C, Feng R. Toxicity of different forms of antimony to rice plants: Photosynthetic electron transfer, gas exchange, photosynthetic efficiency, and carbon assimilation combined with metabolome analysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129433. [PMID: 35897190 DOI: 10.1016/j.jhazmat.2022.129433] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/08/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Antimony (Sb) is a toxic metalloid, and excess Sb causes damage to the plant photosynthetic system. However, the underlying mechanisms of Sb toxicity in the plant photosynthetic system are not clear. Hydroponic culture experiments were conducted to illustrate the toxicity differences of antimonite [Sb(III)] and antimonate [Sb(V)] to the photosynthetic system in a rice plant (Yangdao No. 6). The results showed that Sb(III) showed a higher toxicity than Sb(V), judging from (1) lower shoot and root biomass, leaf water moisture content, water use efficiency, stomatal conductance, net photosynthetic rate, and transpiration rate; (2) higher water vapor deficit, soluble sugar content, starch content, and oligosaccharide content (sucrose, stachyose, and 1-kestose). To further analyze the direction of the photosynthetic products, we conducted a metabonomic analysis. More glycosyls were allocated to the synthesis pathways of oligosaccharides (sucrose, stachyose, and 1-kestose), anthocyanins, salicylic acid, flavones, flavonols, and lignin under Sb stress to quench excess oxygen free radicals (ROS), strengthen the cell wall structure, rebalance the cell membrane, and/or regulate cell permeability. This study provides a complete mechanism to elucidate the toxicity differences of Sb(III) and Sb(V) by exploring their effects on photosynthesis, saccharide synthesis, and the subsequent flow directions of glycosyls.
Collapse
Affiliation(s)
- YanMing Zhu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZengFei Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Jun Shen
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - KongYuan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - PingPing Zhao
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZiHan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZiQing Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - JiGang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Sanchez-Rosario Y, Johnson MDL. Media Matters, Examining Historical and Modern Streptococcus pneumoniae Growth Media and the Experiments They Affect. Front Cell Infect Microbiol 2021; 11:613623. [PMID: 33834003 PMCID: PMC8021847 DOI: 10.3389/fcimb.2021.613623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
While some bacteria can thrive for generations in minerals and salts, many require lavish nutrition and specific chemicals to survive to the point where they can be observed and researched. Although researchers once boiled and rendered animal flesh and bones to obtain a media that facilitated bacterial growth, we now have a plethora of formulations and manufacturers to provide dehydrated flavors of historical, modified, and modern media. The purpose of media has evolved from simple isolation to more measured study. However, in some instances, media formulated to aid the metabolic, nutritional, or physical properties of microbes may not be best suited for studying pathogen behavior or resilience as a function of host interactions. While there have been comparative studies on handfuls of these media in Streptococcus pneumoniae, this review focuses on describing both the historical and modern composition of common complex (Todd Hewitt and M17), semi-defined (Adams and Roe), and defined pneumococcal media (RPMI and Van de Rijn and Kessler), key components discovered/needed for cultivation/growth enhancement, and effects these different media have on bacterial phenotypes and experimental outcomes. While many researchers find the best conditions to grow and experiment on their bacteria of choice, the reasons for some researchers to use a specific medium is at best, not discussed, and at worst, arbitrary. As such, the goal of this review is to highlight the differences in pneumococcal media to encourage investigators to challenge their decisions on why they use a given medium, discuss the recipe, and explain their reasoning.
Collapse
Affiliation(s)
| | - Michael D L Johnson
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States.,BIO5 Institute, University of Arizona, Tucson, AZ, United States.,Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
4
|
D'Mello A, Riegler AN, Martínez E, Beno SM, Ricketts TD, Foxman EF, Orihuela CJ, Tettelin H. An in vivo atlas of host-pathogen transcriptomes during Streptococcus pneumoniae colonization and disease. Proc Natl Acad Sci U S A 2020; 117:33507-33518. [PMID: 33318198 PMCID: PMC7777036 DOI: 10.1073/pnas.2010428117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae (Spn) colonizes the nasopharynx and can cause pneumonia. From the lungs it spreads to the bloodstream and causes organ damage. We characterized the in vivo Spn and mouse transcriptomes within the nasopharynx, lungs, blood, heart, and kidneys using three Spn strains. We identified Spn genes highly expressed at all anatomical sites and in an organ-specific manner; highly expressed genes were shown to have vital roles with knockout mutants. The in vivo bacterial transcriptome during colonization/disease was distinct from previously reported in vitro transcriptomes. Distinct Spn and host gene-expression profiles were observed during colonization and disease states, revealing specific genes/operons whereby Spn adapts to and influences host sites in vivo. We identified and experimentally verified host-defense pathways induced by Spn during invasive disease, including proinflammatory responses and the interferon response. These results shed light on the pathogenesis of Spn and identify therapeutic targets.
Collapse
Affiliation(s)
- Adonis D'Mello
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ashleigh N Riegler
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Eriel Martínez
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Sarah M Beno
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tiffany D Ricketts
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ellen F Foxman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201;
| |
Collapse
|
5
|
Jamalkandi SA, Kouhsar M, Salimian J, Ahmadi A. The identification of co-expressed gene modules in Streptococcus pneumonia from colonization to infection to predict novel potential virulence genes. BMC Microbiol 2020; 20:376. [PMID: 33334315 PMCID: PMC7745498 DOI: 10.1186/s12866-020-02059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/02/2020] [Indexed: 11/14/2022] Open
Abstract
Background Streptococcus pneumonia (pneumococcus) is a human bacterial pathogen causing a range of mild to severe infections. The complicated transcriptome patterns of pneumococci during the colonization to infection process in the human body are usually determined by measuring the expression of essential virulence genes and the comparison of pathogenic with non-pathogenic bacteria through microarray analyses. As systems biology studies have demonstrated, critical co-expressing modules and genes may serve as key players in biological processes. Generally, Sample Progression Discovery (SPD) is a computational approach traditionally used to decipher biological progression trends and their corresponding gene modules (clusters) in different clinical samples underlying a microarray dataset. The present study aimed to investigate the bacterial gene expression pattern from colonization to severe infection periods (specimens isolated from the nasopharynx, lung, blood, and brain) to find new genes/gene modules associated with the infection progression. This strategy may lead to finding novel gene candidates for vaccines or drug design. Results The results included essential genes whose expression patterns varied in different bacterial conditions and have not been investigated in similar studies. Conclusions In conclusion, the SPD algorithm, along with differentially expressed genes detection, can offer new ways of discovering new therapeutic or vaccine targeted gene products. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02059-0.
Collapse
Affiliation(s)
- Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Kouhsar
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Benton AH, Jackson MD, Wong SM, Dees JL, Akerley BJ, Marquart ME. A Transcriptional Activator of Ascorbic Acid Transport in Streptococcus pneumoniae Is Required for Optimal Growth in Endophthalmitis in a Strain-Dependent Manner. Microorganisms 2019; 7:microorganisms7090290. [PMID: 31450542 PMCID: PMC6780617 DOI: 10.3390/microorganisms7090290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae is among the top causes of bacterial endophthalmitis, an infectious disease of the intraocular fluids. The mechanisms by which S. pneumoniae grows and thrives in the intraocular cavity are not well understood. We used a bacterial genome-wide assessment tool (transposon insertion site sequencing) to determine genes essential for S. pneumoniae growth in vitreous humor. The results indicated that an ascorbic acid (AA) transport system subunit was important for growth. We created an isogenic gene deletion mutant of the AA transcriptional activator, ulaR2, in 2 strains of S. pneumoniae. Growth curve analysis indicated that ulaR2 deletion caused attenuated growth in vitro for both strains. However, in vivo vitreous humor infection in rabbits with either strain determined that ulaR2 was necessary for growth in one strain but not the other. These results demonstrate that ulaR2 may be important for fitness during S. pneumoniae endophthalmitis depending on the background of the strain.
Collapse
Affiliation(s)
- Angela H Benton
- University of Mississippi Medical Center, Jackson, MS 39216, USA
- Current affiliation: Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Sandy M Wong
- University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Justine L Dees
- University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Brian J Akerley
- University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Mary E Marquart
- University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
7
|
Karched M, Bhardwaj RG, Tiss A, Asikainen S. Proteomic Analysis and Virulence Assessment of Granulicatella adiacens Secretome. Front Cell Infect Microbiol 2019; 9:104. [PMID: 31069174 PMCID: PMC6491454 DOI: 10.3389/fcimb.2019.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Despite reports on the occurrence of Granulicatella adiacens in infective endocarditis, few mechanistic studies on its virulence characteristics or pathogenicity are available. Proteins secreted by this species may act as determinants of host-microbe interaction and play a role in virulence. Our aim in this study was to investigate and functionally characterize the secretome of G. adiacens. Proteins in the secretome preparation were digested by trypsin and applied to nanoLC-ESI-MS/MS. By using a combined mass spectrometry and bioinformatics approach, we identified 101 proteins. Bioinformatics tools predicting subcellular localization revealed that 18 of the secreted proteins possessed signal sequence. More than 20% of the secretome proteins were putative virulence proteins including serine protease, superoxide dismutase, aminopeptidase, molecular chaperone DnaK, and thioredoxin. Ribosomal proteins, molecular chaperones, and glycolytic enzymes, together known as "moonlighting proteins," comprised fifth of the secretome proteins. By Gene Ontology analysis, more than 60 proteins of the secretome were grouped in biological processes or molecular functions. KEGG pathway analysis disclosed that the secretome consisted of enzymes involved in biosynthesis of antibiotics. Cytokine profiling revealed that secreted proteins stimulated key cytokines, such as IL-1β, MCP-1, TNF-α, and RANTES from human PBMCs. In summary, the results from the current investigation of the G. adiacens secretome provide a basis for understanding possible pathogenic mechanisms of G. adiacens.
Collapse
Affiliation(s)
- Maribasappa Karched
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Ali Tiss
- Functional Proteomics and Metabolomics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sirkka Asikainen
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
8
|
Xu C, Xia C, Xia Z, Zhou X, Huang J, Huang Z, Liu Y, Jiang Y, Casteel S, Zhang C. Physiological and transcriptomic responses of reproductive stage soybean to drought stress. PLANT CELL REPORTS 2018; 37:1611-1624. [PMID: 30099610 DOI: 10.1007/s00299-018-2332-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/06/2018] [Indexed: 05/24/2023]
Abstract
KEY MESSAGE The dynamic alterations of the physiological and molecular processes in reproductive stage soybean indicated the dramatic impact caused by drought. Drought is a major abiotic stress that limits soybean (Glycine max) production. Most prior studies were focused on either model species or crops that are at their vegetative stages. It is known that the reproductive stage of soybean is more susceptible to drought. Therefore, an understanding on the responsive mechanisms during this stage will not only be important for basic plant physiology, but the knowledge can also be used for crop improvement via either genetic engineering or molecular breeding. In this study, physiological measurements and RNA-Seq analysis were used to dissect the metabolic alterations and molecular responses in the leaves of soybean grown at drought condition. Photosynthesis rate, stomata conductance, transpiration, and water potential were reduced. The activities of SOD and CAT were increased, while the activity of POD stayed unchanged. A total of 2771 annotated genes with at least twofold changes were found to be differentially expressed in the drought-stressed plants in which 1798 genes were upregulated and 973 were downregulated. Via KEGG analysis, these genes were assigned to multiple molecular pathways, including ABA biogenesis, compatible compound accumulation, secondary metabolite synthesis, fatty acid desaturation, plant transcription factors, etc. The large number of differentially expressed genes and the diverse pathways indicated that soybean employs complicated mechanisms to cope with drought. Some of the identified genes and pathways can be used as targets for genetic engineering or molecular breeding to improve drought resistance in soybean.
Collapse
Affiliation(s)
- Congshan Xu
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chao Xia
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhiqiang Xia
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Xiangjun Zhou
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Jing Huang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Yan Liu
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- The Institute of Sericulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Shaun Casteel
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Cankui Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
9
|
Tavares GC, Carvalho AF, Pereira FL, Rezende CP, Azevedo VAC, Leal CAG, Figueiredo HCP. Transcriptome and Proteome of Fish-Pathogenic Streptococcus agalactiae Are Modulated by Temperature. Front Microbiol 2018; 9:2639. [PMID: 30450092 PMCID: PMC6224512 DOI: 10.3389/fmicb.2018.02639] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022] Open
Abstract
Streptococcus agalactiae is one of the most important pathogens associated with streptococcosis outbreaks in Nile tilapia farms worldwide. High water temperature (above 27°C) has been described as a predisposing factor for the disease in fish. At low temperatures (below 25°C), fish mortalities are not usually observed in farms. Temperature variation can modulate the expression of genes and proteins involved in metabolism, adaptation, and bacterial pathogenicity, thus increasing or decreasing the ability to infect the host. This study aimed to evaluate the transcriptome and proteome of a fish-pathogenic S. agalactiae strain SA53 subjected to in vitro growth at different temperatures using a microarray and label-free shotgun LC-HDMSE approach. Biological triplicates of isolates were cultured in BHIT broth at 22 or 32°C for RNA and protein isolation and submitted for transcriptomic and proteomic analyses. In total, 1,730 transcripts were identified in SA53, with 107 genes being differentially expressed between the temperatures evaluated. A higher number of genes related to metabolism, mainly from the phosphotransferase system (PTS) and ATP-binding cassette (ABC) transport system, were upregulated at 32°C. In the proteome analysis, 1,046 proteins were identified in SA53, of which 81 were differentially regulated between 22 and 32°C. Proteins involved in defense mechanisms, lipid transport and metabolism, and nucleotide transport and metabolism were upregulated at 32°C. A higher number of interactions were observed in proteins involved in nucleotide transport and metabolism. We observed a low correlation between the transcriptome and proteome datasets. Our study indicates that the transcriptome and proteome of a fish-adapted S. agalactiae strain are modulated by temperature, particularly showing differential expression of genes/proteins involved in metabolism, virulence factors, and adaptation.
Collapse
Affiliation(s)
- Guilherme C Tavares
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alex F Carvalho
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Felipe L Pereira
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana P Rezende
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco A C Azevedo
- LGCM-Laboratory of Cellular and Molecular Genetics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carlos A G Leal
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Henrique C P Figueiredo
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
10
|
Afzal M, Shafeeq S, Manzoor I, Henriques-Normark B, Kuipers OP. N-acetylglucosamine-Mediated Expression of nagA and nagB in Streptococcus pneumoniae. Front Cell Infect Microbiol 2016; 6:158. [PMID: 27900287 PMCID: PMC5110562 DOI: 10.3389/fcimb.2016.00158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 11/02/2016] [Indexed: 11/13/2022] Open
Abstract
In this study, we have explored the transcriptomic response of Streptococcus pneumoniae D39 to N-acetylglucosamine (NAG). Transcriptome comparison of S. pneumoniae D39 wild-type grown in chemically defined medium (CDM) in the presence of 0.5% NAG to that grown in the presence of 0.5% glucose revealed elevated expression of many genes/operons, including nagA, nagB, manLMN, and nanP. We have further confirmed the NAG-dependent expression of nagA, nagB, manLMN, and nanP by β-galactosidase assays. nagA, nagB and glmS are putatively regulated by a transcriptional regulator NagR. We predicted the operator site of NagR (dre site) in PnagA, PnagB, and PglmS, which was further confirmed by mutating the predicted dre site in the respective promoters (nagA, nagB, and glmS). Growth comparison of ΔnagA, ΔnagB, and ΔglmS with the D39 wild-type demonstrates that nagA and nagB are essential for S. pneumoniae D39 to grow in the presence of NAG as a sole carbon source. Furthermore, deletion of ccpA shows that CcpA has no effect on the expression of nagA, nagB, and glmS in the presence of NAG in S. pneumoniae.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands; Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| | - Irfan Manzoor
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands; Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | | | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| |
Collapse
|
11
|
Afzal M, Shafeeq S, Ahmed H, Kuipers OP. N-acetylgalatosamine-Mediated Regulation of the aga Operon by AgaR in Streptococcus pneumoniae. Front Cell Infect Microbiol 2016; 6:101. [PMID: 27672623 PMCID: PMC5018945 DOI: 10.3389/fcimb.2016.00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/29/2016] [Indexed: 11/14/2022] Open
Abstract
Here, we analyze the transcriptomic response of Streptococcus pneumoniae D39 to N-acetylgalactosamine (NAGa). Transcriptome comparison of S. pneumoniae D39 grown in NAGaM17 (0.5% NAGa + M17) to that grown in GM17 (0.5% Glucose + M17) revealed the elevated expression of various carbon metabolic genes/operons, including a PTS operon (denoted here as the aga operon), which is putatively involved in NAGa transport and utilization, in the presence of NAGa. We further studied the role of a GntR-family transcriptional regulator (denoted here as AgaR) in the regulation of aga operon. Our transcriptome and RT-PCR data suggest the role of AgaR as a transcriptional repressor of the aga operon. We predicted a 20-bp operator site of AagR (5′-ATAATTAATATAACAACAAA-3′) in the promoter region of the aga operon (PbgaC), which was further verified by mutating the AgaR operator site in the respective promoter. The role of CcpA in the additional regulation of the aga operon was elucidated by further transcriptome analyses and confirmed by quantitative RT-PCR.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands; Department of Bioinformatics and Biotechnology, Government College University FaisalabadFaisalabad, Pakistan
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| | - Hifza Ahmed
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| |
Collapse
|
12
|
Manzoor I, Shafeeq S, Afzal M, Kuipers OP. Fucose-Mediated Transcriptional Activation of the fcs Operon by FcsR in Streptococcus pneumoniae. J Mol Microbiol Biotechnol 2015; 25:120-8. [DOI: 10.1159/000377724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this study, we explore the impact of fucose on the transcriptome of <i>S. pneumoniae</i> D39. The expression of various genes and operons, including the fucose uptake PTS and utilization operon (<i>fcs</i> operon) was altered in the presence of fucose. By means of quantitative RT-PCR and β-galactosidase analysis, we demonstrate the role of the transcriptional regulator FcsR, present upstream of the <i>fcs</i> operon, as a transcriptional activator of the <i>fcs</i> operon. We also predict a 19-bp putative FcsR regulatory site (5′-ATTTGAACATTATTCAAGT-3′) in the promoter region of the <i>fcs</i> operon. The functionality of this predicted FcsR regulatory site was further confirmed by promoter-truncation experiments, where deletion of half of the FscR regulatory site or full deletion led to the abolition of expression of the <i>fcs</i> operon.
Collapse
|
13
|
Afzal M, Shafeeq S, Manzoor I, Kuipers OP. Maltose-Dependent Transcriptional Regulation of the mal Regulon by MalR in Streptococcus pneumoniae. PLoS One 2015; 10:e0127579. [PMID: 26030923 PMCID: PMC4451989 DOI: 10.1371/journal.pone.0127579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/16/2015] [Indexed: 12/25/2022] Open
Abstract
The maltose regulon (mal regulon) has previously been shown to consist of the mal gene cluster (malMP, malXCD and malAR operons) in Streptococcus pneumoniae. In this study, we have further elucidated the complete mal regulon in S. pneumoniae D39 using microarray analyses and β-galactosidase assays. In addition to the mal gene cluster, the complete mal regulon of S. pneumoniae D39 consists of a pullulanase (PulA), a glucosidase (DexB), a glucokinase (RokB), a PTS component (PtsG) and an amylase (AmyA2). Our microarray studies and β-galactosidase assays further showed that the LacI-family transcriptional regulator MalR represses the expression of the mal regulon in the absence of maltose. Furthermore, the role of the pleiotropic transcriptional regulator CcpA in the regulation of the mal regulon in the presence of maltose was explored. Our microarray analysis with a ΔccpA strain showed that CcpA only represses the expression of the malXCD operon and the pulA gene in the presence of maltose. Hence, we extend the mal regulon now consisting of pulA, dexB, rokB, ptsG and amyA2 in addition to malMP, malXCD and malAR operons.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sulman Shafeeq
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, 17177, Stockholm, Sweden
| | - Irfan Manzoor
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
14
|
Shafeeq S, Afzal M, Henriques-Normark B, Kuipers OP. Transcriptional profiling of UlaR-regulated genes in Streptococcus pneumoniae. GENOMICS DATA 2015; 4:57-9. [PMID: 26484177 PMCID: PMC4535465 DOI: 10.1016/j.gdata.2015.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 11/30/2022]
Abstract
The transcriptional regulator UlaR belongs to the family of PRD-containing transcriptional regulators, which are mostly involved in the regulation of carbohydrate metabolism. The role of the transcriptional regulator UlaR in Streptococcus pneumoniae has recently been described [1]. Here, we report detailed genome-wide transcriptional profiling of UlaR-regulated genes in S. pneumoniae D39 and its ∆ulaR derivative, either in the presence of 10 mM ascorbic acid in M17 medium using microarray analysis. 10 mM concentration of ascorbic acid was supplemented to the M17 medium because our lacZ-fusion studies indicated that UlaR acts as a transcriptional activator of its targets in the presence of ascorbic acid and the expression of the ula operon was maximal at a 10 mM ascorbic acid concentration [1]. All transcriptional profiling data of UlaR-regulated genes was deposited to Gene Expression Omnibus (GEO) database under accession number GSE61649.
Collapse
Affiliation(s)
- Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, 17177 Stockholm, Sweden
| | - Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands ; Department of Bioinformatics and Biotechnology, G C University, Faisalabad, Pakistan
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, 17177 Stockholm, Sweden
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|