1
|
Ellington AJ, Schult TJ, Reisch CR, Christner BC. The Genetic Determinants of Extreme UV Radiation and Desiccation Tolerance in a Bacterium Recovered from the Stratosphere. Microorganisms 2025; 13:756. [PMID: 40284593 PMCID: PMC12029717 DOI: 10.3390/microorganisms13040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Microbes that survive transport to and in the stratosphere endure extremes of low temperature, atmospheric pressure, and relative humidity, as well as high fluxes in ultraviolet radiation (UVR). The high atmosphere thus provides an ideal environment to explore the genetic and physiological determinants conveying high tolerance to desiccation and UVR. In this study, we examined Curtobacterium aetherium L6-1, an actinobacterium obtained from stratospheric aerosol sampling that displays high resistance to desiccation and UVR. We found that its phylogenetic relatives are resistant to desiccation, but only C. aetherium displayed a high tolerance to UVR. Comparative genome analysis and directed evolution experiments implicated genes encoding photolyase, DNA nucleases and helicases, and catalases as responsible for UVR resistance in C. aetherium. Differential gene expression analysis revealed the upregulation of DNA repair and stress response mechanisms when cells were exposed to UVR, while genes encoding sugar transporters, sugar metabolism enzymes, and antioxidants were induced upon desiccation. Based on changes in gene expression as a function of water content, C. aetherium can modulate its metabolism through transcriptional regulation at very low moisture levels (Xw < 0.25 g H2O per gram dry weight). Uncovering the genetic underpinnings of desiccation and UVR resistance in C. aetherium provides new insights into how bacterial DNA repair and antioxidant mechanisms function to exhibit traits at the extreme ends of phenotypic distributions.
Collapse
Affiliation(s)
- Adam J. Ellington
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
- Meso Scale Diagnostics, LLC, Rockville, MD 20850, USA
| | - Tyler J. Schult
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
| | - Christopher R. Reisch
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
- Genomatica, San Diego, CA 92121, USA
| | - Brent C. Christner
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Galván FS, Alonso-Reyes DG, Albarracín VH. From genes to nanotubes: exploring the UV-resistome in the Andean extremophile Exiguobacterium sp. S17. Extremophiles 2025; 29:17. [PMID: 39964557 DOI: 10.1007/s00792-025-01383-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/01/2025] [Indexed: 04/11/2025]
Abstract
Exiguobacterium sp. S17, a polyextremophile isolated from a High-Altitude Andean Lake, exhibits a multi-resistance profile against toxic arsenic concentrations, high UV radiation, and elevated salinity. Here, we characterize the mechanisms underlying the UV resistance of Exiguobacterium sp. S17 (UV-resistome) through comparative genomics within the Exiguobacterium genus and describe morphological and ultrastructural changes using Scanning (SEM) and Transmission (TEM) Electron Microscopy.UV-resistome in Exiguobacterium species ranges from 112 to 132 genes. While we anticipated Exiguobacterium sp. S17 to lead the non-HAAL UV-resistome, it ranked eleventh with 113 genes. This larger UV-resistome in Exiguobacterium spp. aligns with their known adaptation to extreme environments. With SEM/TEM analyses we observed the formation of nanotubes (NTs), a novel finding in Exiguobacterium spp., which increased with higher UV-B doses. These NTs, confirmed to be membranous structures through sensitivity studies and imaging, suggest a role in cellular communication and environmental sensing. Genomic evidence supports the presence of essential NT biogenesis genes in Exiguobacterium sp. S17, further elucidating its adaptive capabilities.Our study highlights the complex interplay of genetic and phenotypic adaptations enabling Exiguobacterium sp. S17 to thrive in extreme UV environments. The novel discovery of NTs under UV stress presents a new avenue for understanding bacterial survival strategies in harsh conditions.
Collapse
Affiliation(s)
- Fátima Silvina Galván
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME), Facultad de Agronomía, Zootecnia y Veterinaria (FAZyV), UNT- CCT CONICET NOA SUR, CONICET, Tucumán, Argentina
| | - Daniel Gonzalo Alonso-Reyes
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME), Facultad de Agronomía, Zootecnia y Veterinaria (FAZyV), UNT- CCT CONICET NOA SUR, CONICET, Tucumán, Argentina
| | - Virginia Helena Albarracín
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME), Facultad de Agronomía, Zootecnia y Veterinaria (FAZyV), UNT- CCT CONICET NOA SUR, CONICET, Tucumán, Argentina.
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.
- Centro Integral de Microscopía Electrónica (CIME, CONICET-UNT), Camino de Sirga S/N. FAZyV, Finca El Manantial, 4107, Yerba Buena, Tucumán, Argentina.
| |
Collapse
|
3
|
Vargas-Reyes M, Bruna N, Ramos-Zúñiga J, Valenzuela-Ibaceta F, Rivas-Álvarez P, Navarro CA, Pérez-Donoso JM. Biosynthesis of photostable CdS quantum dots by UV-resistant psychrotolerant bacteria isolated from Union Glacier, Antarctica. Microb Cell Fact 2024; 23:140. [PMID: 38760827 PMCID: PMC11100238 DOI: 10.1186/s12934-024-02417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Quantum Dots (QDs) are fluorescent nanoparticles with exceptional optical and optoelectronic properties, finding widespread utility in diverse industrial applications. Presently, chemically synthesized QDs are employed in solar cells, bioimaging, and various technological domains. However, many applications demand QDs with prolonged lifespans under conditions of high-energy radiation. Over the past decade, microbial biosynthesis of nanomaterials has emerged as a sustainable and cost-effective process. In this context, the utilization of extremophile microorganisms for synthesizing QDs with unique properties has recently been reported. RESULTS In this study, UV-resistant bacteria were isolated from one of the most extreme environments in Antarctica, Union Glacier at the Ellsworth Mountains. Bacterial isolates, identified through 16 S sequencing, belong to the genera Rhodococcus, Pseudarthrobacter, and Arthrobacter. Notably, Rhodococcus sp. (EXRC-4 A-4), Pseudarthrobacter sp. (RC-2-3), and Arthrobacter sp. (EH-1B-1) tolerate UV-C radiation doses ≥ 120 J/m². Isolated UV-resistant bacteria biosynthesized CdS QDs with fluorescence intensities 4 to 8 times higher than those biosynthesized by E. coli, a mesophilic organism tolerating low doses of UV radiation. Transmission electron microscopy (TEM) analysis determined QD sizes ranging from 6 to 23 nm, and Fourier-transform infrared (FTIR) analysis demonstrated the presence of biomolecules. QDs produced by UV-resistant Antarctic bacteria exhibit high photostability after exposure to UV-B radiation, particularly in comparison to those biosynthesized by E. coli. Interestingly, red fluorescence-emitting QDs biosynthesized by Rhodococcus sp. (EXRC-4 A-4) and Arthrobacter sp. (EH-1B-1) increased their fluorescence emission after irradiation. Analysis of methylene blue degradation after exposure to irradiated QDs biosynthesized by UV-resistant bacteria, indicates that the QDs transfer their electrons to O2 for the formation of reactive oxygen species (ROS) at different levels. CONCLUSIONS UV-resistant Antarctic bacteria represent a novel alternative for the sustainable generation of nanostructures with increased radiation tolerance-two characteristics favoring their potential application in technologies requiring continuous exposure to high-energy radiation.
Collapse
Affiliation(s)
- Matías Vargas-Reyes
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Nicolás Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Javiera Ramos-Zúñiga
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Felipe Valenzuela-Ibaceta
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Paula Rivas-Álvarez
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Claudio A Navarro
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - José M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile.
| |
Collapse
|
4
|
Palavecino A, Sartorio MG, Carrillo N, Cortez N, Bortolotti A. The extremophilic Andean isolate Acinetobacter sp. Ver3 expresses two ferredoxin-NADP + reductase isoforms with different catalytic properties. FEBS Lett 2024; 598:670-683. [PMID: 38433717 DOI: 10.1002/1873-3468.14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 03/05/2024]
Abstract
Ferredoxin/flavodoxin-NADPH reductases (FPRs) catalyze the reversible electron transfer between NADPH and ferredoxin/flavodoxin. The Acinetobacter sp. Ver3 isolated from high-altitude Andean lakes contains two isoenzymes, FPR1ver3 and FPR2ver3. Absorption spectra of these FPRs revealed typical features of flavoproteins, consistent with the use of FAD as a prosthetic group. Spectral differences indicate distinct electronic arrangements for the flavin in each enzyme. Steady-state kinetic measurements show that the enzymes display catalytic efficiencies in the order of 1-6 μm-1·s-1, although FPR1ver3 exhibited higher kcat values compared to FPR2ver3. When flavodoxinver3 was used as a substrate, both reductases exhibited dissimilar behavior. Moreover, only FPR1ver3 is induced by oxidative stimuli, indicating that the polyextremophile Ver3 has evolved diverse strategies to cope with oxidative environments.
Collapse
Affiliation(s)
- Alejandro Palavecino
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (UNR & CONICET), Universidad Nacional de Rosario, Argentina
| | - Mariana Gabriela Sartorio
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (UNR & CONICET), Universidad Nacional de Rosario, Argentina
| | - Néstor Carrillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (UNR & CONICET), Universidad Nacional de Rosario, Argentina
| | - Néstor Cortez
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (UNR & CONICET), Universidad Nacional de Rosario, Argentina
| | - Ana Bortolotti
- Área Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas., Universidad Nacional de Rosario (UNR & CONICET), Rosario, Argentina
| |
Collapse
|
5
|
Pavez VB, Pacheco N, Castro-Severyn J, Pardo-Esté C, Álvarez J, Zepeda P, Krüger G, Gallardo K, Melo F, Vernal R, Aranda C, Remonsellez F, Saavedra CP. Characterization of biofilm formation by Exiguobacterium strains in response to arsenic exposure. Microbiol Spectr 2023; 11:e0265723. [PMID: 37819075 PMCID: PMC10714750 DOI: 10.1128/spectrum.02657-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/19/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE In this work, we characterized the composition, structure, and functional potential for biofilm formation of Exiguobacterium strains isolated from the Salar de Huasco in Chile in the presence of arsenic, an abundant metalloid in the Salar that exists in different oxidation states. Our results showed that the Exiguobacterium strains tested exhibit a significant capacity to form biofilms when exposed to arsenic, which would contribute to their resistance to the metalloid. The results highlight the importance of biofilm formation and the presence of specific resistance mechanisms in the ability of microorganisms to survive and thrive under adverse conditions.
Collapse
Affiliation(s)
- Valentina B. Pavez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nicolás Pacheco
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
| | - Coral Pardo-Esté
- Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Javiera Álvarez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Laboratory of Allergic Inflammation, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Phillippi Zepeda
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Gabriel Krüger
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Karem Gallardo
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
- Departamento de Química, Universidad Católica del Norte, Antofagasta, Chile
| | - Francisco Melo
- Laboratorio de Física no Lineal, Departamento de Física, USACH, Santiago, Chile
| | - Rolando Vernal
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carlos Aranda
- Laboratorio de Microscopía Avanzada, Departamento de Ciencias Biológicas y Biodiversidad Universidad de Los Lagos, Osorno, Chile
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
6
|
Gorriti MF, Bamann C, Alonso-Reyes DG, Wood P, Bamberg E, Farías ME, Gärtner W, Albarracín VH. Functional characterization of xanthorhodopsin in Salinivibrio socompensis, a novel halophile isolated from modern stromatolites. Photochem Photobiol Sci 2023; 22:1809-1823. [PMID: 37036621 DOI: 10.1007/s43630-023-00412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/11/2023]
Abstract
A putative xanthorhodopsin-encoding gene, XR34, was found in the genome of the moderately halophilic gammaproteobacterium Salinivibrio socompensis S34, isolated from modern stromatolites found on the shore of Laguna Socompa (3570 m), Argentina Puna. XR-encoding genes were clustered together with genes encoding X-carotene, retinal (vitamin-A aldehyde), and carotenoid biosynthesis enzymes while the carotene ketolase gene critical for the salinixanthin antenna compound was absent. To identify its functional behavior, we herein overexpressed and characterized this intriguing microbial rhodopsin. Recombinant XR34 showed all the salient features of canonical microbial rhodopsin and covalently bound retinal as a functional chromophore with λmax = 561 nm (εmax ca. 60,000 M-1 cm-1). Two canonical counterions with pK values of around 6 and 3 were identified by pH titration of the recombinant protein. With a recovery time of approximately half an hour in the dark, XR34 shows light-dark adaptation shifting the absorption maximum from 551 to 561 nm. Laser-flash induced photochemistry at pH 9 (deprotonated primary counterion) identified a photocycle starting with a K-like intermediate, followed by an M-state (λmax ca. 400 nm, deprotonated Schiff base), and a final long wavelength-absorbing N- or O-like intermediate before returning to the parental 561 nm-state. Initiating the photocycle at pH 5 (protonated counterion) yields only bathochromic intermediates, due to the lacking capacity of the counterion to accept the Schiff base proton. Illumination of the membrane-embedded protein yielded a capacitive transport current. The presence of the M-intermediate under these conditions was demonstrated by a blue light-induced shunt process.
Collapse
Affiliation(s)
- Marta F Gorriti
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pje. Caseros, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Christian Bamann
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, Frankfurt am Main, 60438, Germany
| | - Daniel Gonzalo Alonso-Reyes
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME, CONICET, UNT) CCT, CONICET, Facultad de Agronomía, Zootecnia y Veterinaria, Finca El Manantial, UNT, Camino de Sirga s/n (4107), Yerba Buena, Tucumán, Argentina
- Institute for Analytical Chemistry, University of Leipzig, Johannisallee 29, Leipzig, 04103, Germany
| | - Phillip Wood
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, Frankfurt am Main, 60438, Germany
| | - Ernst Bamberg
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, Frankfurt am Main, 60438, Germany
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pje. Caseros, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Johannisallee 29, Leipzig, 04103, Germany
| | - Virginia Helena Albarracín
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME, CONICET, UNT) CCT, CONICET, Facultad de Agronomía, Zootecnia y Veterinaria, Finca El Manantial, UNT, Camino de Sirga s/n (4107), Yerba Buena, Tucumán, Argentina.
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán, 4000, Tucumán, Argentina.
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, Centro Universitario Ing. R. Herrera (Ex Quinta Agronómica), Avda. Pte. N. Kirchner 1900., San Miguel de Tucumán, 4000, Tucumán, Argentina.
| |
Collapse
|
7
|
Genomic analysis of Paenibacillus sp. MDMC362 from the Merzouga desert leads to the identification of a potentially thermostable catalase. Antonie Van Leeuwenhoek 2023; 116:21-38. [PMID: 36383330 DOI: 10.1007/s10482-022-01793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
Microorganisms in hot deserts face heat and other environmental conditions, such as desiccation, UV radiation, or low nutrient availability. Therefore, this hostile environment harbour microorganisms with acquired characteristics related to survival in their habitat, which can be exploited in biotechnology. In this work, the genome of Paenibacillus sp. MDMC362 isolated from the Merzouga desert in Morocco was sequenced to understand its survival strategy's genetic basis; and to evaluate the thermostability of a catalase extracted from genomic annotation files using molecular dynamics. Paenibacillus sp. MDMC362 genome was rich in genetic elements involved in the fight against different stresses, notably temperature stress, UV radiations, osmotic stress, carbon starvation, and oxidative stress. Indeed, we could identify genes of the operons groES-groEL and hrcA-grpE-dnaK and those involved in the different stages of sporulation, which can help the bacteria to survive the high temperatures imposed by a desertic environment. We also observed the genetic components of the UvrABC system and additional mechanisms involved in DNA repair, which help overcome UV radiation damage. Other genes have been identified in the genome, like those coding for ectoine and proline, that aids fight osmotic stress and desiccation. Catalase thermostability investigation using molecular dynamics showed that the protein reached stability and conserved its compactness at temperatures up to 373.15 K. These results suggest a potential thermostability of the enzyme. Since the studied protein is a core protein, thermostability could be conserved among Paenibacillus sp. MDMC362 closely related strains; however, bacteria from harsh environments may have a slight advantage regarding protein stability.
Collapse
|
8
|
Singh AK, Kumari M, Sharma N, Rai AK, Singh SP. Metagenomic views on taxonomic and functional profiles of the Himalayan Tsomgo cold lake and unveiling its deterzome potential. Curr Genet 2022; 68:565-579. [PMID: 35927361 DOI: 10.1007/s00294-022-01247-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 12/14/2022]
Abstract
Cold habitat is considered a potential source for detergent industry enzymes. This study aims at the metagenomic investigation of Tsomgo lake for taxonomic and functional annotation, unveiling the deterzome potential of the residing microbiota at this site. The present investigation revealed molecular profiling of microbial community structure and functional potential of the high-altitude Tsomgo lake samples of two different temperatures, harvested during March and August. Bacteria were found to be the most dominant phyla, with traces of genomic pieces of evidence belonging to archaea, viruses, and eukaryotes. Proteobacteria and Actinobacteria were noted to be the most abundant bacterial phyla in the cold lake. In-depth metagenomic investigation of the cold aquatic habitat revealed novel genes encoding detergent enzymes, amylase, protease, and lipase. Further, metagenome-assembled genomes (MAGs) belonging to the psychrophilic bacterium, Arthrobacter alpinus, were constructed from the metagenomic data. The annotation depicted the presence of detergent enzymes and genes for low-temperature adaptation in Arthrobacter alpinus. Psychrophilic microbial isolates were screened for lipase, protease, and amylase activities to further strengthen the metagenomic findings. A novel strain of Acinetobacter sp. was identified with the dual enzymatic activity of protease and amylase. The bacterial isolates exhibited hydrolyzing activity at low temperatures. This metagenomic study divulged novel genomic resources for detergent industry enzymes, and the bacterial isolates secreting cold-active amylase, lipase, and protease enzymes. The findings manifest that Tsomgo lake is a potential bioresource of cold-active enzymes, vital for various industrial applications.
Collapse
Affiliation(s)
- Ashutosh Kumar Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector 81, SAS Nagar, Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Megha Kumari
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong, Gangtok, Sikkim, India
| | - Nitish Sharma
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector 81, SAS Nagar, Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong, Gangtok, Sikkim, India.
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector 81, SAS Nagar, Mohali, India.
| |
Collapse
|
9
|
Kumar V, Kashyap P, Kumar S, Thakur V, Kumar S, Singh D. Multiple Adaptive Strategies of Himalayan Iodobacter sp. PCH194 to High-Altitude Stresses. Front Microbiol 2022; 13:881873. [PMID: 35875582 PMCID: PMC9298515 DOI: 10.3389/fmicb.2022.881873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial adaption to the multiple stressed environments of high-altitude niches in the Himalayas is intriguing and is of considerable interest to biotechnologists. Previously, we studied the culturable and unculturable metagenome microbial diversity from glacial and kettle lakes in the Western Himalayas. In this study, we explored the adaptive strategies of a unique Himalayan eurypsychrophile Iodobacter sp. PCH194, which can synthesize polyhydroxybutyrate (PHB) and violacein pigment. Whole-genome sequencing and analysis of Iodobacter sp. PCH194 (4.58 Mb chromosome and three plasmids) revealed genetic traits associated with adaptive strategies for cold/freeze, nutritional fluctuation, defense against UV, acidic pH, and the kettle lake's competitive environment. Differential proteome analysis suggested the adaptive role of chaperones, ribonucleases, secretion systems, and antifreeze proteins under cold stress. Antifreeze activity inhibiting the ice recrystallization at −9°C demonstrated the bacterium's survival at subzero temperature. The bacterium stores carbon in the form of PHB under stress conditions responding to nutritional fluctuations. However, violacein pigment protects the cells from UV radiation. Concisely, genomic, proteomic, and physiological studies revealed the multiple adaptive strategies of Himalayan Iodobacter to survive the high-altitude stresses.
Collapse
Affiliation(s)
- Vijay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Prakriti Kashyap
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Subhash Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, India
| | - Vikas Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, India
| |
Collapse
|
10
|
Zannier F, Portero LR, Douki T, Gärtner W, Farías ME, Albarracín VH. Proteomic Signatures of Microbial Adaptation to the Highest Ultraviolet-Irradiation on Earth: Lessons From a Soil Actinobacterium. Front Microbiol 2022; 13:791714. [PMID: 35369494 PMCID: PMC8965627 DOI: 10.3389/fmicb.2022.791714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
In the Central Andean region in South America, high-altitude ecosystems (3500-6000 masl) are distributed across Argentina, Chile, Bolivia, and Peru, in which poly-extremophilic microbes thrive under extreme environmental conditions. In particular, in the Puna region, total solar irradiation and UV incidence are the highest on Earth, thus, restraining the physiology of individual microorganisms and the composition of microbial communities. UV-resistance of microbial strains thriving in High-Altitude Andean Lakes was demonstrated and their mechanisms were partially characterized by genomic analysis, biochemical and physiological assays. Then, the existence of a network of physiological and molecular mechanisms triggered by ultraviolet light exposure was hypothesized and called "UV-resistome". It includes some or all of the following subsystems: (i) UV sensing and effective response regulators, (ii) UV-avoidance and shielding strategies, (iii) damage tolerance and oxidative stress response, (iv) energy management and metabolic resetting, and (v) DNA damage repair. Genes involved in the described UV-resistome were recently described in the genome of Nesterenkonia sp. Act20, an actinobacterium which showed survival to high UV-B doses as well as efficient photorepairing capability. The aim of this work was to use a proteomic approach together with photoproduct measurements to help dissecting the molecular events involved in the adaptive response of a model High-Altitude Andean Lakes (HAAL) extremophilic actinobacterium, Nesterenkonia sp. Act20, under artificial UV-B radiation. Our results demonstrate that UV-B exposure induced over-abundance of a well-defined set of proteins while recovery treatments restored the proteomic profiles present before the UV-challenge. The proteins involved in this complex molecular network were categorized within the UV-resistome subsystems: damage tolerance and oxidative stress response, energy management and metabolic resetting, and DNA damage repair.
Collapse
Affiliation(s)
- Federico Zannier
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Luciano R. Portero
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Thierry Douki
- Université Grenoble Alpes, Commissariat a l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Institut de Recherche Interdisciplinaire de Grenoble–Systèmes Moléculaires et nanoMatériaux p our l’Énergie et la Santé, Grenoble, France
| | - Wolfgang Gärtner
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - María E. Farías
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Virginia H. Albarracín
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
11
|
Steimbrüch BA, Sartorio MG, Cortez N, Albanesi D, Lisa MN, Repizo GD. The distinctive roles played by the superoxide dismutases of the extremophile Acinetobacter sp. Ver3. Sci Rep 2022; 12:4321. [PMID: 35279679 PMCID: PMC8918354 DOI: 10.1038/s41598-022-08052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Acinetobacter sp. Ver3 is a polyextremophilic strain characterized by a high tolerance to radiation and pro-oxidants. The Ver3 genome comprises the sodB and sodC genes encoding an iron (AV3SodB) and a copper/zinc superoxide dismutase (AV3SodC), respectively; however, the specific role(s) of these genes has remained elusive. We show that the expression of sodB remained unaltered in different oxidative stress conditions whereas sodC was up-regulated in the presence of blue light. Besides, we studied the changes in the in vitro activity of each SOD enzyme in response to diverse agents and solved the crystal structure of AV3SodB at 1.34 Å, one of the highest resolutions achieved for a SOD. Cell fractionation studies interestingly revealed that AV3SodB is located in the cytosol whereas AV3SodC is also found in the periplasm. Consistently, a bioinformatic analysis of the genomes of 53 Acinetobacter species pointed out the presence of at least one SOD type in each compartment, suggesting that these enzymes are separately required to cope with oxidative stress. Surprisingly, AV3SodC was found in an active state also in outer membrane vesicles, probably exerting a protective role. Overall, our multidisciplinary approach highlights the relevance of SOD enzymes when Acinetobacterspp. are confronted with oxidizing agents.
Collapse
Affiliation(s)
- Bruno Alejandro Steimbrüch
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Mariana Gabriela Sartorio
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Néstor Cortez
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Daniela Albanesi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, S2002LRK, Rosario, Argentina.,Plataforma de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, S2002LRK, Rosario, Argentina
| | - María-Natalia Lisa
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, S2002LRK, Rosario, Argentina. .,Plataforma de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, S2002LRK, Rosario, Argentina.
| | - Guillermo Daniel Repizo
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
12
|
CsrA Coordinates Compatible Solute Synthesis in Acinetobacter baumannii and Facilitates Growth in Human Urine. Microbiol Spectr 2021; 9:e0129621. [PMID: 34730379 PMCID: PMC8567240 DOI: 10.1128/spectrum.01296-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CsrA is a global regulator widespread in bacteria and known to be involved in different physiological processes, including pathogenicity. Deletion of csrA of Acinetobacter baumannii strain ATCC 19606 resulted in a mutant that was unable to utilize a broad range of carbon and energy sources, including amino acids. This defect in amino acid metabolism was most likely responsible for the growth inhibition of the ΔcsrA mutant in human urine, where amino acids are the most abundant carbon source for A. baumannii. Recent studies revealed that deletion of csrA in the A. baumannii strains AB09-003 and ATCC 17961 resulted in an increase in hyperosmotic stress resistance. However, the molecular basis for this observation remained unknown. This study aimed to investigate the role of CsrA in compatible solute synthesis. We observed striking differences in the ability of different A. baumannii strains to cope with hyperosmotic stress. Strains AB09-003 and ATCC 17961 were strongly impaired in hyperosmotic stress resistance in comparison to strain ATCC 19606. These differences were abolished by deletion of csrA and are in line with the ability to synthesize compatible solutes. In the salt-sensitive strains AB09-003 and ATCC 17961, compatible solute synthesis was repressed by CsrA. This impairment is mediated via CsrA and could be overcome by deletion of csrA from the genome. IMPORTANCE The opportunistic human pathogen Acinetobacter baumannii has become one of the leading causes of nosocomial infections around the world due to the increasing prevalence of multidrug-resistant strains and their optimal adaptation to clinical environments and the human host. Recently, it was found that CsrA, a global mRNA binding posttranscriptional regulator, plays a role in osmotic stress adaptation, virulence, and growth on amino acids of A. baumannii AB09-003 and ATCC 17961. Here, we report that this is also the case for A. baumannii ATCC 19606. However, we observed significant differences in the ΔcsrA mutants with respect to osmostress resistance, such as the AB09-003 and 17961 mutants being enhanced in osmostress resistance whereas the ATCC 19606 mutant was not. This suggests that the role of CsrA in osmotic stress adaptation is strain specific. Furthermore, we provide clear evidence that CsrA is essential for growth in human urine and at high temperatures.
Collapse
|
13
|
Perez MF, Saona LA, Farías ME, Poehlein A, Meinhardt F, Daniel R, Dib JR. Assessment of the plasmidome of an extremophilic microbial community from the Diamante Lake, Argentina. Sci Rep 2021; 11:21459. [PMID: 34728656 PMCID: PMC8563766 DOI: 10.1038/s41598-021-00753-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022] Open
Abstract
Diamante Lake located at 4589 m.a.s.l. in the Andean Puna constitutes an extreme environment. It is exposed to multiple extreme conditions such as an unusually high concentration of arsenic (over 300 mg L-1) and low oxygen pressure. Microorganisms thriving in the lake display specific genotypes that facilitate survival, which include at least a multitude of plasmid-encoded resistance traits. Hence, the genetic information provided by the plasmids essentially contributes to understand adaptation to different stressors. Though plasmids from cultivable organisms have already been analyzed to the sequence level, the impact of the entire plasmid-borne genetic information on such microbial ecosystem is not known. This study aims at assessing the plasmidome from Diamante Lake, which facilitates the identification of potential hosts and prediction of gene functions as well as the ecological impact of mobile genetic elements. The deep-sequencing analysis revealed a large fraction of previously unknown DNA sequences of which the majority encoded putative proteins of unknown function. Remarkably, functions related to the oxidative stress response, DNA repair, as well as arsenic- and antibiotic resistances were annotated. Additionally, all necessary capacities related to plasmid replication, mobilization and maintenance were detected. Sequences characteristic for megaplasmids and other already known plasmid-associated genes were identified as well. The study highlights the potential of the deep-sequencing approach specifically targeting plasmid populations as it allows to evaluate the ecological impact of plasmids from (cultivable and non-cultivable) microorganisms, thereby contributing to the understanding of the distribution of resistance factors within an extremophilic microbial community.
Collapse
Affiliation(s)
- María Florencia Perez
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina
| | - Luis Alberto Saona
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina
| | - María Eugenia Farías
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina
| | - Anja Poehlein
- grid.7450.60000 0001 2364 4210Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Friedhelm Meinhardt
- grid.5949.10000 0001 2172 9288Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
| | - Rolf Daniel
- grid.7450.60000 0001 2364 4210Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Julián Rafael Dib
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina ,grid.108162.c0000000121496664Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán Argentina
| |
Collapse
|
14
|
Alonso-Reyes DG, Galván FS, Portero LR, Alvarado NN, Farías ME, Vazquez MP, Albarracín VH. Genomic insights into an andean multiresistant soil actinobacterium of biotechnological interest. World J Microbiol Biotechnol 2021; 37:166. [PMID: 34463818 PMCID: PMC8405860 DOI: 10.1007/s11274-021-03129-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/14/2021] [Indexed: 12/01/2022]
Abstract
Central-Andean Ecosystems (between 2000 and 6000 m above sea level (masl) are typical arid-to-semiarid environments suffering from the highest total solar and ultraviolet-B radiation on the planet but displaying numerous salt flats and shallow lakes. Andean microbial ecosystems isolated from these environments are of exceptional biodiversity enduring multiple severe conditions. Furthermore, the polyextremophilic nature of the microbes in such ecosystems indicates the potential for biotechnological applications. Within this context, the study undertaken used genome mining, physiological and microscopical characterization to reveal the multiresistant profile of Nesterenkonia sp. Act20, an actinobacterium isolated from the soil surrounding Lake Socompa, Salta, Argentina (3570 masl). Ultravioet-B, desiccation, and copper assays revealed the strain's exceptional resistance to all these conditions. Act20's genome presented coding sequences involving resistance to antibiotics, low temperatures, ultraviolet radiation, arsenic, nutrient-limiting conditions, osmotic stress, low atmospheric-oxygen pressure, heavy-metal stress, and toxic fluoride and chlorite. Act20 can also synthesize proteins and natural products such as an insecticide, bacterial cellulose, ectoine, bacterial hemoglobin, and even antibiotics like colicin V and aurachin C. We also found numerous enzymes for animal- and vegetal-biomass degradation and applications in other industrial processes. The resilience of Act20 and its biotechnologic potential were thoroughly demonstrated in this work.
Collapse
Affiliation(s)
- Daniel Gonzalo Alonso-Reyes
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME), Facultad de Agronomía y Zootecnia, UNT y CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Fátima Silvina Galván
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME), Facultad de Agronomía y Zootecnia, UNT y CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Luciano Raúl Portero
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME), Facultad de Agronomía y Zootecnia, UNT y CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Natalia Noelia Alvarado
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME), Facultad de Agronomía y Zootecnia, UNT y CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Martín P Vazquez
- HERITAS-CONICET, Ocampo 210 bis, Predio CCT, 2000, Rosario, Santa Fe, Argentina
| | - Virginia Helena Albarracín
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME), Facultad de Agronomía y Zootecnia, UNT y CONICET, San Miguel de Tucumán, Tucumán, Argentina.
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina.
- Centro Integral de Microscopía Electrónica (CIME, CONICET, UNT), Camino de Sirga s/n. FAZ, Finca El Manantial, 4107, Yerba Buena, Tucumán, Argentina.
| |
Collapse
|
15
|
Abstract
Concrete is an extreme but common environment and is home to microbial communities adapted to alkaline, saline, and oligotrophic conditions. Microbes inside the concrete that makes up buildings or roads have received little attention despite their ubiquity and capacity to interact with the concrete. Because concrete is a composite of materials which have their own microbial communities, we hypothesized that the microbial communities of concrete reflect those of the concrete components and that these communities change as the concrete ages. Here, we used a 16S amplicon study to show how microbial communities change over 2 years of outdoor weathering in two sets of concrete cylinders, one prone to the concrete-degrading alkali-silica reaction (ASR) and the other having the risk of the ASR mitigated. After identifying and removing taxa that were likely laboratory or reagent contaminants, we found that precursor materials, particularly the large aggregate (gravel), were the probable source of ∼50 to 60% of the bacteria observed in the first cylinders from each series. Overall, community diversity decreased over 2 years, with temporarily increased diversity in warmer summer months. We found that most of the concrete microbiome was composed of Proteobacteria, Firmicutes, and Actinobacteria, although community composition changed seasonally and over multiyear time scales and was likely influenced by environmental deposition. Although the community composition between the two series was not significantly different overall, several taxa, including Arcobacter, Modestobacter, Salinicoccus, Rheinheimera, Lawsonella, and Bryobacter, appear to be associated with ASR. IMPORTANCE Concrete is the most-used building material in the world and a biologically extreme environment, with a microbiome composed of bacteria that likely come from concrete precursor materials, aerosols, and environmental deposition. These microbes, though seeded from a variety of materials, are all subject to desiccation, heating, starvation, high salinity, and very high pH. Microbes that survive and even thrive under these conditions can potentially either degrade concrete or contribute to its repair. Thus, understanding which microbes survive in concrete, under what conditions, and for how long has potential implications for biorepair of concrete. Further, methodological pipelines for analyzing concrete microbial communities can be applied to concrete from a variety of structures or with different types of damage to identify bioindicator species that can be used for structural health monitoring and service life prediction.
Collapse
|
16
|
New Provisional Function of OmpA from Acinetobacter sp. Strain SA01 Based on Environmental Challenges. mSystems 2021; 6:6/1/e01175-20. [PMID: 33436517 PMCID: PMC7901484 DOI: 10.1128/msystems.01175-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acinetobacter OmpA is known as a multifaceted protein with multiple functions, including emulsifying properties. Bioemulsifiers are surface-active compounds that can disperse hydrophobic compounds in water and help increase the bioavailability of hydrophobic hydrocarbons to be used by degrading microorganisms. An outer membrane protein A (OmpA) from Acinetobacter sp. strain SA01 was identified and characterized in-depth based on the structural and functional characteristics already known of its homologues. In silico structural studies showed that this protein can be a slow porin, binds to peptidoglycan, and exhibits emulsifying properties. Characterization of the recombinant SA01-OmpA, based on its emulsifying properties, represented its promising potentials in biotechnology. Also, the presence of SA01-OmpA in outer membrane vesicles (OMV) and biofilm showed that this protein, like its homologues in Acinetobacter baumannii, can be secreted into the extracellular environment through OMVs and play a role in the formation of biofilm. After ensuring the correct selection of the protein of interest, the role of oxidative stress induced by cell nutritional parameters (utilization of specific carbon sources) on the expression level of OmpA was carefully studied. For this purpose, the oxidative stress level of SA01 cell cultures in the presence of three nonrelevant carbon sources (sodium acetate, ethanol, and phenol) was examined under each condition. High expression of SA01-OmpA in ethanol- and phenol-fed cells with higher levels of oxidative stress than acetate suggested that oxidative stress could be a substantial factor in the regulation of SA01-OmpA expression. The significant association of SA01-OmpA expression with the levels of oxidative stress induced by cadmium and H2O2, with oxidative stress-inducing properties and lack of nutritional value, confirmed that the cells tend to harness their capacities with a possible increase in OmpA production. Collectively, this study suggests a homeostasis role for OmpA in Acinetobacter sp. SA01 under oxidative stress besides assuming many other roles hitherto attributed to this protein. IMPORTANCEAcinetobacter OmpA is known as a multifaceted protein with multiple functions, including emulsifying properties. Bioemulsifiers are surface-active compounds that can disperse hydrophobic compounds in water and help increase the bioavailability of hydrophobic hydrocarbons to be used by degrading microorganisms. In this study, an OmpA from Acinetobacter sp. SA01 was identified and introduced as an emulsifier with a higher emulsifying capacity than Pseudomonas aeruginosa rhamnolipid. We also showed that the expression of this protein is not dependent on the nutritional requirements but is more influenced by the oxidative stress caused by stressors. This finding, along with the structural role of this protein as a slow porin or its role in OMV biogenesis and biofilm formation, suggests that this protein can play an important role in maintaining cellular homeostasis under oxidative stress conditions. Altogether, the present study provides a new perspective on the functional performance of Acinetobacter OmpA, which can be used both to optimize its production as an emulsifier and a target in the treatment of multidrug-resistant strains.
Collapse
|
17
|
Kumar J, Ghosh P, Kumar A. Ultraviolet-B Radiation Stress-Induced Toxicity and Alterations in Proteome of Deinococcus radiodurans. Microb Physiol 2020; 31:1-15. [PMID: 33341800 DOI: 10.1159/000512018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/27/2020] [Indexed: 11/19/2022]
Abstract
Deinococcus radiodurans is a polyextremophilic bacterium capable to survive and grow at high doses of ionizing radiation. Besides resistance to ionizing radiation, the bacterium is also resistant to toxic chemicals and desiccation. This study deals with the effects of non-ionizing radiation (ultraviolet-B) on survival, alterations in proteomic profile, and gene expression in D. radiodurans. Exposure of culture to UV-B caused decrease in the percentage survival with increasing duration, complete killing occurred after 16 h. D. radiodurans also showed enhancement in the generation of reactive oxygen species and activities of antioxidative enzymes. Separation of proteins by 2-dimensional gel electrophoresis revealed major changes in number and abundance of different proteins. Twenty-eight differentially abundant protein spots were identified by MALDI-TOF MS/MS analysis and divided into 8 groups including unknown proteins. Gene expression of a few identified proteins was also analyzed employing qRT-PCR, which showed differential expression corresponding to the respective proteins. In silico analysis of certain hypothetical proteins (HPs) suggested that these are novel and as yet not reported from D. radiodurans subjected to UV-B stress. These HPs may prove useful in future studies especially for assessing their significance in the adaptation and management of stress responses against UV-B stress.
Collapse
Affiliation(s)
- Jay Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Paushali Ghosh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashok Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India,
| |
Collapse
|
18
|
Osborne P, Hall LJ, Kronfeld-Schor N, Thybert D, Haerty W. A rather dry subject; investigating the study of arid-associated microbial communities. ENVIRONMENTAL MICROBIOME 2020; 15:20. [PMID: 33902728 PMCID: PMC8067391 DOI: 10.1186/s40793-020-00367-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/12/2020] [Indexed: 05/08/2023]
Abstract
Almost one third of Earth's land surface is arid, with deserts alone covering more than 46 million square kilometres. Nearly 2.1 billion people inhabit deserts or drylands and these regions are also home to a great diversity of plant and animal species including many that are unique to them. Aridity is a multifaceted environmental stress combining a lack of water with limited food availability and typically extremes of temperature, impacting animal species across the planet from polar cold valleys, to Andean deserts and the Sahara. These harsh environments are also home to diverse microbial communities, demonstrating the ability of bacteria, fungi and archaea to settle and live in some of the toughest locations known. We now understand that these microbial ecosystems i.e. microbiotas, the sum total of microbial life across and within an environment, interact across both the environment, and the macroscopic organisms residing in these arid environments. Although multiple studies have explored these microbial communities in different arid environments, few studies have examined the microbiota of animals which are themselves arid-adapted. Here we aim to review the interactions between arid environments and the microbial communities which inhabit them, covering hot and cold deserts, the challenges these environments pose and some issues arising from limitations in the field. We also consider the work carried out on arid-adapted animal microbiotas, to investigate if any shared patterns or trends exist, whether between organisms or between the animals and the wider arid environment microbial communities. We determine if there are any patterns across studies potentially demonstrating a general impact of aridity on animal-associated microbiomes or benefits from aridity-adapted microbiomes for animals. In the context of increasing desertification and climate change it is important to understand the connections between the three pillars of microbiome, host genome and environment.
Collapse
Affiliation(s)
- Peter Osborne
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK.
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, 85354, Freising, Germany
| | | | - David Thybert
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK
| |
Collapse
|
19
|
Saona LA, Soria M, Villafañe PG, Lencina AI, Stepanenko T, Farías ME. Andean Microbial Ecosystems: Traces in Hypersaline Lakes About Life Origin. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-46087-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
20
|
Hubloher JJ, Zeidler S, Lamosa P, Santos H, Averhoff B, Müller V. Trehalose-6-phosphate-mediated phenotypic change in Acinetobacter baumannii. Environ Microbiol 2020; 22:5156-5166. [PMID: 32618111 DOI: 10.1111/1462-2920.15148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
The stress protectant trehalose is synthesized in Acinetobacter baumannii from UPD-glucose and glucose-6-phosphase via the OtsA/OtsB pathway. Previous studies proved that deletion of otsB led to a decreased virulence, the inability to grow at 45°C and a slight reduction of growth at high salinities indicating that trehalose is the cause of these phenotypes. We have questioned this conclusion by producing ∆otsA and ∆otsBA mutants and studying their phenotypes. Only deletion of otsB, but not deletion of otsA or otsBA, led to growth impairments at high salt and high temperature. The intracellular concentrations of trehalose and trehalose-6-phosphate were measured by NMR or enzymatic assay. Interestingly, none of the mutants accumulated trehalose any more but the ∆otsB mutant with its defect in trehalose-6-phosphate phosphatase activity accumulated trehalose-6-phosphate. Moreover, expression of otsA in a ∆otsB background under conditions where trehalose synthesis is not induced led to growth inhibition and the accumulation of trehalose-6-phosphate. Our results demonstrate that trehalose-6-phosphate affects multiple physiological activities in A. baumannii ATCC 19606.
Collapse
Affiliation(s)
- Josephine Joy Hubloher
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Sabine Zeidler
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Pedro Lamosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Beate Averhoff
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| |
Collapse
|
21
|
Perez MF, Kurth D, Farías ME, Soria MN, Castillo Villamizar GA, Poehlein A, Daniel R, Dib JR. First Report on the Plasmidome From a High-Altitude Lake of the Andean Puna. Front Microbiol 2020; 11:1343. [PMID: 32655530 PMCID: PMC7324554 DOI: 10.3389/fmicb.2020.01343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Mobile genetic elements, including plasmids, drive the evolution of prokaryotic genomes through the horizontal transfer of genes allowing genetic exchange between bacteria. Moreover, plasmids carry accessory genes, which encode functions that may offer an advantage to the host. Thus, it is expected that in a certain ecological niche, plasmids are enriched in accessory functions, which are important for their hosts to proliferate in that niche. Puquio de Campo Naranja is a high-altitude lake from the Andean Puna exposed to multiple extreme conditions, including high UV radiation, alkalinity, high concentrations of arsenic, heavy metals, dissolved salts, high thermal amplitude and low O2 pressure. Microorganisms living in this lake need to develop efficient mechanisms and strategies to cope under these conditions. The aim of this study was to characterize the plasmidome of microbialites from Puquio de Campo Naranja, and identify potential hosts and encoded functions using a deep-sequencing approach. The potential ecological impact of the plasmidome, including plasmids from cultivable and non-cultivable microorganisms, is described for the first time in a lake representing an extreme environment of the Puna. This study showed that the recovered genetic information for the plasmidome was novel in comparison to the metagenome derived from the same environment. The study of the total plasmid population allowed the identification of genetic features typically encoded by plasmids, such as resistance and virulence factors. The resistance genes comprised resistances to heavy metals, antibiotics and stress factors. These results highlight the key role of plasmids for their hosts and impact of extrachromosomal elements to thrive in a certain ecological niche.
Collapse
Affiliation(s)
- María Florencia Perez
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Daniel Kurth
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - María Eugenia Farías
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Mariana Noelia Soria
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Genis Andrés Castillo Villamizar
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany.,Línea Tecnológica Biocorrosión, Corporación para la Investigación de la Corrosión C.I.C., Piedecuesta, Colombia
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Julián Rafael Dib
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Instituto de Microbiología, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
22
|
Kataria S, Rastogi A, Bele A, Jain M. Role of nitric oxide and reactive oxygen species in static magnetic field pre-treatment induced tolerance to ambient UV-B stress in soybean. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:931-945. [PMID: 32377043 PMCID: PMC7196601 DOI: 10.1007/s12298-020-00802-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/04/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
The experiments were conducted for the estimation of the mitigating effect of the static magnetic field (SMF of 200 mT for 1 h) treatment on soybean under ambient UV-B stress. The SMF treated (MT) and untreated (UT) seeds were grown inside iron cages covered with polyester filters for the purpose to filter UV-A + B (< 400 nm) and UV-B (< 300 nm) radiations, polythene filter control (FC) transparent for UV (280-400 nm), and open controls (OC) were without any filters. Our results indicated that specific leaf weight, efficiency of PS II, activity of carbonic anhydrase (CA) and nitrogenase (NRA), nucleic acid and protein content, nitric oxide (NO) and yield were significantly decreased in plants of untreated seeds under UV-B stress. SMF treatment to the soybean seeds was observed to mitigate the adverse effect of ambient UV-B with a significant enhancement in above-measured parameters in plants when compared with plants of untreated seeds grown under OC/FC conditions. Chlorophyll a fluorescence transition curve (OJIP-curve) from SMF treated and UV excluded plants has shown a higher fluorescence yield especially for I-P phase as compared to the plants grown in ambient UV-B stress. Reduction in the level of superoxide anion radicle ( O 2 · - ), hydrogen peroxide (H2O2), malondialdehyde (MDA) and proline content with a remarkable increase in DNA, RNA, protein and NO content, increased photosynthetic efficiency and nitrogen fixation in the leaves of soybean suggested the ameliorating effect of SMF pre-treatment against ambient UV-B induced damage. Consequently, SMF-pretreatment increased the tolerance of soybean seedlings to ambient UV-B stress as compared to the untreated seeds. The increase in carbon and nitrogen fixation ability due to SMF pre-treatment and the omission of solar UV radiation impact can be a direction for the purpose to improve the crop yield. Evaluation of the consequences of SMF treated seeds under ambient UV-B stress, and the plants from untreated seeds under solar UV exclusion indicated parallelism among the two effects.
Collapse
Affiliation(s)
- Sunita Kataria
- School of Biochemistry, D.A.V.V., Khandwa Road, Indore, MP India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Ankita Bele
- School of Biochemistry, D.A.V.V., Khandwa Road, Indore, MP India
| | - Meeta Jain
- School of Biochemistry, D.A.V.V., Khandwa Road, Indore, MP India
| |
Collapse
|
23
|
Lamprecht-Grandío M, Cortesão M, Mirete S, de la Cámara MB, de Figueras CG, Pérez-Pantoja D, White JJ, Farías ME, Rosselló-Móra R, González-Pastor JE. Novel Genes Involved in Resistance to Both Ultraviolet Radiation and Perchlorate From the Metagenomes of Hypersaline Environments. Front Microbiol 2020; 11:453. [PMID: 32292392 PMCID: PMC7135895 DOI: 10.3389/fmicb.2020.00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Microorganisms that thrive in hypersaline environments on the surface of our planet are exposed to the harmful effects of ultraviolet radiation. Therefore, for their protection, they have sunscreen pigments and highly efficient DNA repair and protection systems. The present study aimed to identify new genes involved in UV radiation resistance from these microorganisms, many of which cannot be cultured in the laboratory. Thus, a functional metagenomic approach was used and for this, small-insert libraries were constructed with DNA isolated from microorganisms of high-altitude Andean hypersaline lakes in Argentina (Diamante and Ojo Seco lakes, 4,589 and 3,200 m, respectively) and from the Es Trenc solar saltern in Spain. The libraries were hosted in a UV radiation-sensitive strain of Escherichia coli (recA mutant) and they were exposed to UVB. The resistant colonies were analyzed and as a result, four clones were identified with environmental DNA fragments containing five genes that conferred resistance to UV radiation in E. coli. One gene encoded a RecA-like protein, complementing the mutation in recA that makes the E. coli host strain more sensitive to UV radiation. Two other genes from the same DNA fragment encoded a TATA-box binding protein and an unknown protein, both responsible for UV resistance. Interestingly, two other genes from different and remote environments, the Ojo Seco Andean lake and the Es Trenc saltern, encoded two hypothetical proteins that can be considered homologous based on their significant amino acid similarity (49%). All of these genes also conferred resistance to 4-nitroquinoline 1-oxide (4-NQO), a compound that mimics the effect of UV radiation on DNA, and also to perchlorate, a powerful oxidant that can induce DNA damage. Furthermore, the hypothetical protein from the Es Trenc salterns was localized as discrete foci possibly associated with damaged sites in the DNA in cells treated with 4-NQO, so it could be involved in the repair of damaged DNA. In summary, novel genes involved in resistance to UV radiation, 4-NQO and perchlorate have been identified in this work and two of them encoding hypothetical proteins that could be involved in DNA damage repair activities not previously described.
Collapse
Affiliation(s)
| | - Marta Cortesão
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Salvador Mirete
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | | | | | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Joseph John White
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), Centro Científico Tecnológico, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | | |
Collapse
|
24
|
Sartorio MG, Repizo GD, Cortez N. Catalases of the polyextremophylic Andean isolate Acinetobacter sp. Ver 3 confer adaptive response to H 2 O 2 and UV radiation. FEBS J 2020; 287:4525-4539. [PMID: 32037677 DOI: 10.1111/febs.15244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/18/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
The polyextremophilic strain Acinetobacter sp. Ver3 isolated from high-altitude Andean lakes exhibits elevated tolerance to UV-B radiation and to pro-oxidants, a feature that has been correlated to its unusually high catalase activity. The Ver3 genome sequence analysis revealed the presence of two genes coding for monofunctional catalases: AV3 KatE1 and AV3 KatE2, the latter harboring an N-terminal signal peptide. We show herein that AV3 KatE1 displays one of the highest catalytic activities reported so far and is constitutively expressed at relatively high amounts in the cytosol, acting as the main protecting catalase against H2 O2 and UV-B radiation. The second catalase, AV3 KatE2, is a periplasmic enzyme strongly induced by both peroxide and UV, conferring supplementary protection against pro-oxidants. The N-terminal signal present in AV3 KatE2 was required not only for transport to the periplasm via the twin-arginine translocation pathway, but also for proper folding and subsequent catalytic activity. The analysis of catalase distribution among 114 Acinetobacter complete genomes revealed a great variability in the catalase classes, with A. baumannii clinical isolates exhibiting higher numbers of isoenzymes and the most variable profiles.
Collapse
Affiliation(s)
- Mariana Gabriela Sartorio
- Instituto de Biología Molecular y Celular de Rosario (UNR & CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Guillermo Daniel Repizo
- Instituto de Biología Molecular y Celular de Rosario (UNR & CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Néstor Cortez
- Instituto de Biología Molecular y Celular de Rosario (UNR & CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| |
Collapse
|
25
|
Kumar V, Thakur V, Ambika, Kumar V, Kumar R, Singh D. Genomic insights revealed physiological diversity and industrial potential for Glaciimonas sp. PCH181 isolated from Satrundi glacier in Pangi-Chamba Himalaya. Genomics 2020; 112:637-646. [DOI: 10.1016/j.ygeno.2019.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/17/2022]
|
26
|
Life in High Salt Concentrations with Changing Environmental Conditions: Insights from Genomic and Phenotypic Analysis of Salinivibrio sp. Microorganisms 2019; 7:microorganisms7110577. [PMID: 31752335 PMCID: PMC6920786 DOI: 10.3390/microorganisms7110577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022] Open
Abstract
Life in salt pans with varying chemical compositions require special adaptation strategies at both the physiological and molecular level. The Marakkanam salt pan in South India is characterized with a high fluctuation in salinity (19–490 ppt), Ultravioletradiation, and heavy metal concentrations. Several bacterial species have been isolated and identified in the view of phylogenetic analysis and for the subsequent production of industrially important enzymes. However, limited information exists on the genomic basis of their survival under variable environmental conditions. To this extent, we sequenced the whole genome of the Salinivibrio sp. HTSP, a moderately halophilic bacterium. We analysed the physiological and genomic attributes of Salinivibrio sp. HTSP to elucidate the strategies of adaptation under various abiotic stresses. The genome size is estimated to be 3.39 Mbp with a mean G + C content of 50.6%, including 3150 coding sequences. The genome possessed osmotic stress-related coding sequences, and genes involved in different pathways of DNA repair mechanisms and genes related to the resistance to toxic metals were identified. The periplasmic stress response genes and genes of different oxidative stress mechanisms were also identified. The tolerance capacity of the bacterial isolates to heavy metals, UV-radiation, and salinity was also confirmed through appropriate laboratory experiments under controlled conditions.
Collapse
|
27
|
Alteration of Proteomes in First-Generation Cultures of Bacillus pumilus Spores Exposed to Outer Space. mSystems 2019; 4:4/4/e00195-19. [PMID: 31186338 PMCID: PMC6561321 DOI: 10.1128/msystems.00195-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacillus pumilus SAFR-032 was originally isolated from the Jet Propulsion Lab Spacecraft Assembly Facility and thoroughly characterized for its enhanced resistance to UV irradiation and oxidative stress. This unusual resistance of SAFR-032 is of particular concern in the context of planetary protection and calls for development of novel disinfection techniques to prevent extraterrestrial contamination. Previously, spores of SAFR-032 were exposed for 18 months to a variety of space conditions on board the International Space Station to investigate their resistance to Mars-like conditions and space travel. Here, proteomic characterization of vegetative SAFR-032 cells from space-surviving spores is presented in comparison to a ground control. Vegetative cells of the first passage were processed and subjected to quantitative proteomics using tandem mass tags. Approximately 60% of all proteins encoded by SAFR-032 were identified, and 301 proteins were differentially expressed among the strains. We found that proteins predicted to be involved in carbohydrate transport/metabolism and energy production/conversion had lower abundance than those of the ground control. For three proteins, we showed that the expected metabolic activities were decreased, as expected with direct enzymatic assays. This was consistent with a decrease of ATP production in the space-surviving strains. The same space-surviving strains showed increased abundance of proteins related to survival, growth advantage, and stress response. Such alterations in the proteomes provide insights into possible molecular mechanisms of B. pumilus SAFR-032 to adapt to and resist extreme extraterrestrial environments.IMPORTANCE Spore-forming bacteria are well known for their resistance to harsh environments and are of concern for spreading contamination to extraterrestrial bodies during future life detection missions. Bacillus pumilus has been regularly isolated from spacecraft-associated surfaces and exhibited unusual resistance to ultraviolet light and other sterilization techniques. A better understanding of the mechanisms of microbial survival and enhanced resistance is essential for developing novel disinfection protocols for the purpose of planetary protection. While genomic analyses did not reveal the unique characteristics that explain elevated UV resistance of space-exposed B. pumilus, the proteomics study presented here provided intriguing insight on key metabolic changes. The observed proteomics aberrations reveal a complex biological phenomenon that plays a role in bacterial survival and adaptation under long-term exposure to outer space. This adaptive ability of microorganisms needs to be considered by those tasked with eliminating forward contamination.
Collapse
|
28
|
Polyextremophilic Bacteria from High Altitude Andean Lakes: Arsenic Resistance Profiles and Biofilm Production. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1231975. [PMID: 30915345 PMCID: PMC6409018 DOI: 10.1155/2019/1231975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/01/2019] [Indexed: 11/23/2022]
Abstract
High levels of arsenic present in the High Altitude Andean Lakes (HAALs) ecosystems selected arsenic-resistant microbial communities which are of novel interest to study adaptations mechanisms potentially useful in bioremediation processes. We herein performed a detailed characterization of the arsenic tolerance profiles and the biofilm production of two HAAL polyextremophiles, Acinetobacter sp. Ver3 (Ver3) and Exiguobacterium sp. S17 (S17). Cellular adherence over glass and polypropylene surfaces were evaluated together with the effect of increasing doses and oxidative states of arsenic over the quality and quantity of their biofilm production. The arsenic tolerance outcomes showed that HAAL strains could tolerate higher arsenic concentrations than phylogenetic related strains belonging to the German collection of microorganisms and cell cultures (Deutsche Sammlung von Mikroorganismen und Zellkulturen, DSMZ), which suggest adaptations of HAAL strains to their original environment. On the other hand, the crystal violet method (CV) and SEM analysis showed that Ver3 and S17 were able to attach to solid surfaces and to form the biofilm. The quantification of biofilms production in 48 hours' cultures through CV shows that Ver3 yielded higher production in the treatment without arsenic cultured on a glass support, while S17 yield higher biofilm production under intermediate arsenic concentration on glass supports. Polypropylene supports had negative effects on the biofilm production of Ver3 and S17. SEM analysis shows that the highest biofilm yields could be associated with a larger number of attached cells as well as the development of more complex 3D multicellular structures.
Collapse
|
29
|
Portero LR, Alonso-Reyes DG, Zannier F, Vazquez MP, Farías ME, Gärtner W, Albarracín VH. Photolyases and Cryptochromes in UV-resistant Bacteria from High-altitude Andean Lakes. Photochem Photobiol 2019; 95:315-330. [DOI: 10.1111/php.13061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/18/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Luciano Raúl Portero
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA); Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; Tucumán Argentina
- Centro de Investigaciones y Servicios de Microscopía Electrónica (CISME-CONICET-UNT); CCT, CONICET; Tucumán Argentina
| | - Daniel G. Alonso-Reyes
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA); Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; Tucumán Argentina
- Centro de Investigaciones y Servicios de Microscopía Electrónica (CISME-CONICET-UNT); CCT, CONICET; Tucumán Argentina
| | - Federico Zannier
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA); Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; Tucumán Argentina
- Centro de Investigaciones y Servicios de Microscopía Electrónica (CISME-CONICET-UNT); CCT, CONICET; Tucumán Argentina
| | - Martín P. Vazquez
- Instituto de Agrobiotecnología de Rosario (INDEAR); Predio CCT Rosario; Santa Fe Argentina
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA); Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; Tucumán Argentina
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry; University of Leipzig; Leipzig Germany
| | - Virginia Helena Albarracín
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA); Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; Tucumán Argentina
- Centro de Investigaciones y Servicios de Microscopía Electrónica (CISME-CONICET-UNT); CCT, CONICET; Tucumán Argentina
- Facultad de Ciencias Naturales; Instituto Miguel Lillo; Universidad Nacional de Tucumán; Tucumán Argentina
| |
Collapse
|
30
|
Blachowicz A, Chiang AJ, Romsdahl J, Kalkum M, Wang CCC, Venkateswaran K. Proteomic characterization of Aspergillus fumigatus isolated from air and surfaces of the International Space Station. Fungal Genet Biol 2019; 124:39-46. [PMID: 30611835 DOI: 10.1016/j.fgb.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
Abstract
The on-going Microbial Observatory Experiments on the International Space Station (ISS) revealed the presence of various microorganisms that may be affected by the distinct environment of the ISS. The low-nutrient environment combined with enhanced irradiation and microgravity may trigger changes in the molecular suite of microorganisms leading to increased virulence and resistance of microbes. Proteomic characterization of two Aspergillus fumigatus strains, ISSFT-021 and IF1SW-F4, isolated from HEPA filter debris and cupola surface of the ISS, respectively, is presented, along with a comparison to well-studied clinical isolates Af293 and CEA10. In-depth analysis highlights variations in the proteome of both ISS-isolated strains when compared to the clinical strains. Proteins that showed increased abundance in ISS isolates were overall involved in stress responses, and carbohydrate and secondary metabolism. Among the most abundant proteins were Pst2 and ArtA involved in oxidative stress response, PdcA and AcuE responsible for ethanol fermentation and glyoxylate cycle, respectively, TpcA, TpcF, and TpcK that are part of trypacidin biosynthetic pathway, and a toxin Asp-hemolysin. This report provides insight into possible molecular adaptation of filamentous fungi to the unique ISS environment.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA; Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Abby J Chiang
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jillian Romsdahl
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Markus Kalkum
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA; Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
31
|
Viver T, Orellana L, González-Torres P, Díaz S, Urdiain M, Farías ME, Benes V, Kaempfer P, Shahinpei A, Ali Amoozegar M, Amann R, Antón J, Konstantinidis KT, Rosselló-Móra R. Genomic comparison between members of the Salinibacteraceae family, and description of a new species of Salinibacter (Salinibacter altiplanensis sp. nov.) isolated from high altitude hypersaline environments of the Argentinian Altiplano. Syst Appl Microbiol 2018; 41:198-212. [DOI: 10.1016/j.syapm.2017.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 01/08/2023]
|
32
|
Pérez V, Dorador C, Molina V, Yáñez C, Hengst M. Rhodobacter sp. Rb3, an aerobic anoxygenic phototroph which thrives in the polyextreme ecosystem of the Salar de Huasco, in the Chilean Altiplano. Antonie van Leeuwenhoek 2018; 111:1449-1465. [PMID: 29569108 DOI: 10.1007/s10482-018-1067-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
The Salar de Huasco is an evaporitic basin located in the Chilean Altiplano, which presents extreme environmental conditions for life, i.e. high altitude (3800 m.a.s.l.), negative water balance, a wide salinity range, high daily temperature changes and the occurrence of the highest registered solar radiation on the planet (> 1200 W m-2). This ecosystem is considered as a natural laboratory to understand different adaptations of microorganisms to extreme conditions. Rhodobacter, an anoxygenic aerobic phototrophic bacterial genus, represents one of the most abundant groups reported based on taxonomic diversity surveys in this ecosystem. The bacterial mat isolate Rhodobacter sp. strain Rb3 was used to study adaptation mechanisms to stress-inducing factors potentially explaining its success in a polyextreme ecosystem. We found that the Rhodobacter sp. Rb3 genome was characterized by a high abundance of genes involved in stress tolerance and adaptation strategies, among which DNA repair and oxidative stress were the most conspicuous. Moreover, many other molecular mechanisms associated with oxidative stress, photooxidation and antioxidants; DNA repair and protection; motility, chemotaxis and biofilm synthesis; osmotic stress, metal, metalloid and toxic anions resistance; antimicrobial resistance and multidrug pumps; sporulation; cold shock and heat shock stress; mobile genetic elements and toxin-antitoxin system were detected and identified as potential survival mechanism features in Rhodobacter sp. Rb3. In total, these results reveal a wide set of strategies used by the isolate to adapt and thrive under environmental stress conditions as a model of polyextreme environmental resistome.
Collapse
Affiliation(s)
- Vilma Pérez
- Laboratory of Molecular Ecology and Applied Microbiology, Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile.,Centre for Biotechnology & Bioengineering (CeBiB), Santiago, Chile
| | - Cristina Dorador
- Centre for Biotechnology & Bioengineering (CeBiB), Santiago, Chile.,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Departamento de Biotecnología, Universidad de Antofagasta, Antofagasta, Chile
| | - Verónica Molina
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaiso, Chile
| | - Carolina Yáñez
- Laboratorio Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Martha Hengst
- Laboratory of Molecular Ecology and Applied Microbiology, Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile. .,Centre for Biotechnology & Bioengineering (CeBiB), Santiago, Chile.
| |
Collapse
|
33
|
Pérez V, Hengst M, Kurte L, Dorador C, Jeffrey WH, Wattiez R, Molina V, Matallana-Surget S. Bacterial Survival under Extreme UV Radiation: A Comparative Proteomics Study of Rhodobacter sp., Isolated from High Altitude Wetlands in Chile. Front Microbiol 2017; 8:1173. [PMID: 28694800 PMCID: PMC5483449 DOI: 10.3389/fmicb.2017.01173] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022] Open
Abstract
Salar de Huasco, defined as a polyextreme environment, is a high altitude saline wetland in the Chilean Altiplano (3800 m.a.s.l.), permanently exposed to the highest solar radiation doses registered in the world. We present here the first comparative proteomics study of a photoheterotrophic bacterium, Rhodobacter sp., isolated from this remote and hostile habitat. We developed an innovative experimental approach using different sources of radiation (in situ sunlight and UVB lamps), cut-off filters (Mylar, Lee filters) and a high-throughput, label-free quantitative proteomics method to comprehensively analyze the effect of seven spectral bands on protein regulation. A hierarchical cluster analysis of 40 common proteins revealed that all conditions containing the most damaging UVB radiation induced similar pattern of protein regulation compared with UVA and visible light spectral bands. Moreover, it appeared that the cellular adaptation of Rhodobacter sp. to osmotic stress encountered in the hypersaline environment from which it was originally isolated, might further a higher resistance to damaging UV radiation. Indeed, proteins involved in the synthesis and transport of key osmoprotectants, such as glycine betaine and inositol, were found in very high abundance under UV radiation compared to the dark control, suggesting the function of osmolytes as efficient reactive oxygen scavengers. Our study also revealed a RecA-independent response and a tightly regulated network of protein quality control involving proteases and chaperones to selectively degrade misfolded and/or damaged proteins.
Collapse
Affiliation(s)
- Vilma Pérez
- Laboratory of Molecular Ecology and Applied Microbiology, Department of Pharmaceutical Sciences, Universidad Católica del NorteAntofagasta, Chile.,Centre for Biotechnology and BioengineeringSantiago, Chile.,Programa de Doctorado en Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad de AntofagastaAntofagasta, Chile
| | - Martha Hengst
- Laboratory of Molecular Ecology and Applied Microbiology, Department of Pharmaceutical Sciences, Universidad Católica del NorteAntofagasta, Chile.,Centre for Biotechnology and BioengineeringSantiago, Chile
| | - Lenka Kurte
- Laboratory of Molecular Ecology and Applied Microbiology, Department of Pharmaceutical Sciences, Universidad Católica del NorteAntofagasta, Chile.,Centre for Biotechnology and BioengineeringSantiago, Chile
| | - Cristina Dorador
- Centre for Biotechnology and BioengineeringSantiago, Chile.,Laboratory of Microbial Complexity and Functional Ecology, Institute of Antofagasta and Department of Biotechnology, Universidad de AntofagastaAntofagasta, Chile
| | - Wade H Jeffrey
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, PensacolaFL, United States
| | - Ruddy Wattiez
- Proteomics and Microbiology Laboratory, Research Institute of Biosciences, University of MonsMons, Belgium
| | - Veronica Molina
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad de Playa AnchaValparaíso, Chile
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of StirlingStirling, United Kingdom
| |
Collapse
|
34
|
Rasuk MC, Ferrer GM, Kurth D, Portero LR, Farías ME, Albarracín VH. UV-Resistant Actinobacteria from High-Altitude Andean Lakes: Isolation, Characterization and Antagonistic Activities. Photochem Photobiol 2017; 93:865-880. [DOI: 10.1111/php.12759] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/03/2017] [Indexed: 11/27/2022]
Affiliation(s)
- María Cecilia Rasuk
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; S. M. de Tucumán Argentina
| | - Gabriela Mónica Ferrer
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; S. M. de Tucumán Argentina
| | - Daniel Kurth
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; S. M. de Tucumán Argentina
| | - Luciano Raúl Portero
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; S. M. de Tucumán Argentina
| | - María Eugenia Farías
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; S. M. de Tucumán Argentina
| | - Virginia Helena Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; S. M. de Tucumán Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo; Universidad Nacional de Tucumán; Tucumán Argentina
- Centro Integral de Microscopía Electrónica; CCT-Tucumán; CONICET; Universidad Nacional de Tucumán; Tucumán Argentina
| |
Collapse
|
35
|
Castro-Severyn J, Remonsellez F, Valenzuela SL, Salinas C, Fortt J, Aguilar P, Pardo-Esté C, Dorador C, Quatrini R, Molina F, Aguayo D, Castro-Nallar E, Saavedra CP. Comparative Genomics Analysis of a New Exiguobacterium Strain from Salar de Huasco Reveals a Repertoire of Stress-Related Genes and Arsenic Resistance. Front Microbiol 2017; 8:456. [PMID: 28377753 PMCID: PMC5360010 DOI: 10.3389/fmicb.2017.00456] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/06/2017] [Indexed: 11/13/2022] Open
Abstract
The Atacama Desert hosts diverse ecosystems including salt flats and shallow Andean lakes. Several heavy metals are found in the Atacama Desert, and microorganisms growing in this environment show varying levels of resistance/tolerance to copper, tellurium, and arsenic, among others. Herein, we report the genome sequence and comparative genomic analysis of a new Exiguobacterium strain, sp. SH31, isolated from an altiplanic shallow athalassohaline lake. Exiguobacterium sp. SH31 belongs to the phylogenetic Group II and its closest relative is Exiguobacterium sp. S17, isolated from the Argentinian Altiplano (95% average nucleotide identity). Strain SH31 encodes a wide repertoire of proteins required for cadmium, copper, mercury, tellurium, chromium, and arsenic resistance. Of the 34 Exiguobacterium genomes that were inspected, only isolates SH31 and S17 encode the arsenic efflux pump Acr3. Strain SH31 was able to grow in up to 10 mM arsenite and 100 mM arsenate, indicating that it is arsenic resistant. Further, expression of the ars operon and acr3 was strongly induced in response to both toxics, suggesting that the arsenic efflux pump Acr3 mediates arsenic resistance in Exiguobacterium sp. SH31.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
| | - Francisco Remonsellez
- Laboratorio de Tecnologías de Membranas, Biotecnología y Medio Ambiente, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte Antofagasta, Chile
| | - Sandro L Valenzuela
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés Bello Santiago, Chile
| | - Cesar Salinas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Jonathan Fortt
- Laboratorio de Tecnologías de Membranas, Biotecnología y Medio Ambiente, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte Antofagasta, Chile
| | - Pablo Aguilar
- Laboratorio de Tecnologías de Membranas, Biotecnología y Medio Ambiente, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del NorteAntofagasta, Chile; Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de AntofagastaAntofagasta, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de AntofagastaAntofagasta, Chile; Centre for Biotechnology and BioengineeringAntofagasta, Chile
| | - Raquel Quatrini
- Laboratorio de Ecofisiología Microbiana, Fundación Ciencia and Vida Santiago, Chile
| | | | - Daniel Aguayo
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile; Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Eduardo Castro-Nallar
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés Bello Santiago, Chile
| | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| |
Collapse
|
36
|
Hernández KL, Yannicelli B, Olsen LM, Dorador C, Menschel EJ, Molina V, Remonsellez F, Hengst MB, Jeffrey WH. Microbial Activity Response to Solar Radiation across Contrasting Environmental Conditions in Salar de Huasco, Northern Chilean Altiplano. Front Microbiol 2016; 7:1857. [PMID: 27920763 PMCID: PMC5118629 DOI: 10.3389/fmicb.2016.01857] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
In high altitude environments, extreme levels of solar radiation and important differences of ionic concentrations over narrow spatial scales may modulate microbial activity. In Salar de Huasco, a high-altitude wetland in the Andean mountains, the high diversity of microbial communities has been characterized and associated with strong environmental variability. Communities that differed in light history and environmental conditions, such as nutrient concentrations and salinity from different spatial locations, were assessed for bacterial secondary production (BSP, 3H-leucine incorporation) response from short-term exposures to solar radiation. We sampled during austral spring seven stations categorized as: (a) source stations, with recently emerged groundwater (no-previous solar exposure); (b) stream running water stations; (c) stations connected to source waters but far downstream from source points; and (d) isolated ponds disconnected from ground sources or streams with a longer isolation and solar exposure history. Very high values of 0.25 μE m-2 s-1, 72 W m-2 and 12 W m-2 were measured for PAR, UVA, and UVB incident solar radiation, respectively. The environmental factors measured formed two groups of stations reflected by principal component analyses (near to groundwater sources and isolated systems) where isolated ponds had the highest BSP and microbial abundance (35 microalgae taxa, picoeukaryotes, nanoflagellates, and bacteria) plus higher salinities and PO43- concentrations. BSP short-term response (4 h) to solar radiation was measured by 3H-leucine incorporation under four different solar conditions: full sun, no UVB, PAR, and dark. Microbial communities established in waters with the longest surface exposure (e.g., isolated ponds) had the lowest BSP response to solar radiation treatments, and thus were likely best adapted to solar radiation exposure contrary to ground source waters. These results support our light history (solar exposure) hypothesis where the more isolated the community is from ground water sources, the better adapted it is to solar radiation. We suggest that factors other than solar radiation (e.g., salinity, PO43-, NO3-) are also important in determining microbial productivity in heterogeneous environments such as the Salar de Huasco.
Collapse
Affiliation(s)
- Klaudia L Hernández
- Centro de Investigación Marina Quintay CIMARQ, Facultad de Ecología y Recursos Naturales, Universidad Andres BelloSantiago, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de ChileValdivia, Chile
| | - Beatriz Yannicelli
- Centro de Estudios Avanzados en Zonas AridasLa Serena, Chile; Facultad de Ciencias del Mar, Universidad Católica del NorteCoquimbo, Chile; Ecology and Sustainable Management of Oceanic Islands, Universidad Católica del Norte, CoquimboCoquimbo, Chile; Centro Universitario de la Región Este, Universidad de la RepúblicaRocha, Uruguay
| | | | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de AntofagastaAntofagasta, Chile; Centro de Biotecnología y BioingenieríaSantiago, Chile
| | - Eduardo J Menschel
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de ChileValdivia, Chile; Programa de Postgrado en Oceanografía, Departamento de Oceanografía, Universidad de ConcepciónConcepción, Chile; Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (FONDAP-IDEAL), Universidad Austral de ChileValdivia-Punta Arenas, Chile
| | - Verónica Molina
- Departamento de Biología, Observatorio de Ecología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha Valparaíso, Chile
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte Antofagasta, Chile
| | - Martha B Hengst
- Centro de Biotecnología y BioingenieríaSantiago, Chile; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del NorteAntofagasta, Chile
| | - Wade H Jeffrey
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola FL, USA
| |
Collapse
|
37
|
Kumar J, Babele PK, Singh D, Kumar A. UV-B Radiation Stress Causes Alterations in Whole Cell Protein Profile and Expression of Certain Genes in the Rice Phyllospheric Bacterium Enterobacter cloacae. Front Microbiol 2016; 7:1440. [PMID: 27672388 PMCID: PMC5018602 DOI: 10.3389/fmicb.2016.01440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/30/2016] [Indexed: 11/30/2022] Open
Abstract
Among the different types of UV radiation, UV-B radiation (280-315 nm) has gained much attention mainly due to its increasing incidence on the Earth’s surface leading to imbalances in natural ecosystems. This study deals with the effects of UV-B radiation on the proteome and gene expression in a rice phyllospheric bacterium, Enterobacter cloacae. Of the five bacteria isolated from rice leaves, E. cloacae showed the highest level of resistance to UV-B and total killing occurred after 8 h of continuous exposure to UV-B. Reactive oxygen species were induced by UV-B exposure and increased with increasing duration of exposure. Protein profiling by SDS-PAGE and 2-dimensional gel electrophoresis (2-DE) revealed major changes in the number as well as expression of proteins. Analysis of 2-DE gel spots indicated up/down-regulation of several proteins under the stress of UV-B radiation. Thirteen differentially expressed proteins including two hypothetical proteins were identified by MALDI-TOF MS and assigned to eight functional categories. Both the hypothetical proteins (gi 779821175 and gi 503938301) were over-expressed after UV-B irradiation; gi 503938301 was characterized as a member of FMN reductase superfamily whereas gi 779821175 seems to be a structural protein as it did not show any functional domain. That the expression of certain proteins under UV-B stress is indeed up-regulated was confirmed by qRT-PCR. Transcript analysis of selected gene including genes of hypothetical proteins (cp011650 and cp002886) showed over-expression under UV-B stress as compared to untreated control cultures. Although this study deals with a limited number of proteins, identification of differentially expressed proteins reported herein may prove useful in future studies especially for assessing their significance in the protection mechanism of bacteria against UV-B radiation stress.
Collapse
Affiliation(s)
- Jay Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University Varanasi, India
| | - Piyoosh K Babele
- School of Biotechnology, Institute of Science, Banaras Hindu University Varanasi, India
| | - Divya Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University Varanasi, India
| | - Ashok Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University Varanasi, India
| |
Collapse
|
38
|
Albarracín VH, Kraiselburd I, Bamann C, Wood PG, Bamberg E, Farias ME, Gärtner W. Functional Green-Tuned Proteorhodopsin from Modern Stromatolites. PLoS One 2016; 11:e0154962. [PMID: 27187791 PMCID: PMC4871484 DOI: 10.1371/journal.pone.0154962] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/21/2016] [Indexed: 11/18/2022] Open
Abstract
The sequenced genome of the poly-extremophile Exiguobacterium sp. S17, isolated from modern stromatolites at Laguna Socompa (3,570 m), a High-Altitude Andean Lake (HAAL) in Argentinean Puna revealed a putative proteorhodopsin-encoding gene. The HAAL area is exposed to the highest UV irradiation on Earth, making the microbial community living in the stromatolites test cases for survival strategies under extreme conditions. The heterologous expressed protein E17R from Exiguobacterium (248 amino acids, 85% sequence identity to its ortholog ESR from E. sibiricum) was assembled with retinal displaying an absorbance maximum at 524 nm, which makes it a member of the green-absorbing PR-subfamily. Titration down to low pH values (eventually causing partial protein denaturation) indicated a pK value between two and three. Global fitting of data from laser flash-induced absorption changes gave evidence for an early red-shifted intermediate (its formation being below the experimental resolution) that decayed (τ1 = 3.5 μs) into another red-shifted intermediate. This species decayed in a two-step process (τ2 = 84 μs, τ3 = 11 ms), to which the initial state of E17-PR was reformed with a kinetics of 2 ms. Proton transport capability of the HAAL protein was determined by BLM measurements. Additional blue light irradiation reduced the proton current, clearly identifying a blue light absorbing, M-like intermediate. The apparent absence of this intermediate is explained by closely matching formation and decay kinetics.
Collapse
Affiliation(s)
- Virginia Helena Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET. Av. Belgrano y Pasaje Caseros. 4000- S. M. de Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, 4000, S. M. de Tucumán, Argentina
- * E-mail: (VHA); (WG)
| | - Ivana Kraiselburd
- Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF - UNR), Suipacha 590, 2000, Rosario, Santa Fe, Argentina
| | - Christian Bamann
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - Phillip G. Wood
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - Ernst Bamberg
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - María Eugenia Farias
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34–36, D-45470 Mülheim, Germany
- * E-mail: (VHA); (WG)
| |
Collapse
|
39
|
Albarracín VH, Gärtner W, Farias ME. Forged Under the Sun: Life and Art of Extremophiles from Andean Lakes. Photochem Photobiol 2015; 92:14-28. [PMID: 26647770 DOI: 10.1111/php.12555] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/09/2015] [Accepted: 11/05/2015] [Indexed: 12/25/2022]
Abstract
High-altitude Andean lakes (HAAL) are a treasure chest for microbiological research in South America. Their indigenous microbial communities are exposed to extremely high UV irradiation and to multiple chemical extremes (Arsenic, high salt content, alkalinity). Microbes are found both, free-living or associated into microbial mats with different degrees of mineralization and lithification, including unique modern stromatolites located at 3570 m above sea level. Characterization of these polyextremophilic microbes began only recently, employing morphological and phylogenetic methods as well as high-throughput sequencing and proteomics approach. Aside from providing a general overview on microbial communities, special attention is given to various survival strategies; HAAL's microbes present a complex system of shared genetic and physiological mechanisms (UV-resistome) based on UV photoreceptors and stress sensors with their corresponding response regulators, UV avoidance and protection strategies, damage tolerance and UV damage repair. Molecular information will be provided for what is, so far the most studied HAAL molecule, a CPD-Class I photolyase from Acinetobacter Ver3 (Laguna Verde, 4400 m). This work further proposes some strategies that make an appeal for the preservation of HAAL, a highly fragile environment that offers promising and ample research possibilities.
Collapse
Affiliation(s)
- Virginia Helena Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina.,Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim, Germany
| | - María Eugenia Farias
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina
| |
Collapse
|
40
|
Albarracín VH, Kurth D, Ordoñez OF, Belfiore C, Luccini E, Salum GM, Piacentini RD, Farías ME. High-Up: A Remote Reservoir of Microbial Extremophiles in Central Andean Wetlands. Front Microbiol 2015; 6:1404. [PMID: 26733008 PMCID: PMC4679917 DOI: 10.3389/fmicb.2015.01404] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/25/2015] [Indexed: 11/18/2022] Open
Abstract
The Central Andes region displays unexplored ecosystems of shallow lakes and salt flats at mean altitudes of 3700 m. Being isolated and hostile, these so-called "High-Altitude Andean Lakes" (HAAL) are pristine and have been exposed to little human influence. HAAL proved to be a rich source of microbes showing interesting adaptations to life in extreme settings (poly-extremophiles) such as alkalinity, high concentrations of arsenic and dissolved salts, intense dryness, large daily ambient thermal amplitude, and extreme solar radiation levels. This work reviews HAAL microbiodiversity, taking into account different microbial niches, such as plankton, benthos, microbial mats and microbialites. The modern stromatolites and other microbialites discovered recently at HAAL are highlighted, as they provide unique modern-though quite imperfect-analogs of environments proxy for an earlier time in Earth's history (volcanic setting and profuse hydrothermal activity, low atmospheric O2 pressure, thin ozone layer and high UV exposure). Likewise, we stress the importance of HAAL microbes as model poly-extremophiles in the study of the molecular mechanisms underlying their resistance ability against UV and toxic or deleterious chemicals using genome mining and functional genomics. In future research directions, it will be necessary to exploit the full potential of HAAL poly-extremophiles in terms of their biotechnological applications. Current projects heading this way have yielded detailed molecular information and functional proof on novel extremoenzymes: i.e., DNA repair enzymes and arsenic efflux pumps for which medical and bioremediation applications, respectively, are envisaged. But still, much effort is required to unravel novel functions for this and other molecules that dwell in a unique biological treasure despite its being hidden high up, in the remote Andes.
Collapse
Affiliation(s)
- Virginia H. Albarracín
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICETTucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de TucumánTucumán, Argentina
- Centro Integral de Microscopía Electrónica, Universidad Nacional de Tucumán, Centro Científico Tecnológico, CONICETTucumán, Argentina
| | - Daniel Kurth
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICETTucumán, Argentina
| | - Omar F. Ordoñez
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICETTucumán, Argentina
| | - Carolina Belfiore
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICETTucumán, Argentina
| | - Eduardo Luccini
- CONICET Centro de Excelencia en Productos y Procesos de la Provincia de CórdobaCórdoba, Argentina
- Facultad de Química e Ingeniería, Pontificia Universidad Católica ArgentinaRosario, Argentina
| | - Graciela M. Salum
- Instituto de Física Rosario, CONICET Universidad Nacional de RosarioRosario, Argentina
- Facultad Regional Concepción del Uruguay, Universidad Tecnológica NacionalConcepción del Uruguay, Argentina
| | - Ruben D. Piacentini
- Facultad Regional Concepción del Uruguay, Universidad Tecnológica NacionalConcepción del Uruguay, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de RosarioRosario, Argentina
| | - María E. Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICETTucumán, Argentina
| |
Collapse
|