1
|
Kameník J, Dušková M, Zouharová A, Čutová M, Dorotíková K, Králová M, Macharáčková B, Hulánková R. The Germination and Growth of Two Strains of Bacillus cereus in Selected Hot Dishes After Cooking. Foods 2025; 14:194. [PMID: 39856861 PMCID: PMC11764521 DOI: 10.3390/foods14020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The aim of this study was to assess the germination and growth of two strains of Bacillus cereus following the artificial inoculation of six selected hot dishes with spores which were then stored at temperatures of 40, 50, and 60 °C for 0.5, 1.0, 2.0, 2.5, 3.0, and 4.0 h. The water activity of the prepared meals varied between 0.967 and 0.973 and the salt content between 0.74 and 1.40%. The pH value of four dishes exceeded 6.0, but for two (tomato sauce and ratatouille) it was 4.6. The tested strain DSM 4312 showed good growth abilities and attained a population exceeding 6.0 log CFU/g within 4 h at 40 °C in foods with pH values > 6.0. The study demonstrated that a drop in food temperatures to 40 °C is risky, while no growth of B. cereus was detected within 4 h at 50 and 60 °C. The growth rate of B. cereus is conditioned not merely by environmental conditions (temperature, pH values, food composition), but also by the bacterial strain.
Collapse
Affiliation(s)
| | - Marta Dušková
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic; (J.K.); (A.Z.); (M.Č.); (K.D.); (M.K.); (B.M.); (R.H.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Dušková M, Dorotíková K, Bartáková K, Králová M, Šedo O, Kameník J. The microbial contaminants of plant-based meat analogues from the retail market. Int J Food Microbiol 2024; 425:110869. [PMID: 39151231 DOI: 10.1016/j.ijfoodmicro.2024.110869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The aim of the study was to analyse the key microbial contaminants of plant-based meat analogues (PBMA) from retail. A total of 43 samples of PBMAs (12 frozen/31 chilled) in the "ready-to-cook" category, such as hamburgers, meatballs or breaded imitation steaks were purchased in retail stores in the Czech Republic in summer (n = 21) and autumn 2022 (n = 22). The detected indicator bacteria (total viable count, lactic acid bacteria, Enterobacteriaceae, yeasts, moulds) had relatively low values in the analysed PBMA samples and only rarely reached levels of 7 log CFU/g. E. coli, STEC and coagulase-positive staphylococci were not detected by isolation from plates in any of analysed samples. Mannitol positive Bacillus spp. were isolated from almost half of the analysed samples of the PBMA. B. cereus sensu lato was isolated from 3 samples by isolation from plates, and after enrichment in 35 samples (81 %). Clostridium perfringens could not be detected by isolation from plates, nevertheless after multiplication, it was detected in 21 % of samples. Analyses of PBMA samples revealed considerable variability in microbial quality. The presence of spore-forming bacteria with the potential to cause foodborne diseases is alarming. However, to evaluate the risks, further research focused on the possibilities of growth under different conditions of culinary treatment and preservation is needed.
Collapse
Affiliation(s)
- Marta Dušková
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Kateřina Dorotíková
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Klára Bartáková
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Michaela Králová
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Josef Kameník
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic.
| |
Collapse
|
3
|
Jin Z, Zhao S, Li H, Ouyang Q, Tao N. Identification and Validation of Garlic ( Allium sativum) Metabolites as Quorum Sensing Inhibitors of Bacillus cereus Targeting the PlcR Receptor: An In Silico and In Vitro Study. Foodborne Pathog Dis 2024. [PMID: 39435711 DOI: 10.1089/fpd.2024.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
This study aimed to investigate the influence of garlic metabolites on the quorum sensing (QS) of Bacillus cereus, a foodborne pathogen that controls its main virulence factor through QS. The QS signal receptor PlcR of B. cereus was targeted by molecular docking with 82 garlic metabolites to identify the most potent QS inhibitors. Five metabolites, quercetin, kaempferol, luteolin, flavone, and rutin, were selected for further evaluation of their impacts on the growth, toxin production, and virulence of B. cereus in vitro. The expression levels of key QS genes were also measured to verify their anti-QS ability. The results revealed that quercetin reduced enterotoxin production by B. cereus but did not affect the QS process at the transcriptional level; flavone and rutin in garlic interfered with the QS of B. cereus by competing with the autoinducing peptide (AIP) PapR7 for the PlcR binding site, resulting in decreased enterotoxin secretion and hemolysis without altering the bacterial growth. Interestingly, luteolin and kaempferol in garlic acted as AIP analogs and bound to PlcR to stimulate the QS process and virulence. Furthermore, kaempferol, luteolin, flavone, and rutin had distinct or opposite interactions with PapR7 at the Gln237 or Tyr275 residues of PlcR, which determined the suppression or enhancement of the QS process. The findings suggested that flavone and rutin were effective compounds to inhibit the QS process in garlic and could be used as alternative methods to control B. cereus.
Collapse
Affiliation(s)
- Zekun Jin
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Shijie Zhao
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Haiyan Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Qiuli Ouyang
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
4
|
Kain T, Albahri M, Plötz M, Jessberger N. Growth, persistence and toxin production of pathogenic bacteria in plant-based drinking milk alternatives. J Food Sci 2024; 89:5799-5811. [PMID: 39169550 DOI: 10.1111/1750-3841.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
The present study investigated the microbiological safety of the increasingly popular plant-based milk alternatives. No (10/27) or only very low microbial counts (17/27) were detected in the tested products. These were mainly identified as spore formers via MALDI-ToF-MS. Three products contained Bacillus cereus group isolates, which were able to form considerable amounts of enterotoxins and exhibited cytotoxicity towards CaCo-2 cells. Preliminary tests showed good growth of B. cereus, Listeria monocytogenes, and Salmonella enterica in all tested products (maximum bacterial counts: 5 × 1012 cfu/mL). These experiments also revealed strain-, time-, and temperature-, but especially product-specific enterotoxin production of B. cereus. In propagation and persistence tests according to DIN EN ISO 20976-1:2019-09, rapid bacterial proliferation was also detected in all products. B. cereus generally showed lower bacterial counts (106-107 cfu/mL) compared to L. monocytogenes and S. enterica (108-109 cfu/mL), but was detectable in a larger number of products over the test period of 6 weeks. pH values decreased (20/27) over time and visual and/or olfactory alterations (24/27) were observed. The present study provides information on the occurrence, growth and persistence of pathogenic bacteria in plant-based drinking milk alternatives. It also points out that the accompanying changes in pH, odor, and appearance are not necessarily recognizable to the consumer. PRACTICAL APPLICATION: The present study contributes to the understanding of the microbial risk related to plant-based drinking milk alternatives. It is crucial that the manufacturer ensures that particularly spore formers have been effectively eliminated from the products. Among them, especially toxin-producing bacteria can pose a risk to the consumer, as these products promote proliferation and persistence of the bacteria.
Collapse
Affiliation(s)
- Theresa Kain
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Manar Albahri
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Nadja Jessberger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
5
|
Ding J, Cui X, Wang X, Zhai F, Wang L, Zhu L. Multi-omics analysis of gut microbiota and metabolites reveals contrasting profiles in domestic pigs and wild boars across urban environments. Front Microbiol 2024; 15:1450306. [PMID: 39193431 PMCID: PMC11347354 DOI: 10.3389/fmicb.2024.1450306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
The gut microbiota plays a crucial role in host health and metabolism. This study explores the differences in gut microbiota and metabolites between domestic pigs (DP) and wild boars (WB) in urban environments. We analyzed gut microbial composition, metabolic profiles, virome composition, antibiotic resistance genes (ARGs), and human pathogenic bacteria (HPB) in both DP and WB. Our results revealed that DP exhibited a higher Firmicutes/Bacteroidetes ratio and were enriched in bacterial genera associated with domestication and modern feeding practices. Metabolomic analysis showed distinct profiles, with WB significantly enriched in the Pantothenate and CoA biosynthesis pathway, highlighting dietary and environmental influences on host metabolism. Additionally, DP had a distinct gut virome composition, particularly enriched in lytic phages of the Chaseviridae family. ARG analysis indicated a higher abundance of tetracycline resistance genes in DP, likely due to antibiotic use in pig farms. Furthermore, variations in HPB composition underscored potential health risks associated with contact with pig feces. These findings provide valuable insights into the microbial ecology of domestic pigs and wild boars, emphasizing the importance of these comparisons in identifying zoonotic pathogen transmission pathways and managing antibiotic resistance. Continued research in this area is essential for developing effective strategies to mitigate public health risks and promote sustainable livestock management practices.
Collapse
Affiliation(s)
- Jingjing Ding
- Jiangsu Academy of Forestry, Nanjing, China
- Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China
| | - Xinyuan Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Wang
- Jiangsu Academy of Forestry, Nanjing, China
- Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China
| | - Feifei Zhai
- Jiangsu Wildlife Protection Station, Nanjing, China
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing, China
- Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China
| | - Lifeng Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Xu B, Huang X, Qin H, Lei Y, Zhao S, Liu S, Liu G, Zhao J. Evaluating the Safety of Bacillus cereus GW-01 Obtained from Sheep Rumen Chyme. Microorganisms 2024; 12:1457. [PMID: 39065225 PMCID: PMC11278751 DOI: 10.3390/microorganisms12071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bacillus cereus is responsible for 1.4-12% food poisoning outbreaks worldwide. The safety concerns associated with the applications of B. cereus in health and medicine have been controversial due to its dual role as a pathogen for foodborne diseases and a probiotic in humans and animals. In this study, the pathogenicity of B. cereus GW-01 was assessed by comparative genomic, and transcriptome analysis. Phylogenetic analysis based on a single-copy gene showed clustering of the strain GW-01, and 54 B. cereus strains from the NCBI were classified into six major groups (I-VI), which were then associated with the source region and sequence types (STs). Transcriptome results indicated that the expression of most genes related with toxins secretion in GW-01 was downregulated compared to that in the lag phase. Overall, these findings suggest that GW-01 is not directly associated with pathogenic Bacillus cereus and highlight an insightful strategy for assessing the safety of novel B. cereus strains.
Collapse
Affiliation(s)
- Bowen Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xinyi Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Haixiong Qin
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Ying Lei
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
| | - Sijia Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Shan Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Gang Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Jiayuan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| |
Collapse
|
7
|
Fichant A, Lanceleur R, Hachfi S, Brun-Barale A, Blier AL, Firmesse O, Gallet A, Fessard V, Bonis M. New Approach Methods to Assess the Enteropathogenic Potential of Strains of the Bacillus cereus Group, including Bacillus thuringiensis. Foods 2024; 13:1140. [PMID: 38672813 PMCID: PMC11048917 DOI: 10.3390/foods13081140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Bacillus cereus (Bc) is a wide group of Gram-positive and spore-forming bacteria, known to be the etiological agents of various human infections, primarily food poisoning. The Bc group includes enteropathogenic strains able to germinate in the digestive tract and to produce enterotoxins such as Nhe, Hbl, and CytK. One species of the group, Bacillus thuringiensis (Bt), has the unique feature of producing insecticidal crystals during sporulation, making it an important alternative to chemical pesticides to protect crops from insect pest larvae. Nevertheless, several studies have suggested a link between the ingestion of pesticide strains and human cases of food poisoning, calling their safety into question. Consequently, reliable tools for virulence assessment are worth developing to aid decision making in pesticide regulation. Here, we propose complementary approaches based on two biological models, the human intestinal Caco-2 cell line and the insect Drosophila melanogaster, to assess and rank the enteric virulence potency of Bt strains in comparison with other Bc group members. Using a dataset of 48 Bacillus spp. strains, we showed that some Bc group strains, including Bt, were able to induce cytotoxicity in Caco-2 cells with concomitant release of IL-8 cytokine, a landmark of pro-inflammatory response. In the D. melanogaster model, we were able to sort a panel of 39 strains into four different classes of virulence, ranging from no virulence to strong virulence. Importantly, for the most virulent strains, mortality was associated with a loss of intestinal barrier integrity. Interestingly, although strains can share a common toxinotype, they display different degrees of virulence, suggesting the existence of specific mechanisms of virulence expression in vivo in the intestine.
Collapse
Affiliation(s)
- Arnaud Fichant
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France; (A.F.); (O.F.)
- Université Côte d’Azur, CNRS, INRAE, ISA, 06903 Sophia-Antipolis, France; (S.H.); (A.B.-B.); (A.G.)
| | - Rachelle Lanceleur
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 35306 Fougères, France; (R.L.); (A.-L.B.); (V.F.)
| | - Salma Hachfi
- Université Côte d’Azur, CNRS, INRAE, ISA, 06903 Sophia-Antipolis, France; (S.H.); (A.B.-B.); (A.G.)
| | - Alexandra Brun-Barale
- Université Côte d’Azur, CNRS, INRAE, ISA, 06903 Sophia-Antipolis, France; (S.H.); (A.B.-B.); (A.G.)
| | - Anne-Louise Blier
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 35306 Fougères, France; (R.L.); (A.-L.B.); (V.F.)
| | - Olivier Firmesse
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France; (A.F.); (O.F.)
| | - Armel Gallet
- Université Côte d’Azur, CNRS, INRAE, ISA, 06903 Sophia-Antipolis, France; (S.H.); (A.B.-B.); (A.G.)
| | - Valérie Fessard
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 35306 Fougères, France; (R.L.); (A.-L.B.); (V.F.)
| | - Mathilde Bonis
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France; (A.F.); (O.F.)
| |
Collapse
|
8
|
Han A, Yoon JH, Choi YS, Bong Y, Jung G, Moon SK, Lee SY. Toxigenic diversity of Bacillus cereus isolated from fresh produce and effects of various factors on the growth and the cytotoxicity of B. cereus. Food Sci Biotechnol 2024; 33:219-229. [PMID: 38186617 PMCID: PMC10767108 DOI: 10.1007/s10068-023-01330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 01/09/2024] Open
Abstract
This study analyzed the virulence, growth characteristics, and cytotoxicity of Bacillus cereus strains isolated from fresh produce, including romaine lettuce, sesame leaf, tomato, and cucumber grown by different methods. Polymerase chain reaction (PCR) was used to assess the toxigenic potential, and the cytotoxicity of B. cereus was estimated using cell-free supernatant in HEp-2 cells. The study found that hblD was the predominant diarrheal enterotoxin in the 59 isolated B. cereus strains, followed by nheB and hblC. The optimal temperatures for growth ranged from 42 to 44 °C, with the highest growth rates and shortest lag times. Cytotoxicity varied greatly depending on abiotic factors, including NaCl, pH, and medium, and was not always correlated with cell population. The study highlights the importance of establishing control measures to prevent B. cereus intoxication in fresh vegetables. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01330-0.
Collapse
Affiliation(s)
- Areum Han
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-dearo, Anseong-si, Gyeonggi-do 17546 Republic of Korea
| | - Jae-Hyun Yoon
- Department of Food and Nutrition, Suncheon National University, 235 Jungang-ro, Suncheon-si, Jeollanam-do 57922 Republic of Korea
| | - Yun-Sun Choi
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-dearo, Anseong-si, Gyeonggi-do 17546 Republic of Korea
| | - Yujin Bong
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-dearo, Anseong-si, Gyeonggi-do 17546 Republic of Korea
| | - Gyusuck Jung
- Cactus & Succulent Research Institute, 464-52, Sonsan-do, Ilsanseo-gu, Goyang-si, Gyeonggi-do 10224 Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-dearo, Anseong-si, Gyeonggi-do 17546 Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-dearo, Anseong-si, Gyeonggi-do 17546 Republic of Korea
| |
Collapse
|
9
|
Cismasiu RS, Birlutiu RM, Preoțescu LL. Uncommon Septic Arthritis of the Hip Joint in an Immunocompetent Adult Patient Due to Bacillus pumilus and Paenibacillus barengoltzii Managed with Long-Term Treatment with Linezolid: A Case Report and Short Literature Review. Pharmaceuticals (Basel) 2023; 16:1743. [PMID: 38139869 PMCID: PMC10747381 DOI: 10.3390/ph16121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
The Bacillus and Paenibacillus genera are diverse soil-related bacterial pathogens. In this case report, we describe, to our knowledge, the first report of septic arthritis in a native hip joint in an immunocompetent adult patient caused by Bacillus pumilus and Paenibacillus barengoltzii. We describe the case of a 39-year-old Caucasian male patient who sought medical advice for chronic pain on the mobilization of the right hip, decreased range of motion, and physical asthenia. The patient underwent a surgical intervention (core decompression) for a right osteonecrosis of the femoral head, with a slightly favorable postoperative evolution after surgery for one month. Surgical treatment was planned on the basis of clinical and paraclinical investigations and the joint damage. The hip was explored using an anterior approach under spinal anesthesia and standard antibiotic prophylaxis. After resection of the femoral head, meticulous debridement of all inflammatory tissues was performed, and a preformed temporary spacer was inserted into the femoral canal. Bacteriological laboratory studies identified Bacillus pumilus and Paenibacillus barengoltzii via matrix-assisted laser desorption-ionization time-of-flight mass spectrometry analysis. The patient initially received nine days of empirical therapy with intravenous antibiotics (linezolid and meropenem). After the bacterial strains were identified, the patient received organism-specific antibiotic therapy with the same antibiotics and dose for eight days until discharge. After discharge, the patient was referred to another hospital, where he continued treatment with linezolid for seven weeks and, after that, four weeks of oral therapy with cotrimoxazole and rifampicin. During this period, no severe or potentially life-threatening adverse events were recorded during long-term treatment with linezolid or with the two oral antibiotics. In conclusion, our findings suggest that long-term treatment with linezolid may be a viable option for the management of bone and joint infections caused by Bacillus pumilus and Paenibacillus barengoltzii.
Collapse
Affiliation(s)
- Razvan Silviu Cismasiu
- Clinical Hospital of Orthopedics, Traumatology, and Osteoarticular TB Bucharest, B-dul Ferdinand 35-37, Sector 2, 021382 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
| | - Rares-Mircea Birlutiu
- Clinical Hospital of Orthopedics, Traumatology, and Osteoarticular TB Bucharest, B-dul Ferdinand 35-37, Sector 2, 021382 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
| | - Liliana Lucia Preoțescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania
| |
Collapse
|
10
|
Coburn PS, Miller FC, LaGrow AL, Mursalin H, Gregory A, Parrott A, Astley D, Callegan MC. Virulence-related genotypic differences among Bacillus cereus ocular and gastrointestinal isolates and the relationship to endophthalmitis pathogenesis. Front Cell Infect Microbiol 2023; 13:1304677. [PMID: 38106476 PMCID: PMC10722173 DOI: 10.3389/fcimb.2023.1304677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023] Open
Abstract
Background Bacillus cereus (Bc) can cause self-limiting gastrointestinal infections, but when infecting the eye, can cause rapid and irreversible blindness. This study investigated whether clinical ocular and gastrointestinal Bc isolates differed in terms of virulence-related genotypes and endophthalmitis virulence. Methods Twenty-eight Bc ocular, gastrointestinal, and laboratory reference isolates were evaluated. Hemolysis assays were performed to assess potential differences in hemolytic activity. The presence of twenty Bc virulence-related genes was assessed by PCR. A subset of ocular and gastrointestinal isolates differing in PCR positivity for 5 virulence genes was compared to strain ATCC14579 in an experimental murine model of endophthalmitis. At 8 hours post infection, retinal function was evaluated by electroretinography, and intraocular bacterial concentrations were determined by plate counts. Results Gastrointestinal Bc isolates were more hemolytic than the Bc ocular isolates and ATCC14579 (p < 0.0001). Bc ocular isolates were more frequently PCR-positive for capK, cytK, hblA, hblC, and plcR compared to the gastrointestinal isolates (p ≤ 0.0002). In the endophthalmitis model, mean A-wave retention did not differ significantly between eyes infected with ATCC14579 and eyes infected with the selected ocular or gastrointestinal isolates (p ≥ 0.3528). Similar results were observed for mean B-wave retention (p ≥ 0.0640). Only one diarrheal isolate showed significantly greater B-wave retention when compared to ATCC14579 (p = 0.0303). No significant differences in mean A-wave (p ≥ 0.1535) or B-wave (p ≥ 0.0727) retention between the selected ocular and gastrointestinal isolates were observed. Intraocular concentrations of ATCC14579 were significantly higher than the selected ocular isolate and 3 of the gastrointestinal isolates (p ≤ 0.0303). Intraocular concentrations of the selected ocular isolate were not significantly different from the gastrointestinal isolates (p ≥ 0.1923). Conclusions Among the subset of virulence-related genes assessed, 5 were significantly enriched among the ocular isolates compared to gastrointestinal isolates. While hemolytic activity was higher among gastrointestinal isolates, retinal function retention and intraocular growth was not significantly different between the selected ocular and gastrointestinal isolates. These results suggest that Bc strains causing gastrointestinal infections, while differing from ocular isolates in hemolytic activity and virulence-related gene profile, are similarly virulent in endophthalmitis.
Collapse
Affiliation(s)
- Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Frederick C. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Austin L. LaGrow
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Huzzatul Mursalin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Gregory
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Aaron Parrott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Daniel Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michelle C. Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| |
Collapse
|
11
|
Jugert CS, Didier A, Jessberger N. Lactoferrin-based food supplements trigger toxin production of enteropathogenic Bacillus cereus. Front Microbiol 2023; 14:1284473. [PMID: 38029127 PMCID: PMC10646309 DOI: 10.3389/fmicb.2023.1284473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein exhibiting antibacterial, antiviral, antifungal, antiparasitic, antiinflammatory, antianaemic and anticarcinogenic properties. While its inhibitory effects against bacterial pathogens are well investigated, little is known about its influence on the production and/or mode of action of bacterial toxins. Thus, the present study aimed to determine the impact of food supplements based on bovine lactoferrin on Bacillus cereus enterotoxin production. First, strain-specific growth inhibition of three representative isolates was observed in minimal medium with 1 or 10 mg/mL of a lactoferrin-based food supplement, designated as product no. 1. Growth inhibition did not result from iron deficiency. In contrast to that, all three strains showed increased amounts of enterotoxin component NheB in the supernatant, which corresponded with cytotoxicity. Moreover, lactoferrin product no. 1 enhanced NheB production of further 20 out of 28 B. cereus and Bacillus thuringiensis strains. These findings again suggested a strain-specific response toward lactoferrin. Product-specific differences also became apparent comparing the influence of further six products on highly responsive strain INRA C3. Highest toxin titres were detected after exposure to products no. 7, 1 and 2, containing no ingredients except pure bovine lactoferrin. INRA C3 was also used to determine the transcriptional response toward lactoferrin exposure via RNA sequencing. As control, iron-free medium was also included, which resulted in down-regulation of eight genes, mainly involved in amino acid metabolism, and in up-regulation of 52 genes, mainly involved in iron transport, uptake and utilization. In contrast to that, 153 genes were down-regulated in the presence of lactoferrin, including genes involved in flagellar assembly, motility, chemotaxis and sporulation as well as genes encoding regulatory proteins, transporters, heat and cold shock proteins and virulence factors. Furthermore, 125 genes were up-regulated in the presence of lactoferrin, comprising genes involved in sporulation and germination, nutrient uptake, iron transport and utilization, and resistance. In summary, lactoferrin exposure of B. cereus strain-specifically triggers an extensive transcriptional response that considerably exceeds the response toward iron deficiency and, despite down-regulation of various genes belonging to the PlcR-regulon, ultimately leads to an increased level of secreted enterotoxin by a mechanism, which has yet to be elucidated.
Collapse
Affiliation(s)
- Clara-Sophie Jugert
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Andrea Didier
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Nadja Jessberger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
12
|
Busch A, Schotte U, Jeßberger N, Frentzel H, Plötz M, Abdulmawjood A. Establishment and Validation of a Two-Step LAMP Assay for Detection of Bacillus cereus-Group Isolates in Food and Their Possibility of Non-haemolytic Enterotoxin Production. Front Microbiol 2022; 13:930648. [PMID: 35756039 PMCID: PMC9218561 DOI: 10.3389/fmicb.2022.930648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The closely related members of the Bacillus cereus-group can mainly only be differentiated by whole genome sequencing. Among them, there are potentially toxin-producing bacteria. When consumed with food, these can cause vomiting or diarrhea and abdominal cramps. To date, although no EU-wide threshold exists, a bacterial count of 105 CFU/g can be regarded as critical. Specific and rapid detection of the bacteria is difficult due to their close relationship, and no loop-mediated isothermal amplification (LAMP) assay has been developed so far to detect potentially toxin-producing members of the B. cereus-group. Aim of this study was to develop a LAMP method to detect critical cell counts specifically and rapidly of potentially non-haemolytic enterotoxin (NHE)-producing cells of this group. A two-step LAMP assay was developed. First, the target sequence groEL was used to determine the representatives of the B. cereus-group. Second, since bacteria in which nheB is present are basically capable of producing enterotoxins, this gene was chosen for detection. The specificity of the developed assay was 100% for B. cereus-group isolates and 93.7% for the detection of nheB. The analytical sensitivity was 0.1 pg DNA/μl. Using simplified DNA extraction by boiling, cell-based sensitivity was determined. Targeting groEL and nheB, 11.35-27.05 CFU/reaction and 11.35-270.5 CFU/reaction were detectable, respectively. Artificially contaminated samples were investigated to prove the application in foods. Direct detection of the critical value of B. cereus-group cells was possible in 83.3% of samples and detecting the toxin-gene 50% thereof. After a 6-h incubation period, the detection rate increased to 100 and 91.7%, respectively. Additionally, 100 natively contaminated food samples were tested, also quantitatively and culturally. Samples with relevant contamination levels were reliably detected using groEL-LAMP. After a 6-h incubation period, isolates bearing the toxin gene nheB could also be reliably detected. In addition, colony material was boiled and used as a LAMP template for simple detection. Specificity for the B. cereus-group was 100 and 93.22% detecting nheB. The study demonstrated that screening of food samples with the groEL/nheB-LAMP assay can be performed within 1 day, making it possible to detect critical levels of potentially NHE-toxin-producing cells of the B. cereus-group.
Collapse
Affiliation(s)
- Annemarie Busch
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Ulrich Schotte
- Department A (Veterinary Medicine), Central Institute of the Bundeswehr Medical Service Kiel, Kronshagen, Germany
| | - Nadja Jeßberger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Hendrik Frentzel
- Unit Bacterial Toxins, Food Service, Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Amir Abdulmawjood
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
13
|
Jessberger N, Diedrich R, Janowski R, Niessing D, Märtlbauer E. Presence and function of Hbl B', the fourth protein component encoded by the hbl operon in Bacillus cereus. Virulence 2022; 13:483-501. [PMID: 35291913 PMCID: PMC8932913 DOI: 10.1080/21505594.2022.2046951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The genes hblC, hblD and hblA encode the components Hbl L2, L1 and B of the pore forming enterotoxin haemolysin BL of Bacillus cereus. Two variants of the operon existand the more common one additionally contains hblB downstream of hblCDA. Up to now, it was completely unclear whether the corresponding protein, Hbl B', is widely expressed among B. cereus strains and if it has a distinct function. In the present study, it was shown that the hblB gene is indeed expressed and the Hbl B' protein is secreted by nearly all analysed B. cereus strains. For the latter, a detection system was developed based on monoclonal antibody 11A5. Further, a distinct reduction of cytotoxic and haemolytic activity was observed when recombinant (r)Hbl B' was applied simultaneously with L2, L1 and B. This effect was due to direct interaction of rHbl B' with L1. D-6B. cereusAltogether, we present the first simple tool for the detection of Hbl B' in B. cereus culture supernatants. Moreover, an important regulatory function of Hbl B' in the mechanism of Hbl was determined, which is best described as an additional control of complex formation, balancing the amounts of Hbl B-L1 complexes and the corresponding free subunits.
Collapse
Affiliation(s)
- Nadja Jessberger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Richard Diedrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| |
Collapse
|
14
|
Lan Y, Zhang K, Wang Y, Wu J, Lin M, Yan H, Xiang Y. Comparative analysis of the stellacyanins (SCs) family and focus on drought resistance of PtSC18 in Populus trichocarpa. Gene 2021; 813:146106. [PMID: 34953936 DOI: 10.1016/j.gene.2021.146106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022]
Abstract
Stellacyanin (SC) is a type I (blue) copper protein, which plays a crucial role in plant growth and stress response. However, the comprehensive analysis and functional research of SCs in the woody plant is still lacking. Here, a total of 74 SCs were collected and identified from Arabidopsis, papaya, grape, rice and poplar. Bioinformatics was used to analyze the gene structure, protein structure and evolutionary relationship of 74 genes, especially 19 SCs in Populus trichocarpa. Based on the RNA-seq data, expression pattern of SCs in poplar under cold, high temperature, drought and salt stress were further analyzed. Subsequently, a key candidate gene PtSC18 that strongly responded to drought stress was screened. Subcellular localization experiment exhibited that PtSC18 was localized in the nucleus and plasma membrane. Overexpression of PtSC18 enhanced drought tolerance of transgenic Arabidopsis by improving water retention and reducing oxidative damage. Measurements of physiological indicators, including chlorophyll, H2O2, malondialdehyde content, peroxidase and catalase enzyme activities and electrical conductivity, all supported this conclusion. More importantly, PtSC18 enhanced the expression of some stress-related genes in transgenic Arabidopsis. Overall, our results lay a foundation for understanding the structure and function of PtSCs and provide useful gene resources for breeding through genetic engineering.
Collapse
Affiliation(s)
- Yangang Lan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Kaimei Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yamei Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jing Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Miao Lin
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
15
|
Carroll LM, Cheng RA, Wiedmann M, Kovac J. Keeping up with the Bacillus cereus group: taxonomy through the genomics era and beyond. Crit Rev Food Sci Nutr 2021; 62:7677-7702. [PMID: 33939559 DOI: 10.1080/10408398.2021.1916735] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Bacillus cereus group, also known as B. cereus sensu lato (s.l.), is a species complex that contains numerous closely related lineages, which vary in their ability to cause illness in humans and animals. The classification of B. cereus s.l. isolates into species-level taxonomic units is thus essential for informing public health and food safety efforts. However, taxonomic classification of these organisms is challenging. Numerous-often conflicting-taxonomic changes to the group have been proposed over the past two decades, making it difficult to remain up to date. In this review, we discuss the major nomenclatural changes that have accumulated in the B. cereus s.l. taxonomic space prior to 2020, particularly in the genomic sequencing era, and outline the resulting problems. We discuss several contemporary taxonomic frameworks as applied to B. cereus s.l., including (i) phenotypic, (ii) genomic, and (iii) hybrid nomenclatural frameworks, and we discuss the advantages and disadvantages of each. We offer suggestions as to how readers can avoid B. cereus s.l. taxonomic ambiguities, regardless of the nomenclatural framework(s) they choose to employ. Finally, we discuss future directions and open problems in the B. cereus s.l. taxonomic realm, including those that cannot be solved by genomic approaches alone.
Collapse
Affiliation(s)
- Laura M Carroll
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Rachel A Cheng
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
16
|
Further Insights into the Toxicity of Bacillus cytotoxicus Based on Toxin Gene Profiling and Vero Cell Cytotoxicity Assays. Toxins (Basel) 2021; 13:toxins13040234. [PMID: 33805220 PMCID: PMC8064374 DOI: 10.3390/toxins13040234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Bacillus cytotoxicus belongs to the Bacillus cereus group that also comprises the foodborne pathogen Bacillus cereus sensu stricto, Bacillus anthracis causing anthrax, as well as the biopesticide Bacillus thuringiensis. The first B. cytotoxicus was isolated in the context of a severe food poisoning outbreak leading to fatal cases of diarrheal disease. Subsequent characterization of the outbreak strain led to the conclusion that this Bacillus strain was highly cytotoxic and eventually resulted in the description of a novel species, whose name reflects the observed toxicity: B. cytotoxicus. However, only a few isolates of this species have been characterized with regard to their cytotoxic potential and the role of B. cytotoxicus as a causative agent of food poisoning remains largely unclear. Hence, the aim of this study was to gain further insights into the toxicity of B. cytotoxicus. To this end, 19 isolates were obtained from mashed potato powders and characterized by toxin gene profiling and Vero cell cytotoxicity assays. All isolates harbored the cytK1 (cytotoxin K1) gene and species-specific variants of the nhe (non-hemolytic enterotoxin) gene. The isolates exhibited low or no toxicity towards Vero cells. Thus, this study indicates that the cytotoxic potential of B. cytotoxicus may be potentially lower than initially assumed.
Collapse
|
17
|
The Food Poisoning Toxins of Bacillus cereus. Toxins (Basel) 2021; 13:toxins13020098. [PMID: 33525722 PMCID: PMC7911051 DOI: 10.3390/toxins13020098] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease.
Collapse
|
18
|
Jessberger N, Dietrich R, Granum PE, Märtlbauer E. The Bacillus cereus Food Infection as Multifactorial Process. Toxins (Basel) 2020; 12:E701. [PMID: 33167492 PMCID: PMC7694497 DOI: 10.3390/toxins12110701] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
The ubiquitous soil bacterium Bacillus cereus presents major challenges to food safety. It is responsible for two types of food poisoning, the emetic form due to food intoxication and the diarrheal form emerging from food infections with enteropathogenic strains, also known as toxico-infections, which are the subject of this review. The diarrheal type of food poisoning emerges after production of enterotoxins by viable bacteria in the human intestine. Basically, the manifestation of the disease is, however, the result of a multifactorial process, including B. cereus prevalence and survival in different foods, survival of the stomach passage, spore germination, motility, adhesion, and finally enterotoxin production in the intestine. Moreover, all of these processes are influenced by the consumed foodstuffs as well as the intestinal microbiota which have, therefore, to be considered for a reliable prediction of the hazardous potential of contaminated foods. Current knowledge regarding these single aspects is summarized in this review aiming for risk-oriented diagnostics for enteropathogenic B. cereus.
Collapse
Affiliation(s)
- Nadja Jessberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Richard Dietrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Per Einar Granum
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway;
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| |
Collapse
|
19
|
Schwenk V, Riegg J, Lacroix M, Märtlbauer E, Jessberger N. Enteropathogenic Potential of Bacillus thuringiensis Isolates from Soil, Animals, Food and Biopesticides. Foods 2020; 9:foods9101484. [PMID: 33080854 PMCID: PMC7603059 DOI: 10.3390/foods9101484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Despite its benefits as biological insecticide, Bacillus thuringiensis bears enterotoxins, which can be responsible for a diarrhoeal type of food poisoning. Thus, all 24 isolates from foodstuffs, animals, soil and commercially used biopesticides tested in this study showed the genetic prerequisites necessary to provoke the disease. Moreover, though highly strain-specific, various isolates were able to germinate and also to actively move, which are further requirements for the onset of the disease. Most importantly, all isolates could grow under simulated intestinal conditions and produce significant amounts of enterotoxins. Cytotoxicity assays classified 14 isolates as highly, eight as medium and only two as low toxic. Additionally, growth inhibition by essential oils (EOs) was investigated as preventive measure against putatively enteropathogenic B. thuringiensis. Cinnamon Chinese cassia showed the highest antimicrobial activity, followed by citral, oregano and winter savory. In all tests, high strain-specific variations appeared and must be taken into account when evaluating the hazardous potential of B. thuringiensis and using EOs as antimicrobials. Altogether, the present study shows a non-negligible pathogenic potential of B. thuringiensis, independently from the origin of isolation. Generally, biopesticide strains were indistinguishable from other isolates. Thus, the use of these pesticides might indeed increase the risk for consumers’ health. Until complete information about the safety of the applied strains and formulations is available, consumers or manufacturers might benefit from the antimicrobial activity of EOs to reduce the level of contamination.
Collapse
Affiliation(s)
- Valerie Schwenk
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (V.S.); (J.R.); (E.M.)
| | - Janina Riegg
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (V.S.); (J.R.); (E.M.)
| | - Monique Lacroix
- Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC H7V 1B7, Canada;
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (V.S.); (J.R.); (E.M.)
| | - Nadja Jessberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (V.S.); (J.R.); (E.M.)
- Correspondence:
| |
Collapse
|
20
|
Bacillus cereus Decreases NHE and CLO Exotoxin Synthesis to Maintain Appropriate Proteome Dynamics During Growth at Low Temperature. Toxins (Basel) 2020; 12:toxins12100645. [PMID: 33036317 PMCID: PMC7601483 DOI: 10.3390/toxins12100645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/02/2022] Open
Abstract
Cellular proteomes and exoproteomes are dynamic, allowing pathogens to respond to environmental conditions to sustain growth and virulence. Bacillus cereus is an important food-borne pathogen causing intoxication via emetic toxin and/or multiple protein exotoxins. Here, we compared the dynamics of the cellular proteome and exoproteome of emetic B. cereus cells grown at low (16 °C) and high (30 °C) temperature. Tandem mass spectrometry (MS/MS)-based shotgun proteomics analysis identified 2063 cellular proteins and 900 extracellular proteins. Hierarchical clustering following principal component analysis indicated that in B. cereus the abundance of a subset of these proteins—including cold-stress responders, and exotoxins non-hemolytic enterotoxin (NHE) and hemolysin I (cereolysin O (CLO))—decreased at low temperature, and that this subset governs the dynamics of the cellular proteome. NHE, and to a lesser extent CLO, also contributed significantly to exoproteome dynamics; with decreased abundances in the low-temperature exoproteome, especially in late growth stages. Our data therefore indicate that B. cereus may reduce its production of secreted protein toxins to maintain appropriate proteome dynamics, perhaps using catabolite repression to conserve energy for growth in cold-stress conditions, at the expense of virulence.
Collapse
|
21
|
Carroll LM, Cheng RA, Kovac J. No Assembly Required: Using BTyper3 to Assess the Congruency of a Proposed Taxonomic Framework for the Bacillus cereus Group With Historical Typing Methods. Front Microbiol 2020; 11:580691. [PMID: 33072050 PMCID: PMC7536271 DOI: 10.3389/fmicb.2020.580691] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
The Bacillus cereus group, also known as B. cereus sensu lato (s.l.), is a species complex comprising numerous closely related lineages, which vary in their ability to cause illness in humans and animals. The classification of B. cereus s.l. isolates into species-level taxonomic units is essential for facilitating communication between and among microbiologists, clinicians, public health officials, and industry professionals, but is not always straightforward. A recently proposed genomospecies-subspecies-biovar taxonomic framework aims to provide a standardized nomenclature for this species complex but relies heavily on whole-genome sequencing (WGS). It thus is unclear whether popular, low-cost typing methods (e.g., single- and multi-locus sequence typing) remain congruent with the proposed taxonomy. Here, we characterize 2,231 B. cereus s.l. genomes using a combination of in silico (i) average-nucleotide identity (ANI)-based genomospecies assignment, (ii) ANI-based subspecies assignment, (iii) seven-gene multi-locus sequence typing (MLST), (iv) single-locus panC group assignment, (v) rpoB allelic typing, and (vi) virulence factor detection. We show that sequence types (STs) assigned using MLST can be used for genomospecies assignment, and we provide a comprehensive list of ST/genomospecies associations. For panC group assignment, we show that an adjusted, eight-group framework is largely, albeit not perfectly, congruent with the proposed eight-genomospecies taxonomy, as panC alone may not distinguish (i) B. luti from Group II B. mosaicus and (ii) B. paramycoides from Group VI B. mycoides. We additionally provide a list of loci that capture the topology of the whole-genome B. cereus s.l. phylogeny that may be used in future sequence typing efforts. For researchers with access to WGS, MLST, and/or panC data, we showcase how our recently released software, BTyper3 (https://github.com/lmc297/BTyper3), can be used to assign B. cereus s.l. isolates to taxonomic units within this proposed framework with little-to-no user intervention or domain-specific knowledge of B. cereus s.l. taxonomy. We additionally outline a novel method for assigning B. cereus s.l. genomes to pseudo-gene flow units within proposed genomospecies. The results presented here highlight the backward-compatibility and accessibility of the recently proposed genomospecies-subspecies-biovar taxonomic framework and illustrate that WGS is not a necessity for microbiologists who want to use the proposed nomenclature effectively.
Collapse
Affiliation(s)
- Laura M. Carroll
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rachel A. Cheng
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Jasna Kovac
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
22
|
Tran SL, Cormontagne D, Vidic J, André-Leroux G, Ramarao N. Structural Modeling of Cell Wall Peptidase CwpFM (EntFM) Reveals Distinct Intrinsically Disordered Extensions Specific to Pathogenic Bacillus cereus Strains. Toxins (Basel) 2020; 12:toxins12090593. [PMID: 32937845 PMCID: PMC7551459 DOI: 10.3390/toxins12090593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
The emergence of B. cereus as an opportunistic food-borne pathogen has intensified the need to distinguish strains of public health concern. The heterogeneity of the diseases associated with B. cereus infections emphasizes the versatility of these bacteria strains to colonize their host. Nevertheless, the molecular basis of these differences remains unclear. Several toxins are involved in virulence, particularly in gastrointestinal disorders, but there are currently no biological markers able to differentiate pathogenic from harmless strains. We have previously shown that CwpFM is a cell wall peptidase involved in B. cereus virulence. Here, we report a sequence/structure/function characterization of 39 CwpFM sequences, chosen from a collection of B. cereus with diverse virulence phenotypes, from harmless to highly pathogenic strains. CwpFM is homology-modeled in silico as an exported papain-like endopeptidase, with an N-terminal end composed of three successive bacterial Src Homology 3 domains (SH3b1–3) likely to control protein–protein interactions in signaling pathways, and a C-terminal end that contains a catalytic NLPC_P60 domain primed to form a competent active site. We confirmed in vitro that CwpFM is an endopeptidase with a moderate peptidoglycan hydrolase activity. Remarkably, CwpFMs from pathogenic strains harbor a specific stretch of twenty residues intrinsically disordered, inserted between the SH3b3 and the catalytic NLPC_P60 domain. This strongly suggests this linker as a marker of differentiation between B. cereus strains. We believe that our findings improve our understanding of the pathogenicity of B. cereus while advancing both clinical diagnosis and food safety.
Collapse
Affiliation(s)
- Seav-Ly Tran
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (S.-L.T.); (D.C.); (J.V.)
| | - Delphine Cormontagne
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (S.-L.T.); (D.C.); (J.V.)
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (S.-L.T.); (D.C.); (J.V.)
| | - Gwenaëlle André-Leroux
- MaIAGE, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
- Correspondence: (G.A.-L.); (N.R.)
| | - Nalini Ramarao
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (S.-L.T.); (D.C.); (J.V.)
- Correspondence: (G.A.-L.); (N.R.)
| |
Collapse
|
23
|
Carroll LM, Wiedmann M. Cereulide Synthetase Acquisition and Loss Events within the Evolutionary History of Group III Bacillus cereus Sensu Lato Facilitate the Transition between Emetic and Diarrheal Foodborne Pathogens. mBio 2020; 11:e01263-20. [PMID: 32843545 PMCID: PMC7448271 DOI: 10.1128/mbio.01263-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/17/2020] [Indexed: 11/20/2022] Open
Abstract
Cereulide-producing members of Bacillus cereussensu lato group III (also known as emetic B. cereus) possess cereulide synthetase, a plasmid-encoded, nonribosomal peptide synthetase encoded by the ces gene cluster. Despite the documented risks that cereulide-producing strains pose to public health, the level of genomic diversity encompassed by emetic B. cereus has never been evaluated at a whole-genome scale. Here, we employ a phylogenomic approach to characterize group III B. cereussensu lato genomes which possess ces (ces positive) alongside their closely related, ces-negative counterparts (i) to assess the genomic diversity encompassed by emetic B. cereus and (ii) to identify potential ces loss and/or gain events within the evolutionary history of the high-risk and medically relevant sequence type (ST) 26 lineage often associated with emetic foodborne illness. Using all publicly available ces-positive group III B. cereussensu lato genomes and the ces-negative genomes interspersed among them (n = 159), we show that emetic B. cereus is not clonal; rather, multiple lineages within group III harbor cereulide-producing strains, all of which share an ancestor incapable of producing cereulide (posterior probability = 0.86 to 0.89). Members of ST 26 share an ancestor that existed circa 1748 (95% highest posterior density [HPD] interval = 1246.89 to 1915.64) and first acquired the ability to produce cereulide before 1876 (95% HPD = 1641.43 to 1946.70). Within ST 26 alone, two subsequent ces gain events were observed, as well as three ces loss events, including among isolates responsible for B. cereussensu lato toxicoinfection (i.e., "diarrheal" illness).IMPORTANCEB. cereus is responsible for thousands of cases of foodborne disease each year worldwide, causing two distinct forms of illness: (i) intoxication via cereulide (i.e., emetic syndrome) or (ii) toxicoinfection via multiple enterotoxins (i.e., diarrheal syndrome). Here, we show that emetic B. cereus is not a clonal, homogenous unit that resulted from a single cereulide synthetase gain event followed by subsequent proliferation; rather, cereulide synthetase acquisition and loss is a dynamic, ongoing process that occurs across lineages, allowing some group III B. cereussensu lato populations to oscillate between diarrheal and emetic foodborne pathogens over the course of their evolutionary histories. We also highlight the care that must be taken when selecting a reference genome for whole-genome sequencing-based investigation of emetic B. cereussensu lato outbreaks, since some reference genome selections can lead to a confounding loss of resolution and potentially hinder epidemiological investigations.
Collapse
Affiliation(s)
- Laura M Carroll
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
24
|
Drewnowska JM, Stefanska N, Czerniecka M, Zambrowski G, Swiecicka I. Potential Enterotoxicity of Phylogenetically Diverse Bacillus cereus Sensu Lato Soil Isolates from Different Geographical Locations. Appl Environ Microbiol 2020; 86:e03032-19. [PMID: 32220844 PMCID: PMC7237779 DOI: 10.1128/aem.03032-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacillus cereus sensu lato comprises Gram-positive spore-forming bacteria producing toxins associated with foodborne diseases. Three pore-forming enterotoxins, nonhemolytic enterotoxin (Nhe), hemolysin BL (Hbl), and cytotoxin K (CytK), are considered the primary factors in B. cereus sensu lato diarrhea. The aim of this study was to determine the potential risk of enterotoxicity among soil B. cereus sensu lato isolates representing diverse phylogroups and originated from different geographic locations with various climates (Burkina Faso, Kenya, Argentina, Kazakhstan, and Poland). While nheA- and hblA-positive isolates were present among all B. cereus sensu lato populations and distributed across all phylogenetic groups, cytK-2-positive strains predominated in geographic regions with an arid hot climate (Africa) and clustered together on a phylogenetic tree mainly within mesophilic groups III and IV. The highest in vitro cytotoxicity to Caco-2 and HeLa cells was demonstrated by the strains clustered within phylogroups II and IV. Overall, our results suggest that B. cereus sensu lato pathogenicity is a comprehensive process conditioned by many intracellular factors and diverse environmental conditions.IMPORTANCE This research offers a new route for a wider understanding of the dependency between pathogenicity and phylogeny of a natural bacterial population, specifically within Bacillus cereus sensu lato, that is widely distributed around the world and easily transferred into food products. Our study indicates differences in the phylogenetic and geographical distributions of potential enterotoxigenic B. cereus sensu lato strains. Hence, these bacilli possess a risk for human health, and rapid testing methods for their identification are greatly needed. In particular, the detection of the CytK enterotoxin should be a supporting strategy for the identification of pathogenic B. cereus sensu lato.
Collapse
Affiliation(s)
| | - Natalia Stefanska
- Department of Microbiology, Faculty of Biology, University of Bialystok, Bialystok, Poland
| | - Magdalena Czerniecka
- Department of Cytobiochemistry, Faculty of Biology, University of Bialystok, Bialystok, Poland
- Laboratory of Tissue Culture, Faculty of Biology, University of Bialystok, Bialystok, Poland
| | - Grzegorz Zambrowski
- Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland
| | - Izabela Swiecicka
- Department of Microbiology, Faculty of Biology, University of Bialystok, Bialystok, Poland
- Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland
| |
Collapse
|
25
|
Ramarao N, Tran SL, Marin M, Vidic J. Advanced Methods for Detection of Bacillus cereus and Its Pathogenic Factors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2667. [PMID: 32392794 PMCID: PMC7273213 DOI: 10.3390/s20092667] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022]
Abstract
Bacillus cereus is an opportunistic foodborne pathogen causing food intoxication and infectious diseases. Different toxins and pathogenic factors are responsible for diarrheal syndrome, like nonhemolytic enterotoxin Nhe, hemolytic enterotoxin Hbl, enterotoxin FM and cytotoxin K, while emetic syndrome is caused by the depsipeptide cereulide toxin. The traditional method of B. cereus detection is based on the bacterial culturing onto selective agars and cells enumeration. In addition, molecular and chemical methods are proposed for toxin gene profiling, toxin quantification and strain screening for defined virulence factors. Finally, some advanced biosensors such as phage-based, cell-based, immunosensors and DNA biosensors have been elaborated to enable affordable, sensitive, user-friendly and rapid detection of specific B. cereus strains. This review intends to both illustrate the state of the B. cereus diagnostic field and to highlight additional research that is still at the development level.
Collapse
Affiliation(s)
- Nalini Ramarao
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (S.-L.T.); (M.M.)
| | | | | | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (S.-L.T.); (M.M.)
| |
Collapse
|
26
|
Ramm F, Dondapati SK, Thoring L, Zemella A, Wüstenhagen DA, Frentzel H, Stech M, Kubick S. Mammalian cell-free protein expression promotes the functional characterization of the tripartite non-hemolytic enterotoxin from Bacillus cereus. Sci Rep 2020; 10:2887. [PMID: 32076011 PMCID: PMC7031377 DOI: 10.1038/s41598-020-59634-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/23/2020] [Indexed: 11/29/2022] Open
Abstract
Bacillus cereus is increasingly recognized as an opportunistic pathogen causing local and systemic infections. The causative strains typically produce three pore-forming enterotoxins. This study focusses on the tripartite non-hemolytic enterotoxin (Nhe). Until today, studies have tried to elucidate the structure, complex formation and cell binding mechanisms of the tripartite Nhe toxin. Here, we demonstrate the synthesis of the functional tripartite Nhe toxin using eukaryotic cell-free systems. Single subunits, combinations of two Nhe subunits as well as the complete tripartite toxin were tested. Functional activity was determined by hemolytic activity on sheep blood agar plates, planar lipid bilayer measurements as well as cell viability assessment using the MTT assay. Our results demonstrate that cell-free protein synthesis based on translationally active eukaryotic lysates is a platform technology for the fast and efficient synthesis of functionally active, multicomponent toxins.
Collapse
Affiliation(s)
- Franziska Ramm
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Takustr. 6, 14195, Berlin, Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Doreen Anja Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Hendrik Frentzel
- German Federal Institute for Risk Assessment, Department of Biological Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany. .,Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
27
|
Webb MD, Barker GC, Goodburn KE, Peck MW. Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends Food Sci Technol 2019; 93:94-105. [PMID: 31764911 PMCID: PMC6853023 DOI: 10.1016/j.tifs.2019.08.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022]
Abstract
BACKGROUND Spores of psychrotrophic Bacillus cereus may survive the mild heat treatments given to minimally processed chilled foods. Subsequent germination and cell multiplication during refrigerated storage may lead to bacterial concentrations that are hazardous to health. SCOPE AND APPROACH This review is concerned with the characterisation of factors that prevent psychrotrophic B. cereus reaching hazardous concentrations in minimally processed chilled foods and associated foodborne illness. A risk assessment framework is used to quantify the risk associated with B. cereus and minimally processed chilled foods. KEY FINDINGS AND CONCLUSIONS Bacillus cereus is responsible for two types of food poisoning, diarrhoeal (an infection) and emetic (an intoxication); however, no reported outbreaks of food poisoning have been associated with B. cereus and correctly stored commercially-produced minimally processed chilled foods. In the UK alone, more than 1010 packs of these foods have been sold in recent years without reported illness, thus the risk presented is very low. Further quantification of the risk is merited, and this requires additional data. The lack of association between diarrhoeal food poisoning and correctly stored commercially-produced minimally processed chilled foods indicates that an infectious dose has not been reached. This may reflect low pathogenicity of psychrotrophic strains. The lack of reported association of psychrotrophic B. cereus with emetic illness and correctly stored commercially-produced minimally processed chilled foods indicates that a toxic dose of the emetic toxin has not been formed. Laboratory studies show that strains form very small quantities of emetic toxin at chilled temperatures.
Collapse
Affiliation(s)
- Martin D. Webb
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Gary C. Barker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Kaarin E. Goodburn
- Chilled Food Associates, c/o 3 Weekley Wood Close, Kettering, NN14 1UQ, UK
| | - Michael W. Peck
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| |
Collapse
|
28
|
Rossi GAM, Silva HO, Aguilar CEG, Rochetti AL, Pascoe B, Méric G, Mourkas E, Hitchings MD, Mathias LA, de Azevedo Ruiz VL, Fukumasu H, Sheppard SK, Vidal AMC. Comparative genomic survey of Bacillus cereus sensu stricto isolates from the dairy production chain in Brazil. FEMS Microbiol Lett 2019; 365:4780294. [PMID: 29390131 DOI: 10.1093/femsle/fnx283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/23/2017] [Indexed: 12/20/2022] Open
Abstract
The genomes of 262 Bacillus cereus isolates were analyzed including 69 isolates sampled from equipment, raw milk and dairy products from Brazil. The population structure of isolates showed strains belonging to known phylogenetic groups II, III, IV, V and VI. Almost all the isolates obtained from dairy products belonged to group III. Investigation of specific alleles revealed high numbers of isolates carrying toxin-associated genes including cytK (53.62%), hblA (59.42%), hblC (44.93%), hblD (53.62%), nheA (84.06%), nheB (89.86%) and nheC (84.06%) with isolates belonging to groups IV and V having significant higher prevalence of hblACD and group IV of CytK genes. Strains from dairy products had significantly lower prevalence of CytK and hblACD genes compared to isolates from equipment and raw milk/bulk tanks. Genes related to sucrose metabolism were detected at higher frequency in isolates obtained from raw milk compared to strains from equipment and utensils. The population genomic analysis demonstrated the diversity of strains and variability of putative function among B. cereus group isolates in Brazilian dairy production, with large numbers of strains potentially able to cause foodborne illness. This detailed information will contribute to targeted interventions to reduce milk contamination and spoilage associated with B. cereus in Brazil.
Collapse
Affiliation(s)
- Gabriel Augusto Marques Rossi
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP - Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Paulo Castellane, s/n, CEP 14884-900 Jaboticabal, São Paulo, Brazil
| | - Higor Oliveira Silva
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP - Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Paulo Castellane, s/n, CEP 14884-900 Jaboticabal, São Paulo, Brazil
| | - Carlos Eduardo Gamero Aguilar
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP - Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Paulo Castellane, s/n, CEP 14884-900 Jaboticabal, São Paulo, Brazil
| | - Arina Lázaro Rochetti
- Departamento de Medicina Veterinária, Avenida Duque de Caxias Norte 225, Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), CEP 13635-900 Pirassununga, São Paulo, Brazil
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, 4 South, Lab 0.39, Claverton Down, BA2 7AY Bath, UK
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, 4 South, Lab 0.39, Claverton Down, BA2 7AY Bath, UK
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, 4 South, Lab 0.39, Claverton Down, BA2 7AY Bath, UK
| | | | - Luis Antonio Mathias
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP - Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Paulo Castellane, s/n, CEP 14884-900 Jaboticabal, São Paulo, Brazil
| | - Vera Letticie de Azevedo Ruiz
- Departamento de Medicina Veterinária, Avenida Duque de Caxias Norte 225, Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), CEP 13635-900 Pirassununga, São Paulo, Brazil
| | - Heidge Fukumasu
- Departamento de Medicina Veterinária, Avenida Duque de Caxias Norte 225, Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), CEP 13635-900 Pirassununga, São Paulo, Brazil
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, 4 South, Lab 0.39, Claverton Down, BA2 7AY Bath, UK
| | - Ana Maria Centola Vidal
- Departamento de Medicina Veterinária, Avenida Duque de Caxias Norte 225, Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), CEP 13635-900 Pirassununga, São Paulo, Brazil
| |
Collapse
|
29
|
Gdoura-Ben Amor M, Jan S, Baron F, Grosset N, Culot A, Gdoura R, Gautier M, Techer C. Toxigenic potential and antimicrobial susceptibility of Bacillus cereus group bacteria isolated from Tunisian foodstuffs. BMC Microbiol 2019; 19:196. [PMID: 31445510 PMCID: PMC6708205 DOI: 10.1186/s12866-019-1571-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite the importance of the B. cereus group as major foodborne pathogens that may cause diarrheal and/or emetic syndrome(s), no study in Tunisia has been conducted in order to characterize the pathogenic potential of the B. cereus group. The aim of this study was to assess the sanitary potential risks of 174 B. cereus group strains isolated from different foodstuffs by detecting and profiling virulence genes (hblA, hblB, hblC, hblD, nheA, nheB, nheC, cytK, bceT and ces), testing the isolates cytotoxic activity on Caco-2 cells and antimicrobial susceptibility towards 11 antibiotics. RESULTS The entertoxin genes detected among B. cereus isolates were, in decreasing order, nheA (98.9%), nheC (97.7%) and nheB (86.8%) versus hblC (54.6%), hblD (54.6%), hblA (29.9%) and hblB (14.9%), respectively encoding for Non-hemolytic enterotoxin (NHE) and Hemolysin BL (HBL). The isolates are multi-toxigenic, harbouring at least one gene of each NHE and HBL complexes associated or not to bceT, cytK-2 and ces genes. Based on the incidence of virulence genes, the strains were separated into 12 toxigenic groups. Isolates positive for cytK (37,9%) harbored the cytK-2 variant. The detection rates of bceT and ces genes were 50.6 and 4%, respectively. When bacteria were incubated in BHI-YE at 30 °C for 18 h and for 5 d, 70.7 and 35% of the strains were shown to be cytotoxic to Caco-2 cells, respectively. The cytotoxicity of B. cereus strains depended on the food source of isolation. The presence of virulence factors is not always consistent with cytotoxicity. However, different combinations of enterotoxin genetic determinants are significantly associated to the cytotoxic potential of the bacteria. All strains were fully sensitive to rifampicin, chloramphenicol, ciprofloxacin, and gentamycin. The majority of the isolates were susceptible to streptomycin, kanamycin, erythromycin, vancomycin and tetracycline but showed resistance to ampicillin and novobiocin. CONCLUSION Our results contribute data that are primary to facilitate risk assessments in order to prevent food poisoning due to B. cereus group.
Collapse
Affiliation(s)
- Maroua Gdoura-Ben Amor
- Laboratory Research of Toxicology-Microbiology Environmental and Health LR17ES06, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia.
- Equipe Microbiologie, Agrocampus Ouest, INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France.
| | - Sophie Jan
- Equipe Microbiologie, Agrocampus Ouest, INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
| | - Florence Baron
- Equipe Microbiologie, Agrocampus Ouest, INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
| | - Noël Grosset
- Equipe Microbiologie, Agrocampus Ouest, INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
| | - Antoine Culot
- Equipe Microbiologie, Agrocampus Ouest, INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
- Mixscience, Rue des Courtillons, ZAC Cissé Blossac, 35712, Bruz, France
| | - Radhouane Gdoura
- Laboratory Research of Toxicology-Microbiology Environmental and Health LR17ES06, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Michel Gautier
- Equipe Microbiologie, Agrocampus Ouest, INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
| | - Clarisse Techer
- Mixscience, Rue des Courtillons, ZAC Cissé Blossac, 35712, Bruz, France
| |
Collapse
|
30
|
Baek I, Lee K, Goodfellow M, Chun J. Comparative Genomic and Phylogenomic Analyses Clarify Relationships Within and Between Bacillus cereus and Bacillus thuringiensis: Proposal for the Recognition of Two Bacillus thuringiensis Genomovars. Front Microbiol 2019; 10:1978. [PMID: 31507580 PMCID: PMC6716467 DOI: 10.3389/fmicb.2019.01978] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/12/2019] [Indexed: 01/03/2023] Open
Abstract
The present study was designed to clarify the taxonomic status of two species classified as Bacillus cereus sensu lato, namely B. cereus sensu stricto and Bacillus thuringiensis. To this end, nearly 900 whole genome sequences of strains assigned to these taxa were the subject of comparative genomic and phylogenomic analyses. A phylogenomic tree based on core gene sequences showed that the type strains of B. cereus and B. thuringiensis formed a well-supported monophyletic clade that was clearly separated from corresponding clades composed of the remaining validly published species classified as B. cereus sensu lato. However, since average nucleotide identity and digital DNA-DNA hybridization similarities between the two types of Bacillus were slightly higher than the thresholds used to distinguish between closely related species we conclude that B. cereus and B. thuringiensis should continue to be recognized as validly published species. The B. thuringiensis strains were assigned to two genomically distinct groups, we propose that these taxa be recognized as genomovars, that is, as B. thuringiensis gv. thuringiensis and B. thuringiensis gv. cytolyticus. The extensive comparative genomic data clearly show that the distribution of pesticidal genes is irregular as strains identified as B. thuringiensis were assigned to several polyphyletic groups/subclades within the B. cereus-B. thuringiensis clade. Consequently, we recommend that genomic or equivalent molecular systematic features should be used to identify B. thuringiensis strains as the presence of pesticidal genes cannot be used as a diagnostic marker for this species. Comparative taxonomic studies are needed to find phenotypic properties that can be used to distinguish between the B. thuringiensis genomovars and between them and B. cereus.
Collapse
Affiliation(s)
- Inwoo Baek
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Kihyun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jongsik Chun
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| |
Collapse
|
31
|
Gu HJ, Sun QL, Luo JC, Zhang J, Sun L. A First Study of the Virulence Potential of a Bacillus subtilis Isolate From Deep-Sea Hydrothermal Vent. Front Cell Infect Microbiol 2019; 9:183. [PMID: 31214515 PMCID: PMC6554283 DOI: 10.3389/fcimb.2019.00183] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/13/2019] [Indexed: 02/05/2023] Open
Abstract
Bacillus subtilis is the best studied Gram-positive bacterium, primarily as a model of cell differentiation and industrial exploitation. To date, little is known about the virulence of B. subtilis. In this study, we examined the virulence potential of a B. subtilis strain (G7) isolated from the Iheya North hydrothermal field of Okinawa Trough. G7 is aerobic, motile, endospore-forming, and requires NaCl for growth. The genome of G7 is composed of one circular chromosome of 4,216,133 base pairs with an average GC content of 43.72%. G7 contains 4,416 coding genes, 27.5% of which could not be annotated, and the remaining 72.5% were annotated with known or predicted functions in 25 different COG categories. Ten sets of 23S, 5S, and 16S ribosomal RNA operons, 86 tRNA and 14 sRNA genes, 50 tandem repeats, 41 mini-satellites, one microsatellite, and 42 transposons were identified in G7. Comparing to the genome of the B. subtilis wild type strain NCIB 3610T, G7 genome contains many genomic translocations, inversions, and insertions, and twice the amount of genomic Islands (GIs), with 42.5% of GI genes encoding hypothetical proteins. G7 possesses abundant putative virulence genes associated with adhesion, invasion, dissemination, anti-phagocytosis, and intracellular survival. Experimental studies showed that G7 was able to cause mortality in fish and mice following intramuscular/intraperitoneal injection, resist the killing effect of serum complement, and replicate in mouse macrophages and fish peripheral blood leukocytes. Taken together, our study indicates that G7 is a B. subtilis isolate with unique genetic features and can be lethal to vertebrate animals once being introduced into the animals by artificial means. These results provide the first insight into the potential harmfulness of deep-sea B. subtilis.
Collapse
Affiliation(s)
- Han-Jie Gu
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Lei Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing-Chang Luo
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
32
|
Binding to The Target Cell Surface Is The Crucial Step in Pore Formation of Hemolysin BL from Bacillus cereus. Toxins (Basel) 2019; 11:toxins11050281. [PMID: 31137585 PMCID: PMC6563250 DOI: 10.3390/toxins11050281] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022] Open
Abstract
A major virulence factor involved in Bacillus cereus food poisoning is the three-component enterotoxin hemolysin BL. It consists of the binding component B and the two lytic components L1 and L2. Studying its mode of action has been challenging, as natural culture supernatants additionally contain Nhe, the second three-component enterotoxin, and purification of recombinant (r) Hbl components has been difficult. In this study, we report on pore-forming, cytotoxic, cell binding and hemolytic activity of recently generated rHbl components expressed in E. coli. It is known that all three Hbl components are necessary for cytotoxicity and pore formation. Here we show that an excess of rHbl B enhances, while an excess of rHbl L1 hinders, the velocity of pore formation. Most rapid pore formation was observed with ratios L2:L1:B = 1:1:10 and 10:1:10. It was further verified that Hbl activity is due to sequential binding of the components B - L1 - L2. Accordingly, all bioassays proved that binding of Hbl B to the cell surface is the crucial step for pore formation and cytotoxic activity. Binding of Hbl B took place within minutes, while apposition of the following L1 and L2 occurred immediately. Further on, applying toxin components simultaneously, it seemed that Hbl L1 enhanced binding of B to the target cell surface. Overall, these data contribute significantly to the elucidation of the mode of action of Hbl, and suggest that its mechanism of pore formation differs substantially from that of Nhe, although both enterotoxin complexes are sequentially highly related.
Collapse
|
33
|
Celandroni F, Vecchione A, Cara A, Mazzantini D, Lupetti A, Ghelardi E. Identification of Bacillus species: Implication on the quality of probiotic formulations. PLoS One 2019; 14:e0217021. [PMID: 31107885 PMCID: PMC6527297 DOI: 10.1371/journal.pone.0217021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/02/2019] [Indexed: 11/26/2022] Open
Abstract
Spores of several Bacillus species have long history of consumption and safe use as probiotics and a variety of formulations containing these organisms are available in the global market. Considering the difficulties in the identification of Bacillus species and the poor microbiological quality of many probiotic formulations, we used three up-to-date methodological approaches for analyzing the content of ten formulations marketed in Italy and labeled to contain Bacillus spores. We compared the performance of biochemical tests based on the BCL Vitek2 card and MALDI-TOF mass spectrometry, using 16S rDNA sequencing as the reference technique. The BCL card performed well in identifying all Bacillus probiotic strains as well as the Bruker’s MALDI Biotyper. Nevertheless, the MALDI score values were sometimes lower than those indicated by the manufacturer for correct species identification. Contaminant bacteria (Lysinibacillus fusiformis, Acinetobacter baumannii, Bacillus cereus, Brevibacillus choshinensis, Bacillus licheniformis, Bacillus badius) were detected in some formulations. Characterization of the B. cereus contaminant showed the potential pathogenicity of this strain. Microbial enumeration performed by the plate count method revealed that the number of viable cells contained in many of the analyzed products differed from the labeled amount. Overall, our data show that only two of the ten analyzed formulations qualitatively and quantitatively respect what is on the label. Since probiotic properties are most often strain specific, molecular typing of isolates of the two most common Bacillus species, B. clausii and B. coagulans, was also performed. In conclusion, the majority of the analyzed products do not comply with quality requirements, most likely leading to reduced/absent efficacy of the preparation and representing a potential infective risk for consumers.
Collapse
Affiliation(s)
- Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Vecchione
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alice Cara
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Research Center Nutraceuticals and Food for Health-Nutrafood, University of Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
34
|
Yu P, Yu S, Wang J, Guo H, Zhang Y, Liao X, Zhang J, Wu S, Gu Q, Xue L, Zeng H, Pang R, Lei T, Zhang J, Wu Q, Ding Y. Bacillus cereus Isolated From Vegetables in China: Incidence, Genetic Diversity, Virulence Genes, and Antimicrobial Resistance. Front Microbiol 2019; 10:948. [PMID: 31156567 PMCID: PMC6530634 DOI: 10.3389/fmicb.2019.00948] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
Bacillus cereus is a food-borne opportunistic pathogen that can induce diarrheal and emetic symptoms. It is widely distributed in different environments and can be found in various foods, including fresh vegetables. As their popularity grows worldwide, the risk of bacterial contamination in fresh vegetables should be fully evaluated, particularly in vegetables that are consumed raw or processed minimally, which are not commonly sterilized by enough heat treatment. Thereby, it is necessary to perform potential risk evaluation of B. cereus in vegetables. In this study, 294 B. cereus strains were isolated from vegetables in different cities in China to analyze incidence, genetic polymorphism, presence of virulence genes, and antimicrobial resistance. B. cereus was detected in 50% of all the samples, and 21/211 (9.95%) of all the samples had contamination levels of more than 1,100 MPN/g. Virulence gene detection revealed that 95 and 82% of the isolates harbored nheABC and hblACD gene clusters, respectively. Additionally, 87% of the isolates harbored cytK gene, and 3% of the isolates possessed cesB. Most strains were resistant to rifampicin and β-lactam antimicrobials but were sensitive to imipenem, gentamicin, ciprofloxacin, kanamycin, telithromycin, ciprofloxacin, and chloramphenicol. In addition, more than 95.6% of the isolates displayed resistance to three kinds of antibiotics. Based on multilocus sequence typing, all strains were classified into 210 different sequence types (STs), of which 145 isolates were assigned to 137 new STs. The most prevalent ST was ST770, but it included only eight isolates. Taken together, our research provides the first reference for the incidence and characteristics of B. cereus in vegetables collected throughout China, indicating a potential hazard of B. cereus when consuming vegetables without proper handling.
Collapse
Affiliation(s)
- Pengfei Yu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shubo Yu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hui Guo
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Ying Zhang
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xiyu Liao
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Junhui Zhang
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shi Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qihui Gu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Rui Pang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Tao Lei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
35
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
36
|
Porcine Gastric Mucin Triggers Toxin Production of Enteropathogenic Bacillus cereus. Infect Immun 2019; 87:IAI.00765-18. [PMID: 30745328 DOI: 10.1128/iai.00765-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 02/01/2023] Open
Abstract
Enteropathogenic Bacillus cereus causes foodborne infections due to the production of pore-forming enterotoxins in the intestine. Before that, spores have to be ingested, survive the stomach passage, and germinate. Thus, before reaching epithelial cells, B. cereus comes in contact with the intestinal mucus layer. In the present study, different aspects of this interaction were analyzed. Total RNA sequencing revealed major transcriptional changes of B. cereus strain F837/76 upon incubation with porcine gastric mucin (PGM), comprising genes encoding enterotoxins and further putative virulence factors, as well as proteins involved in adhesion to and degradation of mucin. Indeed, PGM was partially degraded by B. cereus via secreted, EDTA-sensitive proteases. The amount of enterotoxins detectable in culture media supplemented with PGM was also clearly increased. Tests of further strains revealed that enhancement of enterotoxin production upon contact with PGM is broadly distributed among B. cereus strains. Interestingly, evidence was found that PGM can also strain-specifically trigger germination of B. cereus spores and that vegetative cells actively move toward mucin. Overall, our data suggest that B. cereus is well adapted to the host environment due to massive transcriptome changes upon contact with PGM, attributing mucin an important and, thus far, neglected role in pathogenesis.
Collapse
|
37
|
Rajabli N, Williamson L, Nimmer PS, Kelly-Worden M, Bange JS, Ho Y, McKillip JL. The dangers of sublethal carvacrol exposure: increases in virulence of Bacillus cereus during endophthalmitis. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 9:11-21. [PMID: 30515347 PMCID: PMC6261914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/04/2018] [Indexed: 06/09/2023]
Abstract
Bacillus cereus can cause endophthalmitis through secretion of virulence factors, including hemolysin BL (Hbl) and nonhemolytic entertoxin (Nhe). Carvacrol is an extract from oregano oil, with potential for curtailing B. cereus endophthalmitis, due to antimicrobial and anti-inflammatory qualities. However, sublethal levels of carvacrol increases B. cereus virulence. The goal of this study was to investigate the increase in B. cereus virulence potential in response stress induced by a subinhibitory concentration (SIC) of carvacrol. Enterotoxin production and tissue damage were examined during ocular infections in vitro and in vivo. We hypothesized that the SIC of carvacrol would significantly increase toxin production in B. cereus without progressing systemically. RT-PCR determined SIC carvacrol-treated B. cereus had significantly higher hblC and nheA mRNA expression levels than controls in vitro. ELISA and RPLA analysis revealed a 46.8% and 50% increase in NheA and HblC toxin levels, respectively, in SIC-treated cultures. Caenorhabditis elegans-fed SIC carvacrol-treated B. cereus had a significantly higher mean mortality rate than nematodes fed untreated B. cereus. Significantly higher TNF-α levels were observed in SIC carvacrol-treated B. cereus mice compared to other treatment groups except for mice infected with B. cereus alone. Significantly higher IL-6 levels were also found in SIC-B. cereus mice. Histological analysis using Rose-Bengal and DAPI determined that the eyes of mice infected with SIC carvacrol-treated B. cereus had significantly more damage than eyes treated with B. cereus alone. The SIC of carvacrol increased B. cereus virulence in vitro and in vivo, with a mild systemic infection noted.
Collapse
Affiliation(s)
- Niloofar Rajabli
- Department of Biology, Ball State UniversityMuncie, IN 47306, USA
| | | | - Pierre S Nimmer
- American University of The CaribbeanCupecoy, St. Maarten, N.A
| | | | - Jill S Bange
- University of Cincinnati College of MedicineCincinnati, OH, USA
| | - Yenling Ho
- Department of Epidemiology, Indiana University-Purdue UniversityIndianapolis, IN, USA
| | - John L McKillip
- Department of Biology, Ball State UniversityMuncie, IN 47306, USA
| |
Collapse
|
38
|
Johler S, Kalbhenn EM, Heini N, Brodmann P, Gautsch S, Bağcioğlu M, Contzen M, Stephan R, Ehling-Schulz M. Enterotoxin Production of Bacillus thuringiensis Isolates From Biopesticides, Foods, and Outbreaks. Front Microbiol 2018; 9:1915. [PMID: 30190709 PMCID: PMC6115515 DOI: 10.3389/fmicb.2018.01915] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022] Open
Abstract
While the relevance of Bacillus (B.) cereus as a major cause of gastroenteritis is undisputed, the role of the closely related B. thuringiensis in foodborne disease is unclear. B. thuringiensis strains frequently harbor enterotoxin genes. However, the organism has only very rarely been associated with foodborne outbreaks, possibly due to the fact that during outbreak investigations, B. cereus is routinely not differentiated from B. thuringiensis. A recent EFSA scientific opinion stresses the urgent need for further data allowing for improved risk assessment, in particular as B. thuringiensis is a commonly used biopesticide. Therefore, the aim of this study was to gain further insights into the hazardous potential of B. thuringiensis. To this end, 39 B. thuringiensis isolates obtained from commercially used biopesticides, various food sources, as well as from foodborne outbreaks were characterized by panC typing, panC-based SplitsTree analysis, toxin gene profiling, FTIR spectroscopic analysis, a cytotoxicity assay screening for enterotoxic activity, and a sphingomyelinase assay. The majority of the tested B. thuringiensis isolates exhibited low (23%, n = 9) or mid level enterotoxicity (74%, n = 29), and produced either no (59%, n = 23) or low levels (33%, n = 13) of sphingomyelinase, which is reported to act synergistically with enterotoxins Nhe and Hbl. One strain isolated from rosemary was however classified as highly enterotoxic surpassing the cytotoxic activity of the high-level reference strain by a factor of 1.5. This strain also produced vast amounts of sphingomyelinase. Combining all results obtained in this study into a fingerprint pattern, several enterotoxic biopesticide strains were indistinguishable from those of isolates from foods or collected in association with outbreaks. Our study shows that many B. thuringiensis biopesticide strains exhibit mid-level cytotoxicity in a Vero cell assay and that some of these strains cannot be differentiated from isolates collected from foods or in association with outbreaks. Thus, we demonstrate that the use of B. thuringiensis strains as biopesticides can represent a food safety risk, underpinning the importance of assessing the hazardous potential of each strain and formulation used.
Collapse
Affiliation(s)
- Sophia Johler
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Eva M. Kalbhenn
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nicole Heini
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | | | | | - Murat Bağcioğlu
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Matthias Contzen
- Chemisches und Veterinäruntersuchungsamt Stuttgart, Fellbach, Germany
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
39
|
Riol CD, Dietrich R, Märtlbauer E, Jessberger N. Consumed Foodstuffs Have a Crucial Impact on the Toxic Activity of Enteropathogenic Bacillus cereus. Front Microbiol 2018; 9:1946. [PMID: 30174669 PMCID: PMC6107707 DOI: 10.3389/fmicb.2018.01946] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
Enteropathogenic Bacillus cereus cause diarrhea due to the production of enterotoxins in the intestine. To start this process, spores have to be ingested together with contaminated food and survive the stomach passage. In this study, the influence of consumed foodstuffs on spore survival as well as on cytotoxicity toward colon epithelial cells was investigated. Spore survival of 20 enteropathogenic and apathogenic B. cereus strains during simulated stomach passage was highly strain-specific and did not correlate with the toxic potential. Survival of three tested strains was strain-specifically altered by milk products. Whereas milk, a follow-on formula and rice pudding had only little influence, spores seemed to be protected by milk products with high fat content such as whipped cream and mascarpone. Furthermore, tested milk products decreased the toxic activity of three B. cereus strains toward CaCo-2 cells. Investigating the individual components, lactoferrin, a skim milk powder and vitamins C, B5 and A showed the most inhibiting effects. On the other hand, biotin, vitamin B3 and another skim milk powder even enhanced cytotoxicity. Further studies suggested that these inhibiting effects result only partially from inhibiting cell binding, but rather from blocking the interaction between the single enterotoxin components.
Collapse
Affiliation(s)
- Claudia Da Riol
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Richard Dietrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nadja Jessberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
40
|
Luo S, Hu W, Wang Y, Liu B, Yan H, Xiang Y. Genome-wide identification, classification, and expression of phytocyanins in Populus trichocarpa. PLANTA 2018; 247:1133-1148. [PMID: 29383450 DOI: 10.1007/s00425-018-2849-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/17/2018] [Indexed: 05/19/2023]
Abstract
74 phytocyanin genes were identified in the Populus trichocarpa genome. Phylogenetic analysis grouped the PC proteins into four subfamilies (UCs, PLCs, SCs, and ENODLs). Closely related PC proteins share similar motifs, implying similar functions. Expression profiles of PtPC genes were analyzed in response to drought and salt-stress. Phytocyanins (PCs) are blue copper proteins associated with electron carrier activity that have a large influence on plant growth and resistance. The majority of PCs are chimeric arabinogalactan proteins (AGPs). In this work, we identified 74 PC genes in Populus trichocarpa and analyzed them comprehensively. Based on the ligands composition of copper-binding sites, glycosylation state, the domain structure and spectral characteristics of PC genes, PCs were divided into four subfamilies [uclacyanins (UCs), plantacyanins (PLCs), stellacyanins (SCs) and early nodulin-like proteins (ENODLs)], and phylogenetic relationship analysis classified them into seven groups. All PtPCs are randomly distributed on 17 of the 19 poplar chromosomes, and they appear to have undergone expansion via segmental duplication. Eight PtPCs do not contain introns, and each group has a similar conserved motif structure. Promoter analysis revealed cis-elements related to growth, development and stress responses, and established orthology relationships of PCs between Arabidopsis and poplar by synteny analysis. Expression profile analysis and qRT-PCR analysis showed that PtPCs were expressed widely in various tissues. Quantitative real-time RT-PCR analysis of PC genes expression in response to salt and drought stress revealed their stress-responses profiles. This work provides a theoretical basis for a further study of stress resistance mechanisms and the function of PC genes in poplar growth and development.
Collapse
Affiliation(s)
- Shuangshuang Luo
- Key Laboratory of Crop Biology of Anhui Province, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Wenfang Hu
- Key Laboratory of Crop Biology of Anhui Province, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yue Wang
- Key Laboratory of Crop Biology of Anhui Province, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Bin Liu
- Key Laboratory of Crop Biology of Anhui Province, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Hanwei Yan
- Key Laboratory of Crop Biology of Anhui Province, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China.
| | - Yan Xiang
- Key Laboratory of Crop Biology of Anhui Province, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
41
|
Gao T, Ding Y, Wu Q, Wang J, Zhang J, Yu S, Yu P, Liu C, Kong L, Feng Z, Chen M, Wu S, Zeng H, Wu H. Prevalence, Virulence Genes, Antimicrobial Susceptibility, and Genetic Diversity of Bacillus cereus Isolated From Pasteurized Milk in China. Front Microbiol 2018; 9:533. [PMID: 29632521 PMCID: PMC5879084 DOI: 10.3389/fmicb.2018.00533] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/08/2018] [Indexed: 12/28/2022] Open
Abstract
Bacillus cereus is a common and important food-borne pathogen that can be found in various food products. Due to low-temperature sterilization for a short period of time, pasteurization is not sufficient for complete elimination of B. cereus in milk, thereby cause severe economic loss and food safety problems. It is therefore of paramount importance to perform risk assessment of B. cereus in pasteurized milk. In this study, we isolated B. cereus from pasteurized milk samples in different regions of China, and evaluated the contamination situation, existence of virulence genes, antibiotic resistance profile and genetic polymorphism of B. cereus isolates. Intriguingly, 70 samples (27%) were found to be contaminated by B. cereus and the average contamination level was 111 MPN/g. The distribution of virulence genes was assessed toward 10 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, entFM, bceT, and hlyII) and one emetic gene (cesB). Forty five percent strains harbored enterotoxigenic genes hblACD and 93% isolates contained nheABC gene cluster. The positive rate of cytK, entFM, bceT, hlyII, and cesB genes were 73, 96, 75, 54, and 5%, respectively. Antibiotic susceptibility assessment showed that most of the isolates were resistant to β-lactam antibiotics and rifampicin, but susceptible to other antibiotics such as ciprofloxacin, gentamicin and chloramphenicol. Total multidrug-resistant population was about 34%. In addition, B. cereus isolates in pasteurized milk showed a high genetic diversity. In conclusion, our findings provide the first reference on the prevalence, contamination level and characteristics of B. cereus isolated from pasteurized milk in China, suggesting a potential high risk of B. cereus to public health and dairy industry.
Collapse
Affiliation(s)
- Tiantian Gao
- University of Chinese Academy of Sciences, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shubo Yu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Pengfei Yu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Chengcheng Liu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Li Kong
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Zhao Feng
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shi Wu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haoming Wu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
42
|
Miller RA, Jian J, Beno SM, Wiedmann M, Kovac J. Intraclade Variability in Toxin Production and Cytotoxicity of Bacillus cereus Group Type Strains and Dairy-Associated Isolates. Appl Environ Microbiol 2018; 84:e02479-17. [PMID: 29330180 PMCID: PMC5835744 DOI: 10.1128/aem.02479-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/05/2018] [Indexed: 01/24/2023] Open
Abstract
While some species in the Bacillus cereus group are well-characterized human pathogens (e.g., B. anthracis and B. cereus sensu stricto), the pathogenicity of other species (e.g., B. pseudomycoides) either has not been characterized or is presently not well understood. To provide an updated characterization of the pathogenic potential of species in the B. cereus group, we classified a set of 52 isolates, including 8 type strains and 44 isolates from dairy-associated sources, into 7 phylogenetic clades and characterized them for (i) the presence of toxin genes, (ii) phenotypic characteristics used for identification, and (iii) cytotoxicity to human epithelial cells. Overall, we found that B. cereus toxin genes are broadly distributed but are not consistently present within individual species and/or clades. After growth at 37°C, isolates within a clade did not typically show a consistent cytotoxicity phenotype, except for isolates in clade VI (B. weihenstephanensis/B. mycoides), where none of the isolates were cytotoxic, and isolates in clade I (B. pseudomycoides), which consistently displayed cytotoxic activity. Importantly, our study highlights that B. pseudomycoides is cytotoxic toward human cells. Our results indicate that the detection of toxin genes does not provide a reliable approach to predict the pathogenic potential of B. cereus group isolates, as the presence of toxin genes is not always consistent with cytotoxicity phenotype. Overall, our results suggest that isolates from multiple B. cereus group clades have the potential to cause foodborne illness, although cytotoxicity is not always consistently found among isolates within each clade.IMPORTANCE Despite the importance of the Bacillus cereus group as a foodborne pathogen, characterizations of the pathogenic potential of all B. cereus group species were lacking. We show here that B. pseudomycoides (clade I), which has been considered a harmless environmental microorganism, produces toxins and exhibits a phenotype consistent with the production of pore-forming toxins. Furthermore, B. mycoides/B. weihenstephanensis isolates (clade VI) did not show cytotoxicity when grown at 37°C, despite carrying multiple toxin genes. Overall, we show that the current standard methods to characterize B. cereus group isolates and to detect the presence of toxin genes are not reliable indicators of species, phylogenetic clades, or an isolate's cytotoxic capacity, suggesting that novel methods are still needed for differentiating pathogenic from nonpathogenic species within the B. cereus group. Our results also contribute data that are necessary to facilitate risk assessments and a better understanding as to which B. cereus group species are likely to cause foodborne illness.
Collapse
Affiliation(s)
- Rachel A Miller
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Jiahui Jian
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Sarah M Beno
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Jasna Kovac
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
43
|
Glasset B, Herbin S, Guillier L, Cadel-Six S, Vignaud ML, Grout J, Pairaud S, Michel V, Hennekinne JA, Ramarao N, Brisabois A. Bacillus cereus-induced food-borne outbreaks in France, 2007 to 2014: epidemiology and genetic characterisation. ACTA ACUST UNITED AC 2017; 21:30413. [PMID: 27934583 PMCID: PMC5388111 DOI: 10.2807/1560-7917.es.2016.21.48.30413] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/16/2016] [Indexed: 11/20/2022]
Abstract
The aim of this study was to identify and characterise Bacillus cereus from a unique national collection of 564 strains associated with 140 strong-evidence food-borne outbreaks (FBOs) occurring in France during 2007 to 2014. Starchy food and vegetables were the most frequent food vehicles identified; 747 of 911 human cases occurred in institutional catering contexts. Incubation period was significantly shorter for emetic strains compared with diarrhoeal strains A sub-panel of 149 strains strictly associated to 74 FBOs and selected on Coliphage M13-PCR pattern, was studied for detection of the genes encoding cereulide, diarrhoeic toxins (Nhe, Hbl, CytK1 and CytK2) and haemolysin (HlyII), as well as panC phylogenetic classification. This clustered the strains into 12 genetic signatures (GSs) highlighting the virulence potential of each strain. GS1 (nhe genes only) and GS2 (nhe, hbl and cytK2), were the most prevalent GS and may have a large impact on human health as they were present in 28% and 31% of FBOs, respectively. Our study provides a convenient molecular scheme for characterisation of B. cereus strains responsible for FBOs in order to improve the monitoring and investigation of B. cereus-induced FBOs, assess emerging clusters and diversity of strains.
Collapse
Affiliation(s)
- Benjamin Glasset
- Université Paris-Est, ANSES, Laboratory for Food Safety, Maisons-Alfort Cedex, France.,Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sabine Herbin
- Université Paris-Est, ANSES, Laboratory for Food Safety, Maisons-Alfort Cedex, France.,These authors contributed equally to this work
| | - Laurent Guillier
- Université Paris-Est, ANSES, Laboratory for Food Safety, Maisons-Alfort Cedex, France
| | - Sabrina Cadel-Six
- Université Paris-Est, ANSES, Laboratory for Food Safety, Maisons-Alfort Cedex, France
| | - Marie-Léone Vignaud
- Université Paris-Est, ANSES, Laboratory for Food Safety, Maisons-Alfort Cedex, France
| | - Joel Grout
- Université Paris-Est, ANSES, Laboratory for Food Safety, Maisons-Alfort Cedex, France
| | - Sylvie Pairaud
- Université Paris-Est, ANSES, Laboratory for Food Safety, Maisons-Alfort Cedex, France
| | | | | | - Nalini Ramarao
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,These authors contributed equally to this work
| | - Anne Brisabois
- Université Paris-Est, ANSES, Laboratory for Food Safety, Maisons-Alfort Cedex, France.,These authors contributed equally to this work
| |
Collapse
|
44
|
Jeßberger N, Rademacher C, Krey VM, Dietrich R, Mohr AK, Böhm ME, Scherer S, Ehling-Schulz M, Märtlbauer E. Simulating Intestinal Growth Conditions Enhances Toxin Production of Enteropathogenic Bacillus cereus. Front Microbiol 2017; 8:627. [PMID: 28446903 PMCID: PMC5388749 DOI: 10.3389/fmicb.2017.00627] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/28/2017] [Indexed: 01/17/2023] Open
Abstract
Bacillus cereus is a ubiquitous bacterial pathogen increasingly reported to be the causative agent of foodborne infections and intoxications. Since the enterotoxins linked to the diarrheal form of food poising are foremost produced in the human intestine, the toxic potential of enteropathogenic B. cereus strains is difficult to predict from studies carried out under routine cultivation procedures. In this study, toxigenic properties of a panel of strains (n = 19) of diverse origin were compared using cell culture medium pre-incubated with CaCo-2 cells to mimic intestinal growth conditions. Shortly after contact of the bacteria with the simulated host environment, enterotoxin gene expression was activated and total protein secretion of all strains was accelerated. Although the signal stimulating enterotoxin production still needs to be elucidated, it could be shown that it originated from the CaCo-2 cells. Overall, our study demonstrates that the currently used methods in B. cereus diagnostics, based on standard culture medium, are not allowing a conclusive prediction of the potential health risk related to a certain strain. Thus, these methods should be complemented by cultivation procedures that are simulating intestinal host conditions.
Collapse
Affiliation(s)
- Nadja Jeßberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität MünchenOberschleißheim, Germany
| | - Corinna Rademacher
- Functional Microbiology, Department of Pathobiology, Institute of Microbiology, University of Veterinary Medicine ViennaVienna, Austria
| | - Viktoria M Krey
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität MünchenFreising, Germany
| | - Richard Dietrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität MünchenOberschleißheim, Germany
| | - Ann-Katrin Mohr
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität MünchenOberschleißheim, Germany
| | - Maria-Elisabeth Böhm
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität MünchenFreising, Germany
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität MünchenFreising, Germany
| | - Monika Ehling-Schulz
- Functional Microbiology, Department of Pathobiology, Institute of Microbiology, University of Veterinary Medicine ViennaVienna, Austria
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität MünchenOberschleißheim, Germany
| |
Collapse
|
45
|
Screening of Cytotoxic B. cereus on Differentiated Caco-2 Cells and in Co-Culture with Mucus-Secreting (HT29-MTX) Cells. Toxins (Basel) 2016; 8:toxins8110320. [PMID: 27827957 PMCID: PMC5127117 DOI: 10.3390/toxins8110320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/09/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022] Open
Abstract
B. cereus is an opportunistic foodborne pathogen able to cause diarrhoea. However, the diarrhoeal potential of a B. cereus strain remains difficult to predict, because no simple correlation has yet been identified between the symptoms and a unique or a specific combination of virulence factors. In this study, 70 B. cereus strains with different origins (food poisonings, foods and environment) have been selected to assess their enterotoxicity. The B. cereus cell-free supernatants have been tested for their toxicity in vitro, on differentiated (21 day-old) Caco-2 cells, using their ATP content, LDH release and NR accumulation. The genetic determinants of the main potential enterotoxins and virulence factors (ces, cytK, entFM, entS, hbl, nhe, nprA, piplC and sph) have also been screened by PCR. This analysis showed that none of these genes was able to fully explain the enterotoxicity of B. cereus strains. Additionally, in order to assess a possible effect of the mucus layer in vitro, a cytotoxicity comparison between a monoculture (Caco-2 cells) and a co-culture (Caco-2 and HT29-MTX mucus-secreting cells) model has been performed with selected B. cereus supernatants. It appeared that, in these conditions, the mucus layer had no notable influence on the cytotoxicity of B. cereus supernatants.
Collapse
|
46
|
Mazzantini D, Celandroni F, Salvetti S, Gueye SA, Lupetti A, Senesi S, Ghelardi E. FlhF Is Required for Swarming Motility and Full Pathogenicity of Bacillus cereus. Front Microbiol 2016; 7:1644. [PMID: 27807433 PMCID: PMC5069341 DOI: 10.3389/fmicb.2016.01644] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/03/2016] [Indexed: 11/13/2022] Open
Abstract
Besides sporulation, Bacillus cereus can undergo a differentiation process in which short swimmer cells become elongated and hyperflagellated swarmer cells that favor migration of the bacterial community on a surface. The functionally enigmatic flagellar protein FlhF, which is the third paralog of the signal recognition particle (SRP) GTPases Ffh and FtsY, is required for swarming in many bacteria. Previous data showed that FlhF is involved in the control of the number and positioning of flagella in B. cereus. In this study, in silico analysis of B. cereus FlhF revealed that this protein presents conserved domains that are typical of SRPs in many organisms and a peculiar N-terminal basic domain. By proteomic analysis, a significant effect of FlhF depletion on the amount of secreted proteins was found with some proteins increased (e.g., B component of the non-hemolytic enterotoxin, cereolysin O, enolase) and others reduced (e.g., flagellin, L2 component of hemolysin BL, bacillolysin, sphingomyelinase, PC-PLC, PI-PLC, cytotoxin K) in the extracellular proteome of a ΔflhF mutant. Deprivation of FlhF also resulted in significant attenuation in the pathogenicity of this strain in an experimental model of infection in Galleria mellonella larvae. Our work highlights the multifunctional role of FlhF in B. cereus, being this protein involved in bacterial flagellation, swarming, protein secretion, and pathogenicity.
Collapse
Affiliation(s)
- Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Sara Salvetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Sokhna A Gueye
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Sonia Senesi
- Department of Biology, University of Pisa Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy; Research Center Nutraceuticals and Food for Health-Nutrafood, University of PisaPisa, Italy
| |
Collapse
|
47
|
Duport C, Jobin M, Schmitt P. Adaptation in Bacillus cereus: From Stress to Disease. Front Microbiol 2016; 7:1550. [PMID: 27757102 PMCID: PMC5047918 DOI: 10.3389/fmicb.2016.01550] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/23/2022] Open
Abstract
Bacillus cereus is a food-borne pathogen that causes diarrheal disease in humans. After ingestion, B. cereus experiences in the human gastro-intestinal tract abiotic physical variables encountered in food, such as acidic pH in the stomach and changing oxygen conditions in the human intestine. B. cereus responds to environmental changing conditions (stress) by reversibly adjusting its physiology to maximize resource utilization while maintaining structural and genetic integrity by repairing and minimizing damage to cellular infrastructure. As reviewed in this article, B. cereus adapts to acidic pH and changing oxygen conditions through diverse regulatory mechanisms and then exploits its metabolic flexibility to grow and produce enterotoxins. We then focus on the intricate link between metabolism, redox homeostasis, and enterotoxins, which are recognized as important contributors of food-borne disease.
Collapse
Affiliation(s)
- Catherine Duport
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Michel Jobin
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Philippe Schmitt
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| |
Collapse
|
48
|
Kovac J, Miller RA, Carroll LM, Kent DJ, Jian J, Beno SM, Wiedmann M. Production of hemolysin BL by Bacillus cereus group isolates of dairy origin is associated with whole-genome phylogenetic clade. BMC Genomics 2016; 17:581. [PMID: 27507015 PMCID: PMC4979109 DOI: 10.1186/s12864-016-2883-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus cereus group isolates that produce diarrheal or emetic toxins are frequently isolated from raw milk and, in spore form, can survive pasteurization. Several species within the B. cereus group are closely related and cannot be reliably differentiated by established taxonomical criteria. While B. cereus is traditionally recognized as the principal causative agent of foodborne disease in this group, there is a need to better understand the distribution and expression of different toxin and virulence genes among B. cereus group food isolates to facilitate reliable characterization that allows for assessment of the likelihood of a given isolate to cause a foodborne disease. RESULTS We performed whole genome sequencing of 22 B. cereus group dairy isolates, which represented considerable genetic diversity not covered by other isolates characterized to date. Maximum likelihood analysis of these genomes along with 47 reference genomes representing eight validly published species revealed nine phylogenetic clades. Three of these clades were represented by a single species (B. toyonensis -clade V, B. weihenstephanensis - clade VI, B. cytotoxicus - VII), one by two dairy-associated isolates (clade II; representing a putative new species), one by two species (B. mycoides, B. pseudomycoides - clade I) and four by three species (B. cereus, B. thuringiensis, B. anthracis - clades III-a, b, c and IV). Homologues of genes encoding a principal diarrheal enterotoxin (hemolysin BL) were distributed across all, except the B. cytotoxicus clade. Using a lateral flow immunoassay, hemolysin BL was detected in 13 out of 18 isolates that carried hblACD genes. Isolates from clade III-c (which included B. cereus and B. thuringiensis) consistently did not carry hblACD and did not produce hemolysin BL. Isolates from clade IV (B. cereus, B. thuringiensis) consistently carried hblACD and produced hemolysin BL. Compared to others, clade IV was significantly (p = 0.0001) more likely to produce this toxin. Isolates from clade VI (B. weihenstephanensis) carried hblACD homologues, but did not produce hemolysin BL, possibly due to amino acid substitutions in different toxin-encoding genes. CONCLUSIONS Our results demonstrate that production of diarrheal enterotoxin hemolysin BL is neither inclusive nor exclusive to B. cereus sensu stricto, and that phylogenetic classification of isolates may be better than taxonomic identification for assessment of B. cereus group isolates risk for causing a diarrheal foodborne disease.
Collapse
Affiliation(s)
- Jasna Kovac
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Rachel A Miller
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Laura M Carroll
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - David J Kent
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jiahui Jian
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sarah M Beno
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
49
|
Abstract
Bacillus cereus is a foodborne pathogen causing emetic and diarrheal-type syndromes. Here, we report the whole-genome sequences of 11 B. cereus food isolates.
Collapse
|
50
|
Böhm ME, Krey VM, Jeßberger N, Frenzel E, Scherer S. Comparative Bioinformatics and Experimental Analysis of the Intergenic Regulatory Regions of Bacillus cereus hbl and nhe Enterotoxin Operons and the Impact of CodY on Virulence Heterogeneity. Front Microbiol 2016; 7:768. [PMID: 27252687 PMCID: PMC4877379 DOI: 10.3389/fmicb.2016.00768] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022] Open
Abstract
Bacillus cereus is a food contaminant with greatly varying enteropathogenic potential. Almost all known strains harbor the genes for at least one of the three enterotoxins Nhe, Hbl, and CytK. While some strains show no cytotoxicity, others have caused outbreaks, in rare cases even with lethal outcome. The reason for these differences in cytotoxicity is unknown. To gain insight into the origin of enterotoxin expression heterogeneity in different strains, the architecture and role of 5′ intergenic regions (5′ IGRs) upstream of the nhe and hbl operons was investigated. In silico comparison of 142 strains of all seven phylogenetic groups of B. cereus sensu lato proved the presence of long 5′ IGRs upstream of the nheABC and hblCDAB operons, which harbor recognition sites for several transcriptional regulators, including the virulence regulator PlcR, redox regulators ResD and Fnr, the nutrient-sensitive regulator CodY as well as the master regulator for biofilm formation SinR. By determining transcription start sites, unusually long 5′ untranslated regions (5′ UTRs) upstream of the nhe and hbl start codons were identified, which are not present upstream of cytK-1 and cytK-2. Promoter fusions lacking various parts of the nhe and hbl 5′ UTR in B. cereus INRA C3 showed that the entire 331 bp 5′ UTR of nhe is necessary for full promoter activity, while the presence of the complete 606 bp hbl 5′ UTR lowers promoter activity. Repression was caused by a 268 bp sequence directly upstream of the hbl transcription start. Luciferase activity of reporter strains containing nhe and hbl 5′ IGR lux fusions provided evidence that toxin gene transcription is upregulated by the depletion of free amino acids. Electrophoretic mobility shift assays showed that the branched-chain amino acid sensing regulator CodY binds to both nhe and hbl 5′ UTR downstream of the promoter, potentially acting as a nutrient-responsive roadblock repressor of toxin gene transcription. PlcR binding sites are highly conserved among all B. cereus sensu lato strains, indicating that this regulator does not significantly contribute to the heterogeneity in virulence potentials. The CodY recognition sites are far less conserved, perhaps conferring varying strengths of CodY binding, which might modulate toxin synthesis in a strain-specific manner.
Collapse
Affiliation(s)
- Maria-Elisabeth Böhm
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising Germany
| | - Viktoria M Krey
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising Germany
| | - Nadja Jeßberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim Germany
| | - Elrike Frenzel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen Netherlands
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising Germany
| |
Collapse
|