1
|
Delicati A, Marcante B, Catelan D, Biggeri A, Caenazzo L, Tozzo P. Hand-to-surface bacterial transfer and healthcare-associated infections prevention: a pilot study on skin microbiome in a molecular biology laboratory. Front Med (Lausanne) 2025; 12:1546298. [PMID: 40190580 PMCID: PMC11970135 DOI: 10.3389/fmed.2025.1546298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Background Healthcare-associated infections (HAIs) are a major global public health problem, contributing significantly to patient morbidity and mortality. This study analyses differences in type and amounts of bacteria transferred from volunteers' dominant palm to two healthcare-relevant surfaces (glass and laminate table), both before and after hand washing with water and antibacterial soap. The aim was to understand hand-to-surface microbial contamination and support the development of HAI prevention strategies. Methods Microbial DNA was extracted and sequenced to identify bacteria species. Taxonomic and statistical analyses were performed to evaluate bacterial diversity and abundance across the experimental groups. Results The results confirmed greater bacteria abundance and species richness on palm compared to surfaces, with a significant reduction after hand washing, especially on glass. Taxa analysis highlighted the increased persistence of Gram-negative HAIs-related bacteria on laminate surface, while Gram-positive opportunistic bacteria were more abundant on palms and glass surface. Beta diversity confirmed significant differences in microbial composition between the groups, highlighting the importance of bacteria-surface characteristics in designing preventive measures. Conclusion Despite some limitations, our study emphasizes the importance of microbiological surveillance for all opportunistic bacteria with pathogenic potential. These findings can contribute to more effective guidelines for surface disinfection and hand washing, key elements in preventing HAIs.
Collapse
Affiliation(s)
- Arianna Delicati
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Beatrice Marcante
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Dolores Catelan
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Annibale Biggeri
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Luciana Caenazzo
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Pamela Tozzo
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Xu W, Liu Y, Cheng Y, Zhang J. Plant Growth-Promoting Effect and Complete Genomic Sequence Analysis of the Beneficial Rhizosphere Streptomyces sp. GD-4 Isolated from Leymus secalinus. Microorganisms 2025; 13:286. [PMID: 40005653 PMCID: PMC11857848 DOI: 10.3390/microorganisms13020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria residing in the rhizosphere and are capable of enhancing plant growth through various mechanisms. Streptomyces sp. GD-4 is a plant growth-promoting bacterium isolated from the rhizosphere soil of Leymus secalinus. To further elucidate the molecular mechanisms underlying the beneficial effects of the strain on plant growth, we evaluated the growth-promoting effects of Streptomyces sp. GD-4 on forage grasses and conducted comprehensive genome mining and comparative genomic analysis of the strain. Strain GD-4 effectively colonized the rhizosphere of three forages and significantly promoted the growth of both plant roots and leaves. Genome sequence functional annotation of GD-4 revealed lots of genes associated with nitrogen, phosphorus, and sulfur metabolism. Additionally, genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, and phosphate solubilization were annotated. Whole-genome analysis revealed that GD-4 may possess molecular mechanisms involved in soil nutrient cycling in rhizosphere soil and plant growth promotion. The bacteria also possess genes associated with adaptability to abiotic stress conditions, further supporting the ability of Streptomyces sp. GD-4 to colonize nutrient-poor soils. These findings provide a foundation for further research into soil remediation technologies in plateau regions.
Collapse
Affiliation(s)
| | | | | | - Jie Zhang
- Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (W.X.); (Y.L.); (Y.C.)
| |
Collapse
|
3
|
Zenelt W, Krawczyk K. Insect-derived bacteria as biocontrol tool and a potent suppressor of plant pathogenic fungi in tomato cultivation. Microb Pathog 2025; 198:107158. [PMID: 39608512 DOI: 10.1016/j.micpath.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/24/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
Sustainable agriculture is increasingly emphasized, focusing on microorganisms' role in maintaining soil fertility and inhibiting plant pathogens. Seeking novel sources of plant-beneficial bacteria, our study explores insects due to their established associations with plants and bacteria. The insect gut, hosting various bacteria, may hold microbes protecting against fungal infections, particularly plant pathogens. Traditional sources of plant growth-promoting bacteria are the rhizosphere and host plant tissues; however, insects serve as diverse bacterial reservoirs in the environment. This study aimed to identify insect-gut-derived bacteria with antifungal properties and cellulase enzyme production, predicting high plant tissue colonization abilities. Cellulase, crucial for breaking down cellulose, is essential for both industry and the environment. We sought to assess the potential of these bacteria as biocontrol agents against plant pathogenic fungi, with a focus on tomato plants. Bacterial isolates from insect bodies, including Lactococcus lactis, Pantoea ananatis, and Serratia liquefaciens, exhibited robust antifungal properties and cellulase activity. In vitro tests and glasshouse tests, confirmed their ability to inhibit the growth of plant-pathogenic fungi, indicating potential for biological control. Moreover, selected strains demonstrated high cellulase enzyme activity, vital for nutrient competition and rapid colonization of plant surfaces. The study introduces insect-gut-derived bacteria as promising biocontrol agents against plant pathogenic fungi. The identified strains, capable of inhibiting fungal growth and producing cellulase, offer sustainable alternatives to synthetic fungicides for protecting tomato plants. The findings advance agricultural practices by harnessing insect-associated bacteria, contributing to eco-friendly and efficient pest management strategies in modern agriculture.
Collapse
Affiliation(s)
- Weronika Zenelt
- Plant Disease Clinic and Bank of Pathogens, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20 street, 60-318, Poznań, Poland
| | - Krzysztof Krawczyk
- Department of Virology and Bacteriology, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20 street, 60-318, Poznań, Poland.
| |
Collapse
|
4
|
Malcı K, Li IS, Kisseroudis N, Ellis T. Modulating Microbial Materials - Engineering Bacterial Cellulose with Synthetic Biology. ACS Synth Biol 2024; 13:3857-3875. [PMID: 39509658 DOI: 10.1021/acssynbio.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The fusion of synthetic biology and materials science offers exciting opportunities to produce sustainable materials that can perform programmed biological functions such as sensing and responding or enhance material properties through biological means. Bacterial cellulose (BC) is a unique material for this challenge due to its high-performance material properties and ease of production from culturable microbes. Research in the past decade has focused on expanding the benefits and applications of BC through many approaches. Here, we explore how the current landscape of BC-based biomaterials is being shaped by progress in synthetic biology. As well as discussing how it can aid production of more BC and BC with tailored material properties, we place special emphasis on the potential of using BC for engineered living materials (ELMs); materials of a biological nature designed to carry out specific tasks. We also explore the role of 3D bioprinting being used for BC-based ELMs and highlight specific opportunities that this can bring. As synthetic biology continues to advance, it will drive further innovation in BC-based materials and ELMs, enabling many new applications that can help address problems in the modern world, in both biomedicine and many other application fields.
Collapse
Affiliation(s)
- Koray Malcı
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Ivy S Li
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Natasha Kisseroudis
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Tom Ellis
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
5
|
Gulati S, Ansari N, Moriya Y, Joshi K, Prasad D, Sajwan G, Shukla S, Kumar S, Varma RS. Nanobiopolymers in cancer therapeutics: advancing targeted drug delivery through sustainable and controlled release mechanisms. J Mater Chem B 2024; 12:11887-11915. [PMID: 39502076 DOI: 10.1039/d4tb00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Nanobiopolymers have emerged as a transformative frontier in cancer treatment, leveraging nanotechnology to transform drug delivery. This review provides a comprehensive exploration of the multifaceted landscape of nano-based biopolymers, emphasizing their diverse sources, synthesis methods, and classifications. Natural, synthetic, and microbial nanobiopolymers are scrutinized, along with elucidation of their underlying mechanisms and impact on cancer drug delivery; the latest findings on their deployment as targeted drug delivery agents for cancer treatment are discussed. A detailed analysis of nanobiopolymer sources, including polysaccharides, peptides, and nucleic acids, highlights critical attributes like biodegradability, renewability, and sustainability essential for therapeutic applications. The classification of nanobiopolymers based on their origin and differentiation among natural, synthetic, and microbial sources are thoroughly examined for inherent advantages, challenges, and suitability for cancer therapeutics. The importance of targeted drug release at tumour sites, crucial for minimizing adverse effects on normal tissues, is discussed, encompassing various mechanisms. The role of polymer membrane coatings as a pivotal barrier for facilitating controlled drug release through diffusion is elucidated, providing further insight into efficient methods for cancer treatment and thus consolidating the current knowledge base for researchers and practitioners in the field of nanobiopolymers and cancer therapeutics.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Nabeela Ansari
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Yamini Moriya
- Department of Life Sciences, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Kumud Joshi
- Department of Life Sciences, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Disha Prasad
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Gargi Sajwan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Shefali Shukla
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos - SP, Brazil.
| |
Collapse
|
6
|
De la Cruz Gómez N, Poza-Carrión C, Del Castillo-González L, Martínez Sánchez ÁI, Moliner A, Aranaz I, Berrocal-Lobo M. Enhancing Solanum lycopersicum Resilience: Bacterial Cellulose Alleviates Low Irrigation Stress and Boosts Nutrient Uptake. PLANTS (BASEL, SWITZERLAND) 2024; 13:2158. [PMID: 39124276 PMCID: PMC11313925 DOI: 10.3390/plants13152158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The use of natural-origin biomaterials in bioengineering has led to innovative approaches in agroforestry. Bacterial cellulose (BC), sharing the same chemical formula as plant-origin cellulose (PC), exhibits significantly different biochemical properties, including a high degree of crystallinity and superior water retention capacity. Previous research showed that natural-origin glucose-based chitin enhanced plant growth in both herbaceous and non-herbaceous plants. In this study, we produced BC in the laboratory and investigated its effects on the substrate and on Solanum lycopersicum seedlings. Soil amended with BC increased root growth compared with untreated seedlings. Additionally, under limited irrigation conditions, BC increased global developmental parameters including fresh and dry weight, as well as total carbon and nitrogen content. Under non-irrigation conditions, BC contributed substantially to plant survival. RNA sequencing (Illumina®) on BC-treated seedlings revealed that BC, despite its bacterial origin, did not stress the plants, confirming its innocuous nature, and it lightly induced genes related to root development and cell division as well as inhibition of stress responses and defense. The presence of BC in the organic substrate increased soil availability of phosphorus (P), iron (Fe), and potassium (K), correlating with enhanced nutrient uptake in plants. Our results demonstrate the potential of BC for improving soil nutrient availability and plant tolerance to low irrigation, making it valuable for agricultural and forestry purposes in the context of global warming.
Collapse
Affiliation(s)
- Noelia De la Cruz Gómez
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
- Arquimea Agrotech S.L.U, 28400 Madrid, Spain
| | - César Poza-Carrión
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Lucía Del Castillo-González
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Ángel Isidro Martínez Sánchez
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Ana Moliner
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Inmaculada Aranaz
- Instituto Pluridisciplinar, Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense, 28040 Madrid, Spain;
| | - Marta Berrocal-Lobo
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| |
Collapse
|
7
|
Ryngajłło M, Cielecka I, Daroch M. Complete genome sequence and transcriptome response to vitamin C supplementation of Novacetimonas hansenii SI1 - producer of highly-stretchable cellulose. N Biotechnol 2024; 81:57-68. [PMID: 38531507 DOI: 10.1016/j.nbt.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/28/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Novacetimonas hansenii SI1, previously known as Komagataeibacter hansenii, produces bacterial nanocellulose (BNC) with unique ability to stretch. The addition of vitamin C in the culture medium increases the porosity of the membranes and their stretchability making them highly moldable. To better understand the genetic background of this strain, we obtained its complete genome sequence using a hybrid sequencing and assembly strategy. We described the functional regions in the genome which are important for the synthesis of BNC and acetan-like II polymer. We next investigated the effect of 1% vitamin C supplementation on the global gene expression profile using RNA sequencing. Our transcriptomic readouts imply that vitamin C functions mainly as a reducing agent. We found that the changes in cellular redox status are balanced by strong repression of the sulfur assimilation pathway. Moreover, in the reduced conditions, glucose oxidation is decreased and alternative pathways for energy generation, such as acetate accumulation, are activated. The presence of vitamin C negatively influences acetan-like II polymer biosynthesis, which may explain the lowered yield and changed mechanical properties of BNC. The results of this study enrich the functional characteristics of the genomes of the efficient producers of the N. hansenii species. Improved understanding of the adaptation to the presence of vitamin C at the molecular level has important guiding significance for influencing the biosynthesis of BNC and its morphology.
Collapse
Affiliation(s)
- Małgorzata Ryngajłło
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, B. Stefanowskiego 2/22, Lodz 90-537, Poland.
| | - Izabela Cielecka
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, B. Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
8
|
Kolodkin-Gal I, Dash O, Rak R. Probiotic cultivated meat: bacterial-based scaffolds and products to improve cultivated meat. Trends Biotechnol 2024; 42:269-281. [PMID: 37805297 DOI: 10.1016/j.tibtech.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Cultivated meat is emerging to replace traditional livestock industries, which have ecological costs, including land and water overuse and considerable carbon emissions. During cultivated meat production, mammalian cells can increase their numbers dramatically through self-renewal/proliferation and transform into mature cells, such as muscle or fat cells, through maturation/differentiation. Here, we address opportunities for introducing probiotic bacteria into the cultivated meat industry, including using them to produce renewable antimicrobials and scaffolding materials. We also offer solutions to challenges, including the growth of bacteria and mammalian cells, the effect of probiotic bacteria on production costs, and the effect of bacteria and their products on texture and taste. Our summary provides a promising framework for applying microbial composites in the cultivated meat industry.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| | - Orit Dash
- Department of Animal Sciences, Faculty of Agriculture and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel; Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Roni Rak
- Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
9
|
Hirayama H, Takaki Y, Abe M, Miyazaki M, Uematsu K, Matsui Y, Takai K. Methylomarinovum tepidoasis sp. nov., a moderately thermophilic methanotroph of the family Methylothermaceae isolated from a deep-sea hydrothermal field. Int J Syst Evol Microbiol 2024; 74:006288. [PMID: 38478579 PMCID: PMC10950024 DOI: 10.1099/ijsem.0.006288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024] Open
Abstract
A novel aerobic methanotrophic bacterium, designated as strain IN45T, was isolated from in situ colonisation systems deployed at the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. IN45T was a moderately thermophilic obligate methanotroph that grew only on methane or methanol at temperatures between 25 and 56 °C (optimum 45-50 °C). It was an oval-shaped, Gram-reaction-negative, motile bacterium with a single polar flagellum and an intracytoplasmic membrane system. It required 1.5-4.0 % (w/v) NaCl (optimum 2-3 %) for growth. The major phospholipid fatty acids were C16 : 1ω7c, C16 : 0 and C18 : 1ω7c. The major isoprenoid quinone was Q-8. The 16S rRNA gene sequence comparison revealed 99.1 % sequence identity with Methylomarinovum caldicuralii IT-9T, the only species of the genus Methylomarinovum with a validly published name within the family Methylothermaceae. The complete genome sequence of IN45T consisted of a 2.42-Mbp chromosome (DNA G+C content, 64.1 mol%) and a 20.5-kbp plasmid. The genome encodes genes for particulate methane monooxygenase and two types of methanol dehydrogenase (mxaFI and xoxF). Genes involved in the ribulose monophosphate pathway for carbon assimilation are encoded, but the transaldolase gene was not found. The genome indicated that IN45T performs partial denitrification of nitrate to N2O, and its occurrence was indirectly confirmed by N2O production in cultures grown with nitrate. Genomic relatedness indices between the complete genome sequences of IN45T and M. caldicuralii IT-9T, such as digital DNA-DNA hybridisation (51.2 %), average nucleotide identity (92.94 %) and average amino acid identity (93.21 %), indicated that these two methanotrophs should be separated at the species level. On the basis of these results, strain IN45T represents a novel species, for which we propose the name Methylomarinovum tepidoasis sp. nov. with IN45T (=JCM 35101T =DSM 113422T) as the type strain.
Collapse
Affiliation(s)
- Hisako Hirayama
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yoshihiro Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Mariko Abe
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Masayuki Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | | | - Yohei Matsui
- Research Institute for Global Change (RIGC), JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| |
Collapse
|
10
|
Sana TG, Notopoulou A, Puygrenier L, Decossas M, Moreau S, Carlier A, Krasteva PV. Structures and roles of BcsD and partner scaffold proteins in proteobacterial cellulose secretion. Curr Biol 2024; 34:106-116.e6. [PMID: 38141614 DOI: 10.1016/j.cub.2023.11.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Cellulose is the world's most abundant biopolymer, and similar to its role as a cell wall component in plants, it is a prevalent constituent of the extracellular matrix in bacterial biofilms. Although bacterial cellulose (BC) was first described in the 19th century, it was only recently revealed that it is produced by several distinct types of Bcs secretion systems that feature multiple accessory subunits in addition to a catalytic BcsAB synthase tandem. We recently showed that crystalline cellulose secretion in the Gluconacetobacter genus (α-Proteobacteria) is driven by a supramolecular BcsH-BcsD scaffold-the "cortical belt"-which stabilizes the synthase nanoarrays through an unexpected inside-out mechanism for secretion system assembly. Interestingly, while bcsH is specific for Gluconacetobacter, bcsD homologs are widespread in Proteobacteria. Here, we examine BcsD homologs and their gene neighborhoods from several plant-colonizing β- and γ-Proteobacteria proposed to secrete a variety of non-crystalline and/or chemically modified cellulosic polymers. We provide structural and mechanistic evidence that through different quaternary structure assemblies BcsD acts with proline-rich BcsH, BcsP, or BcsO partners across the proteobacterial clade to form synthase-interacting intracellular scaffolds that, in turn, determine the biofilm strength and architecture in species with strikingly different physiology and secreted biopolymers.
Collapse
Affiliation(s)
- Thibault G Sana
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France; "Structural Biology of Biofilms" Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac 33600, France
| | - Areti Notopoulou
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France; "Structural Biology of Biofilms" Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac 33600, France
| | - Lucie Puygrenier
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France; "Structural Biology of Biofilms" Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac 33600, France
| | - Marion Decossas
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France; "Structural Biology of Biofilms" Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac 33600, France
| | - Sandra Moreau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Aurélien Carlier
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France; Laboratory of Microbiology, Ghent University, Ghent 9000, Belgium
| | - Petya V Krasteva
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France; "Structural Biology of Biofilms" Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac 33600, France.
| |
Collapse
|
11
|
Marchante JA, Ruiz-Sáez L, Muñoz S, Sanjuán J, Pérez-Mendoza D. Quantification of Mixed-Linkage β-Glucan (MLG) in Bacteria. Methods Mol Biol 2024; 2751:133-143. [PMID: 38265714 DOI: 10.1007/978-1-0716-3617-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Prokaryotes are known to produce and secrete a broad range of biopolymers with a high functional and structural heterogeneity, often with critical duties in the bacterial physiology and ecology. Among these, exopolysaccharides (EPS) play relevant roles in the interaction of bacteria with eukaryotic hosts. EPS can help to colonize the host and assist in bacterial survival, making this interaction more robust by facilitating the formation of structured biofilms. In addition, they are often key molecules in the specific recognition mechanisms involved in both beneficial and pathogenic bacteria-host interactions. A novel EPS known as MLG (Mixed-Linkage β-Glucan) was recently discovered in rhizobia, where it participates in bacterial aggregation and biofilm formation and is required for efficient attachment to the roots of their legume host plants. MLG is the first and, so far, the only reported linear Mixed-Linkage β-glucan in bacteria, containing a perfect alternation of β (1 → 3) and β (1 → 4) bonds. A phylogenetic study of MLG biosynthetic genes suggests that far from being exclusive of rhizobia, different soil and plant-associated bacteria likely produce MLG, adding this novel polymer to the plethora of surface polysaccharides that help bacteria thrive in the changing environment and to establish successful interactions with their hosts.In this work, a quantification method for MLG is proposed. It relays on the hydrolysis of MLG by a specific enzyme (lichenase), and the subsequent quantification of the released disaccharide (laminaribiose) by the phenol-sulfuric acid method. The protocol has been set up and optimized for its use in 96-well plates, which makes it suitable for high-throughput screening (HTS) approaches. This method stands out by its fast processing, technical simplicity, and capability to handle multiple samples and biological replicates at a time.
Collapse
Affiliation(s)
- Juan Antonio Marchante
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Lucía Ruiz-Sáez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Socorro Muñoz
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Juan Sanjuán
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Daniel Pérez-Mendoza
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| |
Collapse
|
12
|
Yang Y, Zhou B, Yu L, Song G, Ge J, Du R. Biosynthesis and characterization of antibacterial bacterial cellulose composite membrane composed of montmorillonite and exopolysaccharides. Int J Biol Macromol 2023; 253:127477. [PMID: 37863143 DOI: 10.1016/j.ijbiomac.2023.127477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Bacterial cellulose (BC), as a natural renewable polymer material, has the advantages of porous nanonetwork structure, high degree of polymerization, high purity, high crystallinity, excellent mechanical properties and biocompatibility. However, BC lacks antibacterial properties, which leads to the limitation of BC material in food packaging and medical materials. In this study, a new antibacterial material using the combination of montmorillonite (MMT), BC and exopolysaccharides (EPS) produced by Weissella confusa H2 was synthesized. Fourier infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis showed that BC-EPS, BC-MMT and BC-EPS-MMT composite membranes conformed to the typical type I cellulose structure. Compared to BC membrane, scanning electron microscopy (SEM) showed that the porosity of BC-EPS, BC-MMT and BC-EPS-MMT composite membranes was low and compact. The physical properties of BC-EPS, BC-MTT and BC-EPS-MTT composite membranes showed lower water vapor transmittance. The BC-MTT and BC-EPS-MTT composite membranes exhibit a lower swelling ratio in 120 min. The thermal properties show that BC-EPS, BC-MTT and BC-EPS-MTT composite membranes have higher thermal stability (352 °C, 310 °C, 314 °C). Additionally, both BC-MMT and BC-EPS-MMT demonstrated strong inhibitory effects against various bacterial strains, including Staphylococcus aureus, Escherichia coli, Salmonella paratyphi A, and Bacillus subtilis. The exceptional properties exhibited by composite membranes establishes them as a highly promising option in the field of food packaging and medical material applications.
Collapse
Affiliation(s)
- Yi Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bosen Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Liansheng Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Gang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| | - Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| |
Collapse
|
13
|
Radenkovs V, Valdovska A, Galina D, Cairns S, Jakovlevs D, Gaidukovs S, Cinkmanis I, Juhnevica-Radenkova K. Elaboration of Nanostructured Levan-Based Colloid System as a Biological Alternative with Antimicrobial Activity for Applications in the Management of Pathogenic Microorganisms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2969. [PMID: 37999323 PMCID: PMC10674346 DOI: 10.3390/nano13222969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Considering the documented health benefits of bacterial exopolysaccharides (EPSs), specifically of bacterial levan (BL), including its intrinsic antimicrobial activity against certain pathogenic species, the current study concentrated on the development of active pharmaceutical ingredients (APIs) in the form of colloid systems (CoSs) containing silver nanoparticles (AgNPs) employing in-house biosynthesized BL as a reducing and capping agent. The established protocol of fermentation conditions implicating two species of lactic acid bacteria (LAB), i.e., Streptococcus salivarius K12 and Leuconostoc mesenteroides DSM 20343, ensured a yield of up to 25.7 and 13.7 g L-1 of BL within 72 h, respectively. An analytical approach accomplished by Fourier-transform infrared (FT-IR) spectroscopy allowed for the verification of structural features attributed to biosynthesized BL. Furthermore, scanning electron microscopy (SEM) revealed the crystalline morphology of biosynthesized BL with a smooth and glossy surface and highly porous structure. Molecular weight (Mw) estimated by multi-detector size-exclusion chromatography (SEC) indicated that BL biosynthesized using S. salivarius K12 has an impressively high Mw, corresponding to 15.435 × 104 kilodaltons (kDa). In turn, BL isolated from L. mesenteroides DSM 20343 was found to have an Mw of only 26.6 kDa. Polydispersity index estimation (PD = Mw/Mn) of produced BL displayed a monodispersed molecule isolated from S. salivarius K12, corresponding to 1.08, while this was 2.17 for L. mesenteroides DSM 20343 isolate. The presence of fructose as the main backbone and, to a lesser extent, glucose and galactose as side chain molecules in EPS hydrolysates was supported by HPLC-RID detection. In producing CoS-BL@AgNPs within green biosynthesis, the presence of nanostructured objects with a size distribution from 12.67 ± 5.56 nm to 46.97 ± 20.23 was confirmed by SEM and energy-dispersive X-ray spectroscopy (EDX). The prominent inhibitory potency of elaborated CoS-BL@AgNPs against both reference test cultures, i.e., Pseudomonas aeruginosa, Escherichia coli, Enterobacter aerogenes, and Staphylococcus aureus and those of clinical origin with multi-drug resistance (MDR), was confirmed by disc and well diffusion tests and supported by the values of the minimum inhibitory and bactericidal concentrations. CoS-BL@AgNPs can be treated as APIs suitable for designing new antimicrobial agents and modifying therapies in controlling MDR pathogens.
Collapse
Affiliation(s)
- Vitalijs Radenkovs
- Processing and Biochemistry Department, Institute of Horticulture, LV-3701 Dobele, Latvia;
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
| | - Anda Valdovska
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Daiga Galina
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Stefan Cairns
- Malvern Panalytical Ltd., Worcestershire, Malvern WR14 1XZ, UK
| | - Dmitrijs Jakovlevs
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
| | - Sergejs Gaidukovs
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia;
| | - Ingmars Cinkmanis
- Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia;
| | | |
Collapse
|
14
|
Moore SG, Feehily C, Doyle RC, Buckley F, Lonergan P, Cotter PD, Butler ST. Associations between the postpartum uterine and vaginal microbiota and the subsequent development of purulent vaginal discharge vary with dairy cow breed and parity. J Dairy Sci 2023; 106:8133-8151. [PMID: 37641353 DOI: 10.3168/jds.2022-22720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/26/2023] [Indexed: 08/31/2023]
Abstract
The objective of this study was to characterize the species composition and functional potential of the vaginal and uterine microbiota at 1 wk postpartum in dairy cows diagnosed with or without purulent vaginal discharge (PVD) at 3 wk postpartum. The hypothesis was that differences in the vaginal and uterine microbiota between cows diagnosed with (PVD+) or without (PVD-) PVD were dependent on parity and breed. Cytobrush samples of the vagina and uterus were collected at 1 wk postpartum from 36 Holstein-Friesian (7 primiparous and 29 multiparous) and 29 Jersey (10 primiparous and 19 multiparous) cows. Microbial DNA was isolated from each sample and processed for shotgun metagenomic sequencing. The odds of multiparous cows being diagnosed as PVD+ was less compared with primiparous cows (OR = 0.21). Neither the α-diversity nor β-diversity of the uterine and vaginal microbiota were associated with PVD but the β-diversity was different between breeds and between parities. In the vagina of primiparous cows, differences in the microbiota of PVD- and PVD+ cows were minor, but the microbiota of multiparous PVD+ cows had greater relative abundance of Fusobacterium necrophorum, Trueperella pyogenes, Porphyromonas levii, and greater functional potential for amino acid and protein synthesis, energy metabolism, and growth compared with PVD- cows. The uterus of primiparous PVD+ cows had lesser relative abundance of Bacteroides heparinolyticus compared with PVD- cows. In the uterine microbiota, differences included greater functional potential for cellulose biosynthesis and fucose catabolism in multiparous PVD+ cows compared with PVD- cows. In the uterine microbiota of primiparous PVD+ cows, the functional potential for gram-negative cell wall synthesis and for negative regulation of tumor necrosis factor signaling was lesser compared with multiparous PVD+ cows. In the vagina of Holstein-Friesian PVD+ cows, the relative abundance of Caviibacter abscessus was greater whereas in the vagina of Jersey PVD+ cows the relative abundance of Catenibacterium mitsuokai, Finegoldia magna, Klebsiella variicola, and Streptococcus anginosus was greater compared with PVD- cows. In the uterine microbiota of Holstein-Friesian cows, the functional potential for spermidine biosynthesis was reduced compared with PVD- cows. In summary, differences in the species composition and functional potential of the vaginal and uterine microbiota between PVD- and PVD+ cows were dependent on parity and breed. The findings suggest that alternative strategies may be required to treat PVD for different parities and breeds of dairy cow.
Collapse
Affiliation(s)
- S G Moore
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland P61 P302.
| | - C Feehily
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - R C Doyle
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland P61 P302
| | - F Buckley
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland P61 P302
| | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 N2E5
| | - P D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - S T Butler
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland P61 P302
| |
Collapse
|
15
|
Gholipour S, Shamsizadeh Z, Gwenzi W, Nikaeen M. The bacterial biofilm resistome in drinking water distribution systems: A systematic review. CHEMOSPHERE 2023; 329:138642. [PMID: 37059195 DOI: 10.1016/j.chemosphere.2023.138642] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/04/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Antibiotic resistance in drinking water systems poses human health risks. Earlier studies, including reviews on antibiotic resistance in drinking water systems are limited to the occurrence, behaviour and fate in bulk raw water and drinking water treatment systems. By comparison, reviews on the bacterial biofilm resistome in drinking water distribution systems are still limited. Therefore, the present systematic review investigates the occurrence, behaviour and fate and, detection methods of bacterial biofilm resistome in the drinking water distribution systems. A total of 12 original articles drawn from 10 countries were retrieved and analyzed. Antibiotic resistant bacteria and antibiotic resistance genes detected in biofilms include those for sulfonamides, tetracycline, and beta-lactamase. The genera detected in biofilms include Staphylococcus, Enterococcus, Pseudomonas, Ralstonia, Mycobacteria, as well as Enterobacteriaceae family and other gram-negative bacteria. The presence of Enterococcus faecium, Staphylococcusaureus, Klebsiella pneumoniae, Acinetobacterbaumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE bacteria) among the detected bacteria points to potential human exposure and health risks especially for susceptible individuals via the consumption of drinking water. Besides, the effects of water quality parameter and residual chlorine, the physico-chemical factors controlling the emergence, persistence and fate of the biofilm resistome are still poorly understood. Culture-based methods, and molecular methods, and their advantages and limitations are discussed. The limited data on the bacterial biofilm resistome in drinking water distribution system points to the need for further research. To this end, future research directions are discussed including understanding the formation, behaviour, and fate of the resistome and the controlling factors.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Shamsizadeh
- Department of Environmental Health Engineering, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Willis Gwenzi
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, University of Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Llamas A, Leon-Miranda E, Tejada-Jimenez M. Microalgal and Nitrogen-Fixing Bacterial Consortia: From Interaction to Biotechnological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2476. [PMID: 37447037 PMCID: PMC10346606 DOI: 10.3390/plants12132476] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Microalgae are used in various biotechnological processes, such as biofuel production due to their high biomass yields, agriculture as biofertilizers, production of high-value-added products, decontamination of wastewater, or as biological models for carbon sequestration. The number of these biotechnological applications is increasing, and as such, any advances that contribute to reducing costs and increasing economic profitability can have a significant impact. Nitrogen fixing organisms, often called diazotroph, also have great biotechnological potential, mainly in agriculture as an alternative to chemical fertilizers. Microbial consortia typically perform more complex tasks than monocultures and can execute functions that are challenging or even impossible for individual strains or species. Interestingly, microalgae and diazotrophic organisms are capable to embrace different types of symbiotic associations. Certain corals and lichens exhibit this symbiotic relationship in nature, which enhances their fitness. However, this relationship can also be artificially created in laboratory conditions with the objective of enhancing some of the biotechnological processes that each organism carries out independently. As a result, the utilization of microalgae and diazotrophic organisms in consortia is garnering significant interest as a potential alternative for reducing production costs and increasing yields of microalgae biomass, as well as for producing derived products and serving biotechnological purposes. This review makes an effort to examine the associations of microalgae and diazotrophic organisms, with the aim of highlighting the potential of these associations in improving various biotechnological processes.
Collapse
Affiliation(s)
- Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain; (E.L.-M.); (M.T.-J.)
| | | | | |
Collapse
|
17
|
Bacci G, Fratini S, Meriggi N, Cheng CLY, Ng KH, Pindo M, Iannucci A, Mengoni A, Cavalieri D, Cannicci S. Conserved organ-specific microbial assemblages in different populations of a terrestrial crab. Front Microbiol 2023; 14:1113617. [PMID: 37378290 PMCID: PMC10291174 DOI: 10.3389/fmicb.2023.1113617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Microorganisms are ubiquitous in the environment and provide genetic and physiological functions to multicellular organisms. Knowledge on the associated microbiota is becoming highly relevant to understand the host's ecology and biology. Among invertebrates, many examples of endosymbiosis have been described, such as those in corals, ants, and termites. At present, however, little is known on the presence, diversity, and putative roles of the microbiota associated to brachyuran crabs in relation to their environment. In this work we investigated the associated microbiota of three populations of the terrestrial brachyuran crab Chiromantes haematocheir to find evidence of a conserved organ-specific microbiome unrelated to the population of origin and dissimilar from environmental microbial assemblages. Bacterial 16S rRNA gene and fungal ITS sequences were obtained from selected crab organs and environmental matrices to profile microbial communities. Despite the presence of truly marine larval stages and the absence of a gregarious behaviour, favouring microbiota exchanges, we found common, organ-specific microbiota, associated with the gut and the gills of crabs from the different populations (with more than 15% of the genera detected specifically enriched only in one organ). These findings suggest the presence of possible functional roles of the organ-specific microbiota.
Collapse
Affiliation(s)
- Giovanni Bacci
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Sara Fratini
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | | | - Ka Hei Ng
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Massimo Pindo
- The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alessio Iannucci
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Stefano Cannicci
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
18
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
19
|
Kuzmanović N, diCenzo GC, Bunk B, Spröer C, Frühling A, Neumann‐Schaal M, Overmann J, Smalla K. Genomics of the "tumorigenes" clade of the family Rhizobiaceae and description of Rhizobium rhododendri sp. nov. Microbiologyopen 2023; 12:e1352. [PMID: 37186225 PMCID: PMC10064268 DOI: 10.1002/mbo3.1352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
Tumorigenic members of the family Rhizobiaceae, known as agrobacteria, are responsible for crown and cane gall diseases of various crops worldwide. Tumorigenic agrobacteria are commonly found in the genera Agrobacterium, Allorhizobium, and Rhizobium. In this study, we analyzed a distinct "tumorigenes" clade of the genus Rhizobium, which includes the tumorigenic species Rhizobium tumorigenes, as well as strains causing crown gall disease on rhododendron. Here, high-quality, closed genomes of representatives of the "tumorigenes" clade were generated, followed by comparative genomic and phylogenomic analyses. Additionally, the phenotypic characteristics of representatives of the "tumorigenes" clade were analyzed. Our results showed that the tumorigenic strains isolated from rhododendron represent a novel species of the genus Rhizobium for which the name Rhizobium rhododendri sp. nov. is proposed. This species also includes additional strains originating from blueberry and Himalayan blackberry in the United States, whose genome sequences were retrieved from GenBank. Both R. tumorigenes and R. rhododendri contain multipartite genomes, including a chromosome, putative chromids, and megaplasmids. Synteny and phylogenetic analyses indicated that a large putative chromid of R. rhododendri resulted from the cointegration of an ancestral megaplasmid and two putative chromids, following its divergence from R. tumorigenes. Moreover, gene clusters specific for both species of the "tumorigenes" clade were identified, and their biological functions and roles in the ecological diversification of R. rhododendri and R. tumorigenes were predicted and discussed.
Collapse
Affiliation(s)
- Nemanja Kuzmanović
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated PlantsInstitute for Plant Protection in Horticulture and Urban GreenBraunschweigGermany
| | | | - Boyke Bunk
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - Cathrin Spröer
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - Anja Frühling
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - Meina Neumann‐Schaal
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - Jörg Overmann
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
- MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated PlantsInstitute for Epidemiology and Pathogen DiagnosticsBraunschweigGermany
| |
Collapse
|
20
|
Martirani-VonAbercron SM, Pacheco-Sánchez D. Bacterial cellulose: A highly versatile nanomaterial. Microb Biotechnol 2023; 16:1174-1178. [PMID: 36892420 DOI: 10.1111/1751-7915.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Affiliation(s)
- Sophie-Marie Martirani-VonAbercron
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Daniel Pacheco-Sánchez
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
21
|
Narayanasamy S, Thankappan S, Kumaravel S, Ragupathi S, Uthandi S. Complete genome sequence analysis of a plant growth-promoting phylloplane Bacillus altitudinis FD48 offers mechanistic insights into priming drought stress tolerance in rice. Genomics 2023; 115:110550. [PMID: 36565792 DOI: 10.1016/j.ygeno.2022.110550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Bacillus altitudinis FD48 is a multifunctional plant growth-promoting bacterium isolated from the phylloplane of rice and survives at --10 bars of osmotic potential (--1.0 MPa). It also serves as an ideal PGPM against drought stress by triggering antioxidant defense mechanisms in rice. To further unravel the genetic determinants of osmotic stress tolerance and plant growth-promoting traits, the whole genome sequence of FD48 was compared with its related strains. The whole genome analysis revealed a single chromosome with a total length of 3,752,533 bp (3.7 Mb) and an average G + C ratio of 41.19%. A total of 4029 genes were predicted, of which 3964 (98.4%) were protein-encoding genes (PEGs) and 65 (1.6%) were non-protein-coding genes. The interaction of FD48 with the host plants is associated with many chemotactic and motility-related genes. The ability of FD48 to colonize plants and maintain plant growth under adverse environmental conditions was evidenced by the presence of genes for plant nutrient acquisition, phytohormone synthesis, trehalose, choline, and glycine betaine biosynthesis, microbial volatile organic compounds (acetoin synthesis), heat and cold shock chaperones, translation elongation factor TU (Ef-Tu), siderophore production, DEAD/DEAH boxes, and non- ribosomal peptide synthase clusters (bacilysin, fengycin, and bacitracin). This study sheds light on the drought stress-resilient mechanism, metabolic pathways and potential activity, and plant growth-promoting traits of B. altitudinis FD48 at the genetic level.
Collapse
Affiliation(s)
- Shobana Narayanasamy
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
| | - Sugitha Thankappan
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
| | - Sowmya Kumaravel
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
| | - Sridar Ragupathi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India.
| |
Collapse
|
22
|
Tilocca B, Soggiu A, Iavarone F, Greco V, Putignani L, Ristori MV, Macari G, Spina AA, Morittu VM, Ceniti C, Piras C, Bonizzi L, Britti D, Urbani A, Figeys D, Roncada P. The Functional Characteristics of Goat Cheese Microbiota from a One-Health Perspective. Int J Mol Sci 2022; 23:ijms232214131. [PMID: 36430609 PMCID: PMC9698706 DOI: 10.3390/ijms232214131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Goat cheese is an important element of the Mediterranean diet, appreciated for its health-promoting features and unique taste. A pivotal role in the development of these characteristics is attributed to the microbiota and its continuous remodeling over space and time. Nevertheless, no thorough study of the cheese-associated microbiota using two metaomics approaches has previously been conducted. Here, we employed 16S rRNA gene sequencing and metaproteomics to explore the microbiota of a typical raw goat milk cheese at various ripening timepoints and depths of the cheese wheel. The 16S rRNA gene-sequencing and metaproteomics results described a stable microbiota ecology across the selected ripening timepoints, providing evidence for the microbiologically driven fermentation of goat milk products. The important features of the microbiota harbored on the surface and in the core of the cheese mass were highlighted in both compositional and functional terms. We observed the rind microbiota struggling to maintain the biosafety of the cheese through competition mechanisms and/or by preventing the colonization of the cheese by pathobionts of animal or environmental origin. The core microbiota was focused on other biochemical processes, supporting its role in the development of both the health benefits and the pleasant gustatory nuances of goat cheese.
Collapse
Affiliation(s)
- Bruno Tilocca
- Department of Health Sciences, University ‘Magna Græcia’ of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Alessio Soggiu
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via della Commenda 10, 20133 Milano, Italy
| | - Federica Iavarone
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Largo Vito, 00168 Rome, Italy
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Agostino Gemelli Foundation University Hospital IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Largo Vito, 00168 Rome, Italy
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Agostino Gemelli Foundation University Hospital IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Lorenza Putignani
- Unit of Parasitology, Unit of Human Microbiome, Bambino Gesù Children’s Hospital IRCCS, Piazza Sant’Onofrio, 4, 00165 Rome, Italy
| | - Maria Vittoria Ristori
- Unit of Parasitology, Unit of Human Microbiome, Bambino Gesù Children’s Hospital IRCCS, Piazza Sant’Onofrio, 4, 00165 Rome, Italy
| | | | - Anna Antonella Spina
- Department of Health Sciences, University ‘Magna Græcia’ of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Valeria Maria Morittu
- Department of Health Sciences, University ‘Magna Græcia’ of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Carlotta Ceniti
- Department of Health Sciences, University ‘Magna Græcia’ of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Cristian Piras
- Department of Health Sciences, University ‘Magna Græcia’ of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Luigi Bonizzi
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via della Commenda 10, 20133 Milano, Italy
| | - Domenico Britti
- Department of Health Sciences, University ‘Magna Græcia’ of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Largo Vito, 00168 Rome, Italy
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Agostino Gemelli Foundation University Hospital IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Paola Roncada
- Department of Health Sciences, University ‘Magna Græcia’ of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-096-1369-4284
| |
Collapse
|
23
|
Nguyen HT, Sionkowska A, Lewandowska K, Brudzyńska P, Szulc M, Saha N, Saha T, Saha P. Chitosan Modified by Kombucha-Derived Bacterial Cellulose: Rheological Behavior and Properties of Convened Biopolymer Films. Polymers (Basel) 2022; 14:4572. [PMID: 36365566 PMCID: PMC9658712 DOI: 10.3390/polym14214572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2023] Open
Abstract
This work investigates the rheological behavior and characteristics of solutions and convened biopolymer films from Chitosan (Chi) modified by kombucha-derived bacterial cellulose (KBC). The Arrhenius equation and the Ostwald de Waele model (power-law) revealed that the Chi/KBC solutions exhibited non-Newtonian behavior. Both temperature and KBC concentration strongly affected their solution viscosity. With the selection of a proper solvent for chitosan solubilization, it may be possible to improve the performances of chitosan films for specific applications. The elasticity of the prepared films containing KBC 10% w/w was preferable when compared to the controls. FTIR analysis has confirmed the presence of bacterial cellulose, chitosan acetate, and chitosan lactate as the corresponding components in the produced biopolymer films. The thermal behaviors of the Chi (lactic acid)/KBC samples showed slightly higher stability than Chi (acetic acid)/KBC. Generally, these results will be helpful in the preparation processes of the solutions and biopolymer films of Chi dissolved in acetic or lactic acid modified by KBC powder to fabricate food packaging, scaffolds, and bioprinting inks, or products related to injection or direct extrusion through a needle.
Collapse
Affiliation(s)
- Hau Trung Nguyen
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City 727000, Vietnam
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Katarzyna Lewandowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Patrycja Brudzyńska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Marta Szulc
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Nabanita Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
- Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV 3685, 76001 Zlin, Czech Republic
- Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 76001 Zlin, Czech Republic
| | - Tomas Saha
- Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV 3685, 76001 Zlin, Czech Republic
| | - Petr Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
- Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV 3685, 76001 Zlin, Czech Republic
- Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 76001 Zlin, Czech Republic
| |
Collapse
|
24
|
Kaur H, Kaur A, Soni SK, Rishi P. Microbially-derived cocktail of carbohydrases as an anti-biofouling agents: a 'green approach'. BIOFOULING 2022; 38:455-481. [PMID: 35673761 DOI: 10.1080/08927014.2022.2085566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Enzymes, also known as biocatalysts, display vital properties like high substrate specificity, an eco-friendly nature, low energy inputs, and cost-effectiveness. Among their numerous known applications, enzymes that can target biofilms or their components are increasingly being investigated for their anti-biofouling action, particularly in healthcare, food manufacturing units and environmental applications. Enzymes can target biofilms at different levels like during the attachment of microorganisms, formation of exopolymeric substances (EPS), and their disruption thereafter. In this regard, a consortium of carbohydrases that can target heterogeneous polysaccharides present in the EPS matrix may provide an effective alternative to conventional chemical anti-biofouling methods. Further, for complete annihilation of biofilms, enzymes can be used alone or in conjunction with other antimicrobial agents. Enzymes hold the promise to replace the conventional methods with greener, more economical, and more efficient alternatives. The present article explores the potential and future perspectives of using carbohydrases as effective anti-biofilm agents.
Collapse
Affiliation(s)
- Harmanpreet Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Arashdeep Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | | | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
25
|
In Vitro Cytotoxicity, Colonisation by Fibroblasts and Antimicrobial Properties of Surgical Meshes Coated with Bacterial Cellulose. Int J Mol Sci 2022; 23:ijms23094835. [PMID: 35563224 PMCID: PMC9105287 DOI: 10.3390/ijms23094835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Hernia repairs are the most common abdominal wall elective procedures performed by general surgeons. Hernia-related postoperative infective complications occur with 10% frequency. To counteract the risk of infection emergence, the development of effective, biocompatible and antimicrobial mesh adjuvants is required. Therefore, the aim of our in vitro investigation was to evaluate the suitability of bacterial cellulose (BC) polymer coupled with gentamicin (GM) antibiotic as an absorbent layer of surgical mesh. Our research included the assessment of GM-BC-modified meshes’ cytotoxicity against fibroblasts ATCC CCL-1 and a 60-day duration cell colonisation measurement. The obtained results showed no cytotoxic effect of modified meshes. The quantified fibroblast cells levels resembled a bimodal distribution depending on the time of culturing and the type of mesh applied. The measured GM minimal inhibitory concentration was 0.47 µg/mL. Results obtained in the modified disc-diffusion method showed that GM-BC-modified meshes inhibited bacterial growth more effectively than non-coated meshes. The results of our study indicate that BC-modified hernia meshes, fortified with appropriate antimicrobial, may be applied as effective implants in hernia surgery, preventing risk of infection occurrence and providing a high level of biocompatibility with regard to fibroblast cells.
Collapse
|
26
|
Römling U. The power of unbiased phenotypic screens - cellulose as a first receptor for the Schitoviridae phage S6 of Erwinia amylovora. Environ Microbiol 2022; 24:3316-3321. [PMID: 35415924 PMCID: PMC9544554 DOI: 10.1111/1462-2920.16010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/30/2022]
Abstract
Bacteriophages, host‐dependent replicative non‐cellular entities which significantly shape the microbial genomes and consequently physiological and ecological properties of the microbial populations are exploited to restrict plant, animal and human pathogens. Unravelling of phage characteristics aids the understanding of the basic molecular mechanisms of phage infections which can subsequently lead to the development of rationalized strategies to combat microbial pathogens. In an unbiased screen to investigate the molecular basis of infectivity of the fire blight pathogen Erwinia amylovora by the lytic Schitoviridae phage S6, the biofilm extracellular matrix component cellulose has been identified as a cyclic di‐GMP dependent first receptor required for infection with the phage to possess beta‐1,4‐glucosidases to degrade the exopolysaccharide. This absolute receptor dependency allows maintenance of a phage‐microbe equilibrium with a low bacterial density.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Grivokostopoulos NC, Makariti IP, Hilaj N, Apostolidou Z, Skandamis PN. Internalization of Salmonella in Leafy Greens and Impact on Acid Tolerance. Appl Environ Microbiol 2022; 88:e0224921. [PMID: 35108086 PMCID: PMC8939352 DOI: 10.1128/aem.02249-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/26/2022] [Indexed: 11/20/2022] Open
Abstract
Salmonella colonizes the surface or the inner part of leafy greens, while the ability of internalized bacteria to evade common disinfection practices may pose a considerable risk. Hereby, we aimed to assess how the colonization and internalization of Salmonella spp. (i) vary with the type of leafy green, the storage conditions (temperature, time), and Salmonella serovar at phenotypic and gene transcriptional level (regarding stress- and virulence- or type III secretion system [T3SS]-associated genes) and (ii) potentially impact the survival of the pathogen against subsequent exposure at lethal pH (2.7), mimicking the gastric acidity. Internalized Salmonella reached 3.0 to 5.0 log CFU/g depending on storage conditions and vegetable, with spinach and chicory allowing the highest (P < 0.05) internalization. Prolonged storage (48 h) at 20°C increased the recovery of internalized Salmonella in spinach and green amaranth by 1.0 to 1.5 log units. Colonization of Salmonella on/in leafy vegetables induced the transcription (maximum fold change [FCmax], ∼2,000) of T3SS-related genes. Interserovar variation regarding the internalization ability of Salmonella was observed only in lettuce and green amaranth in a time- and temperature-dependent manner. Attached cells exhibited higher survival rates against low pH than the internalized subpopulation; however, habituation at 20°C in lettuce and amaranth induced acid tolerance to internalized cells, manifested by the 1.5 to 2.0 log CFU/g survivors after 75 min at pH 2.7. Habituation of Salmonella in vegetable extracts sensitized it toward acid, while indigenous microbiota had limited impact on acid resistance of the organism. These findings reveal physiological aspects of Salmonella colonizing leafy vegetables that could be useful in fresh produce microbial risk assessment. IMPORTANCE Consumption of leafy greens has been increasingly associated with foodborne illnesses, and their contamination could occur at pre- and/or postharvest level. Human pathogens may become passively or actively internalized in plant tissues, thereby escaping decontamination procedures. Plant colonization may impact bacterial physiology such as stress resistance and virulence. In this study, it was demonstrated that internalization of Salmonella spp., at the postharvest level, varied with type of vegetable, serovar, and storage conditions. Attached and internalized subpopulations of Salmonella on/in leafy greens showed distinct physiological responses regarding transcriptional changes of stress- and virulence-associated genes, as well as survival capacity against subsequent exposure to lethal pH (2.7). These findings could contribute to a better understanding and potential (re)definition of the risk of enteric pathogens colonizing leafy greens, as well as to the design of intervention strategies aiming to improve the microbiological safety of fresh produce.
Collapse
Affiliation(s)
- N. C. Grivokostopoulos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - I. P. Makariti
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - N. Hilaj
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Z. Apostolidou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - P. N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
28
|
Singhania RR, Patel AK, Tseng YS, Kumar V, Chen CW, Haldar D, Saini JK, Dong CD. Developments in bioprocess for bacterial cellulose production. BIORESOURCE TECHNOLOGY 2022; 344:126343. [PMID: 34780908 DOI: 10.1016/j.biortech.2021.126343] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Bacterial cellulose (BC) represents a novel bio-origin nonomaterial with its unique properties having diverse applications. Increased market demand and low yield are the major reason for its higher cost. Bacteria belonging to Komagataeibacter sp are the most exploited ones for BC production. Development of a cost-effective bioprocess for higher BC production is desirable. Though static fermentation modes have been majorly employed for BC production using tray fermenters, agitated mode has also been employed successfully with air-lift fermenters as well as stirred tank reactors. Bioprocess advances in recent years has led BC production to an upper level; however, challenges of aeration requirement and labor cost towards the higher end is associated with static cultivation at large scale. We have discussed the bioprocess development for BC production in recent years along with the challenges associated and the path forward.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yi-Sheng Tseng
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Vinod Kumar
- Fermentation Technology Division, Indian Institute of Integrative Medicine, Post Bag No. 3, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Jitendra Kumar Saini
- Department of Microbiology, Central University of Haryana, Mahendragarh 123031, Haryana, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
29
|
Zielińska S, Matkowski A, Dydak K, Czerwińska ME, Dziągwa-Becker M, Kucharski M, Wójciak M, Sowa I, Plińska S, Fijałkowski K, Ciecholewska-Juśko D, Broda M, Gorczyca D, Junka A. Bacterial Nanocellulose Fortified with Antimicrobial and Anti-Inflammatory Natural Products from Chelidonium majus Plant Cell Cultures. MATERIALS 2021; 15:ma15010016. [PMID: 35009165 PMCID: PMC8746069 DOI: 10.3390/ma15010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
In this work we developed a bi-functional Bacterial-Nano-Cellulose (BNC) carrier system for cell cultures of Chelidonium majus-a medicinal plant producing antimicrobial compounds. The porous BNC was biosynthesized for 3, 5 or 7 days by the non-pathogenic Komagataeibacter xylinus bacteria and used in three forms: (1) Without removal of K. xylinus cells, (2) partially cleaned up from the remaining K. xylinus cells using water washing and (3) fully purified with NaOH leaving no bacterial cells remains. The suspended C. majus cells were inoculated on the BNC pieces in liquid medium and the functionalized BNC was harvested and subjected to scanning electron microscopy observation and analyzed for the content of C. majus metabolites as well as to antimicrobial assays and tested for potential proinflammatory irritating activity in human neutrophils. The highest content and the most complex composition of pharmacologically active substances was found in 3-day-old, unpurified BNC, which was tested for its bioactivity. The assays based on the IL-1β, IL-8 and TNF-α secretion in an in vitro model showed an anti-inflammatory effect of this particular biomatrix. Moreover, 3-day-old-BNC displayed antimicrobial and antibiofilm activity against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The results of the research indicated a possible application of such modified composites, against microbial pathogens, especially in local surface infections, where plant metabolite-enriched BNC may be used as the occlusive dressing.
Collapse
Affiliation(s)
- Sylwia Zielińska
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biotechnology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Correspondence: ; Tel.: +48-717-840-498
| | - Karolina Dydak
- Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.D.); (A.J.)
| | - Monika Ewa Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warszawa, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Magdalena Dziągwa-Becker
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant Cultivation State Research Institute, 50-540 Wrocław, Poland; (M.D.-B.); (M.K.)
| | - Mariusz Kucharski
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant Cultivation State Research Institute, 50-540 Wrocław, Poland; (M.D.-B.); (M.K.)
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.); (I.S.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.); (I.S.)
| | - Stanisława Plińska
- Department of Inorganic Chemistry, Wroclaw Medical University, 50-556 Wrocław, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 70-311 Szczecin, Poland; (K.F.); (D.C.-J.); (M.B.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 70-311 Szczecin, Poland; (K.F.); (D.C.-J.); (M.B.)
| | - Michał Broda
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 70-311 Szczecin, Poland; (K.F.); (D.C.-J.); (M.B.)
- Pomeranian-Masurian Potato Breeding Company, 76-024 Strzekęcino, Poland
| | - Damian Gorczyca
- Faculty of Medicine, Lazarski University, 02-662 Warszawa, Poland;
| | - Adam Junka
- Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.D.); (A.J.)
| |
Collapse
|
30
|
Multispecies populations of methanotrophic Methyloprofundus and cultivation of a likely dominant species from the Iheya North deep-sea hydrothermal field. Appl Environ Microbiol 2021; 88:e0075821. [PMID: 34788070 PMCID: PMC8788690 DOI: 10.1128/aem.00758-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Methyloprofundus clade is represented by uncultivated methanotrophic bacterial endosymbionts of deep-sea bathymodiolin mussels, but only a single free-living species has been cultivated to date. This study reveals the existence of free-living Methyloprofundus variants in the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. A clade-targeted amplicon analysis of the particulate methane monooxygenase gene (pmoA) detected 647 amplicon sequence variants (ASVs) of the Methyloprofundus clade in microbial communities newly formed in in situ colonization systems. Such systems were deployed at colonies of bathymodiolin mussels and a galatheoid crab in diffuse-flow areas. These ASVs were classified into 161 species-like groups. The proportion of the species-like groups representing endosymbionts of mussels was unexpectedly low. A methanotrophic bacterium designated INp10, a likely dominant species in the Methyloprofundus population in this field, was enriched in a biofilm formed in a methane-fed cultivation system operated at 10°C. Genomic characterization with the gene transcription data set of INp10 from the biofilm suggested traits advantageous to niche competition in environments, such as mobility, chemotaxis, biofilm formation, offensive and defensive systems, and hypoxia tolerance. The notable metabolic traits that INp10 shares with some Methyloprofundus members are the use of lanthanide-dependent XoxF as the sole methanol dehydrogenase due to the absence of the canonical MxaFI, the glycolytic pathway using fructose-6-phosphate aldolase instead of fructose-1,6-bisphosphate aldolase, and the potential to perform partial denitrification from nitrate under oxygen-limited conditions. These findings help us better understand the ecological strategies of this possibly widespread marine-specific methanotrophic clade. IMPORTANCE The Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough is characterized by abundant methane derived from organic-rich sediments and diverse chemosynthetic animal species, including those harboring methanotrophic bacterial symbionts, such as bathymodiolin mussels Bathymodiolus japonicus and “Bathymodiolus” platifrons and a galatheoid crab, Shinkaia crosnieri. Symbiotic methanotrophs have attracted significant attention, and yet free-living methanotrophs in this environment have not been studied in detail. We focused on the free-living Methyloprofundus spp. that thrive in this hydrothermal field and identified an unexpectedly large number of species-like groups in this clade. Moreover, we enriched and characterized a methanotroph whose genome sequence indicated that it corresponds to a new species in the genus Methyloprofundus. This species might be a dominant member of the indigenous Methyloprofundus population. New information on free-living Methyloprofundus populations suggests that the hydrothermal field is a promising locale at which to investigate the adaptive capacity and associated genetic diversity of Methyloprofundus spp.
Collapse
|
31
|
Żywicka A, Ciecholewska-Juśko D, Drozd R, Rakoczy R, Konopacki M, Kordas M, Junka A, Migdał P, Fijałkowski K. Preparation of Komagataeibacter xylinus Inoculum for Bacterial Cellulose Biosynthesis Using Magnetically Assisted External-Loop Airlift Bioreactor. Polymers (Basel) 2021; 13:polym13223950. [PMID: 34833249 PMCID: PMC8623894 DOI: 10.3390/polym13223950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 01/26/2023] Open
Abstract
The aim of this study was to demonstrate the applicability of a novel magnetically assisted external-loop airlift bioreactor (EL-ALB), equipped with rotating magnetic field (RMF) generators for the preparation of Komagataeibacterxylinus inoculum during three-cycle repeated fed-batch cultures, further used for bacterial cellulose (BC) production. The fermentation carried out in the RMF-assisted EL-ALB allowed to obtain an inoculum of more than 200× higher cellular density compared to classical methods of inoculum preparation. The inoculum obtained in the RMF-assisted EL-ALB was characterized by a high and stable metabolic activity during repeated batch fermentation process. The application of the RMF-assisted EL-ALB for K. xylinus inoculum production did not induce the formation of cellulose-deficient mutants. It was also confirmed that the ability of K. xylinus to produce BC was at the same level (7.26 g/L of dry mass), regardless of inoculum age. Additionally, the BC obtained from the inoculum produced in the RMF-assisted EL-ALB was characterized by reproducible water-related properties, mechanical strength, nano-fibrillar structure and total crystallinity index. The lack of any negative impact of inoculum preparation method using RMF-assisted EL-ALB on BC properties is of paramount value for its future applications, including use as a biomaterial in tissue engineering, wound healing, and drug delivery, where especially BC liquid capacity, nanostructure, crystallinity, and mechanical properties play essential roles.
Collapse
Affiliation(s)
- Anna Żywicka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland; (D.C.-J.); (R.D.)
- Correspondence: (A.Ż.); (K.F.); Tel.: +48-91-449-6709 (A.Ż.); +48-91-449-6714 (K.F.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland; (D.C.-J.); (R.D.)
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland; (D.C.-J.); (R.D.)
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.); (M.K.)
| | - Maciej Konopacki
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.); (M.K.)
| | - Marian Kordas
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.); (M.K.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland;
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland; (D.C.-J.); (R.D.)
- Correspondence: (A.Ż.); (K.F.); Tel.: +48-91-449-6709 (A.Ż.); +48-91-449-6714 (K.F.)
| |
Collapse
|
32
|
Singhania RR, Patel AK, Tsai ML, Chen CW, Di Dong C. Genetic modification for enhancing bacterial cellulose production and its applications. Bioengineered 2021; 12:6793-6807. [PMID: 34519629 PMCID: PMC8806912 DOI: 10.1080/21655979.2021.1968989] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Bacterial cellulose (BC) is higher in demand due to its excellent properties which is attributed to its purity and nano size. Komagataeibacter xylinum is a model organism where BC production has been studied in detail because of its higher cellulose production capacity. BC production mechanism shows involvement of a series of sequential reactions with enzymes for biosynthesis of cellulose. It is necessary to know the mechanism to understand the involvement of regulatory proteins which could be the probable targets for genetic modification to enhance or regulate yield of BC and to alter BC properties as well. For the industrial production of BC, controlled synthesis is desired so as to save energy, hence genetic manipulation opens up avenues for upregulating or controlling the cellulose synthesis in the bacterium by targeting genes involved in cellulose biosynthesis. In this review article genetic modification has been presented as a tool to introduce desired changes at genetic level resulting in improved yield or properties. There has been a lack of studies on genetic modification for BC production due to limited availability of information on whole genome and genetic toolkits; however, in last few years, the number of studies has been increased on this aspect as whole genome sequencing of several Komagataeibacter strains are being done. In this review article, we have presented the mechanisms and the targets for genetic modifications in order to achieve desired changes in the BC production titer as well as its characteristics.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|
33
|
Bacterial Extracellular Polymers: A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prokaryotic microbial cells especially bacteria are highly emphases for their exopolysaccharides (EPS) production. EPS are the higher molecular weight natural extracellular compounds observe at the surface of the bacterial cells. Nowadays bacterial EPS represent rapidly emerging as new and industrially important biomaterials because it having tremendous physical and chemical properties with novel functionality. Due to its industrial demand as well as research studies the different extraction processes have been discovered to remove the EPS from the microbial biofilm. The novelties of EPS are also based on the microbial habitat conditions such as higher temperature, lower temperature, acidic, alkaliphilic, saline, etc. Based on its chemical structure they can be homopolysaccharide or heteropolysaccharide. EPSs have a wide range of applications in various industries such as food, textile, pharmaceutical, heavy metal recovery, agriculture, etc. So, this review focus on the understanding of the structure, different extraction processes, biosynthesis and genetic engineering of EPS as well as their desirable biotechnological applications.
Collapse
|
34
|
Ross IL, Shah S, Hankamer B, Amiralian N. Microalgal nanocellulose - opportunities for a circular bioeconomy. TRENDS IN PLANT SCIENCE 2021; 26:924-939. [PMID: 34144878 DOI: 10.1016/j.tplants.2021.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/16/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Over 3 billion years, photosynthetic algae have evolved complex uses for cellulose, the most abundant polymer worldwide. A major cell-wall component of lignocellulosic plants, seaweeds, microalgae, and bacteria, cellulose can be processed to nanocellulose, a promising nanomaterial with novel properties. The structural diversity of macro- and microalgal nanocelluloses opens opportunities to couple low-impact biomass production with novel, green-chemistry processing to yield valuable, sustainable nanomaterials for a multitude of applications ranging from novel wound dressings to organic solar cells. We review the origins of algal cellulose and the applications and uses of nanocellulose, and highlight the potential for microalgae as a nanocellulose source. Given the limited state of current knowledge, we identify research challenges and strategies to help to realise this potential.
Collapse
Affiliation(s)
- Ian L Ross
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Sarah Shah
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nasim Amiralian
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
35
|
Caro-Astorga J, Walker KT, Herrera N, Lee KY, Ellis T. Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration. Nat Commun 2021; 12:5027. [PMID: 34413311 PMCID: PMC8377073 DOI: 10.1038/s41467-021-25350-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/03/2021] [Indexed: 02/04/2023] Open
Abstract
Engineered living materials (ELMs) based on bacterial cellulose (BC) offer a promising avenue for cheap-to-produce materials that can be programmed with genetically encoded functionalities. Here we explore how ELMs can be fabricated in a modular fashion from millimetre-scale biofilm spheroids grown from shaking cultures of Komagataeibacter rhaeticus. Here we define a reproducible protocol to produce BC spheroids with the high yield bacterial cellulose producer K. rhaeticus and demonstrate for the first time their potential for their use as building blocks to grow ELMs in 3D shapes. Using genetically engineered K. rhaeticus, we produce functionalized BC spheroids and use these to make and grow patterned BC-based ELMs that signal within a material and can sense and report on chemical inputs. We also investigate the use of BC spheroids as a method to regenerate damaged BC materials and as a way to fuse together smaller material sections of cellulose and synthetic materials into a larger piece. This work improves our understanding of BC spheroid formation and showcases their great potential for fabricating, patterning and repairing ELMs based on the promising biomaterial of bacterial cellulose. Bacterial cellulose is a promising cheap-to-produce programmable engineered living material. Here the authors present a method for production of spheroids for use as engineerable building blocks able to sense and respond to chemical inputs.
Collapse
Affiliation(s)
- Joaquin Caro-Astorga
- Department of Bioengineering, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Kenneth T Walker
- Department of Bioengineering, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Natalia Herrera
- Department of Aeronautics, Imperial College London, London, UK
| | - Koon-Yang Lee
- Department of Aeronautics, Imperial College London, London, UK
| | - Tom Ellis
- Department of Bioengineering, Imperial College London, London, UK. .,Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
36
|
Ajdary R, Tardy BL, Mattos BD, Bai L, Rojas OJ. Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001085. [PMID: 32537860 PMCID: PMC11468645 DOI: 10.1002/adma.202001085] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/08/2020] [Accepted: 03/20/2020] [Indexed: 05/26/2023]
Abstract
Recent developments in the area of plant-based hydrogels are introduced, especially those derived from wood as a widely available, multiscale, and hierarchical source of nanomaterials, as well as other cell wall elements. With water being fundamental in a hydrogel, water interactions, hydration, and swelling, all critically important in designing, processing, and achieving the desired properties of sustainable and functional hydrogels, are highlighted. A plant, by itself, is a form of a hydrogel, at least at given states of development, and for this reason phenomena such as fluid transport, diffusion, capillarity, and ionic effects are examined. These aspects are highly relevant not only to plants, especially lignified tissues, but also to the porous structures produced after removal of water (foams, sponges, cryogels, xerogels, and aerogels). Thus, a useful source of critical and comprehensive information is provided regarding the synthesis of hydrogels from plant materials (and especially wood nanostructures), and about the role of water, not only for processing but for developing hydrogel properties and uses.
Collapse
Affiliation(s)
- Rubina Ajdary
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Blaise L. Tardy
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Bruno D. Mattos
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Long Bai
- Departments of Chemical & Biological EngineeringChemistry and, Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| | - Orlando J. Rojas
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
- Departments of Chemical & Biological EngineeringChemistry and, Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| |
Collapse
|
37
|
Orlovska I, Podolich O, Kukharenko O, Zaets I, Reva O, Khirunenko L, Zmejkoski D, Rogalsky S, Barh D, Tiwari S, Kumavath R, Góes-Neto A, Azevedo V, Brenig B, Ghosh P, de Vera JP, Kozyrovska N. Bacterial Cellulose Retains Robustness but Its Synthesis Declines After Exposure to a Mars-like Environment Simulated Outside the International Space Station. ASTROBIOLOGY 2021; 21:706-717. [PMID: 33646011 DOI: 10.1089/ast.2020.2332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cellulose is a widespread macromolecule in terrestrial environments and a major architectural component of microbial biofilm. Therefore, cellulose might be considered a biosignature that indicates the presence of microbial life. We present, for the first time, characteristics of bacterial cellulose after long-term spaceflight and exposure to simuled Mars-like stressors. The pristine cellulose-based pellicle membranes from a kombucha microbial community (KMC) were exposed outside the International Space Station, and after their return to Earth, the samples were reactivated and cultured for 2.5 years to discern whether the KMC could be restored. Analyses of cellulose polymer integrity and mechanical properties of cellulose-based pellicle films, as well as the cellulose biosynthesis-related genes' structure and expression, were performed. We observed that (i) the cellulose polymer integrity was not significantly changed under Mars-like conditions; (ii) de novo cellulose production was 1.5 times decreased in exposed KMC samples; (iii) the dry cellulose yield from the reisolated Komagataeibacter oboediens was 1.7 times lower than by wild type; (iv) there was no significant change in mechanical properties of the de novo synthesized cellulose-based pellicles produced by the exposed KMCs and K. oboediens; and (v) the gene, encoding biosynthesis of cellulose (bcsA) of the K. oboediens, was downregulated, and no topological change or mutation was observed in any of the bcs operon genes, indicating that the decreased cellulose production by the space-exposed samples was probably due to epigenetic regulation. Our results suggest that the cellulose-based pellicle could be a good material with which to protect microbial communities during space journeys, and the cellulose produced by KMC members could be suitable in the fabrication of consumer goods for extraterrestrial locations.
Collapse
Affiliation(s)
- Iryna Orlovska
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Iryna Zaets
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Oleg Reva
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | | | - Danica Zmejkoski
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sergiy Rogalsky
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, West Bengal, India
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ranjith Kumavath
- Department of Genomic Science, Central University of Kerala Tejaswini Hills, Kerala, India
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University Göttingen, Göttingen, Germany
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Planetary Laboratories, Astrobiological Laboratories, Berlin, Germany
| | | |
Collapse
|
38
|
Lee Y, Kim N, Roh H, Kim A, Han HJ, Cho M, Kim DH. Transcriptome analysis unveils survival strategies of Streptococcus parauberis against fish serum. PLoS One 2021; 16:e0252200. [PMID: 34038483 PMCID: PMC8153452 DOI: 10.1371/journal.pone.0252200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
Streptococcus parauberis is an important bacterial fish pathogen that causes streptococcosis in a variety of fish species including the olive flounder. Despite its importance in the aquaculture industry, little is known about the survival strategy of S. parauberis in the host. Therefore, the objective of this study was to produce genome-wide transcriptome data and identify key factors for the survival of S. parauberis SPOF3K in its host. To this end, S. parauberis SPOF3K was incubated in olive flounder serum and nutrient-enriched media as a control. Although S. parauberis SPOF3K proliferated in both culture conditions, the transcriptomic patterns of the two groups were very different. Interestingly, the expression levels of genes responsible for the replication of an S. parauberis plasmid in the presence of olive flounder serum were higher than those in the absence of olive flounder serum, indicating that this plasmid may play an important role in the survival and proliferation of S. parauberis in the host. Several ATP-binding cassette transporters known to transport organic substrates (e.g., biotin and osmoprotectants) that are vital for bacterial survival in the host were significantly up-regulated in S. parauberis cultured in serum. In addition, groEL, dnaK operon, and members of the clp protease family, which are known to play important roles in response to various stressors, were up-regulated in S. parauberis incubated in serum, thus limiting damage and facilitating cellular recovery. Moreover, important virulence factors including the hyaluronic acid capsule (has operon), sortase A (srtA), C5a peptidase (scp), and peptidoglycan O-acetyltransferase (oatA) were significantly upregulated in S. paraubers in serum. These results indicate that S. paraubers can resist and evade the humoral immune responses of fish. The transcriptomic data obtained in this study provide a better understanding of the mode of action of S. parauberis in fish.
Collapse
Affiliation(s)
- Yoonhang Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Nameun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - HyeongJin Roh
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Ahran Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Miyoung Cho
- Pathology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
39
|
Genome Features of Asaia sp. W12 Isolated from the Mosquito Anopheles stephensi Reveal Symbiotic Traits. Genes (Basel) 2021; 12:genes12050752. [PMID: 34067621 PMCID: PMC8156966 DOI: 10.3390/genes12050752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/29/2023] Open
Abstract
Asaia bacteria commonly comprise part of the microbiome of many mosquito species in the genera Anopheles and Aedes, including important vectors of infectious agents. Their close association with multiple organs and tissues of their mosquito hosts enhances the potential for paratransgenesis for the delivery of antimalaria or antivirus effectors. The molecular mechanisms involved in the interactions between Asaia and mosquito hosts, as well as Asaia and other bacterial members of the mosquito microbiome, remain underexplored. Here, we determined the genome sequence of Asaia strain W12 isolated from Anopheles stephensi mosquitoes, compared it to other Asaia species associated with plants or insects, and investigated the properties of the bacteria relevant to their symbiosis with mosquitoes. The assembled genome of strain W12 had a size of 3.94 MB, the largest among Asaia spp. studied so far. At least 3585 coding sequences were predicted. Insect-associated Asaia carried more glycoside hydrolase (GH)-encoding genes than those isolated from plants, showing their high plant biomass-degrading capacity in the insect gut. W12 had the most predicted regulatory protein components comparatively among the selected Asaia, indicating its capacity to adapt to frequent environmental changes in the mosquito gut. Two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases (cyoABCD-1 and cyoABCD-2) were found in most Asaia genomes, possibly offering alternative terminal oxidases and allowing the flexible transition of respiratory pathways. Genes involved in the production of 2,3-butandiol and inositol have been found in Asaia sp. W12, possibly contributing to biofilm formation and stress tolerance.
Collapse
|
40
|
Bacterial cellulose/glycolic acid/glycerol composite membrane as a system to deliver glycolic acid for anti-aging treatment. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
Oral and Intravenous Iron Therapy Differentially Alter the On- and Off-Tumor Microbiota in Anemic Colorectal Cancer Patients. Cancers (Basel) 2021; 13:cancers13061341. [PMID: 33809624 PMCID: PMC8002270 DOI: 10.3390/cancers13061341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022] Open
Abstract
Iron deficiency anemia is a common complication of colorectal cancer and may require iron therapy. Oral iron can increase the iron available to gut bacteria and may alter the colonic microbiota. We performed an intervention study to compare oral and intravenous iron therapy on the colonic tumor-associated (on-tumor) and paired non-tumor-associated adjacent (off-tumor) microbiota. Anemic patients with colorectal adenocarcinoma received either oral ferrous sulphate (n = 16) or intravenous ferric carboxymaltose (n = 24). On- and off-tumor biopsies were obtained post-surgery and microbial profiling was performed using 16S ribosomal RNA analysis. Off-tumor α- and β-diversity were significantly different between iron treatment groups. No differences in on-tumor diversity were observed. Off-tumor microbiota of oral iron-treated patients showed higher abundances of the orders Clostridiales, Cytophagales, and Anaeroplasmatales compared to intravenous iron-treated patients. The on-tumor microbiota was enriched with the orders Lactobacillales and Alteromonadales in the oral and intravenous iron groups, respectively. The on- and off-tumor microbiota associated with intravenous iron-treated patients infers increased abundances of enzymes involved in iron sequestration and anti-inflammatory/oncogenic metabolite production, compared to oral iron-treated patients. Collectively, this suggests that intravenous iron may be a more appropriate therapy to limit adverse microbial outcomes compared to oral iron.
Collapse
|
42
|
Beyond the Wall: Exopolysaccharides in the Biofilm Lifestyle of Pathogenic and Beneficial Plant-Associated Pseudomonas. Microorganisms 2021; 9:microorganisms9020445. [PMID: 33670010 PMCID: PMC7926942 DOI: 10.3390/microorganisms9020445] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
The formation of biofilms results from a multicellular mode of growth, in which bacteria remain enwrapped by an extracellular matrix of their own production. Many different bacteria form biofilms, but among the most studied species are those that belong to the Pseudomonas genus due to the metabolic versatility, ubiquity, and ecological significance of members of this group of microorganisms. Within the Pseudomonas genus, biofilm studies have mainly focused on the opportunistic human pathogen Pseudomonas aeruginosa due to its clinical importance. The extracellular matrix of P. aeruginosa is mainly composed of exopolysaccharides, which have been shown to be important for the biofilm architecture and pathogenic features of this bacterium. Notably, some of the exopolysaccharides recurrently used by P. aeruginosa during biofilm formation, such as the alginate and polysaccharide synthesis loci (Psl) polysaccharides, are also used by pathogenic and beneficial plant-associated Pseudomonas during their interaction with plants. Interestingly, their functions are multifaceted and seem to be highly dependent on the bacterial lifestyle and genetic context of production. This paper reviews the functions and significance of the exopolysaccharides produced by plant-associated Pseudomonas, particularly the alginate, Psl, and cellulose polysaccharides, focusing on their equivalents produced in P. aeruginosa within the context of pathogenic and beneficial interactions.
Collapse
|
43
|
Asgher M, Qamar SA, Iqbal HMN. Microbial exopolysaccharide-based nano-carriers with unique multi-functionalities for biomedical sectors. Biologia (Bratisl) 2021; 76:673-685. [DOI: 10.2478/s11756-020-00588-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023]
|
44
|
Schmid J, Wefers D, Vogel RF, Jakob F. Analysis of Structural and Functional Differences of Glucans Produced by the Natively Released Dextransucrase of Liquorilactobacillus hordei TMW 1.1822. Appl Biochem Biotechnol 2021; 193:96-110. [PMID: 32820351 PMCID: PMC7790797 DOI: 10.1007/s12010-020-03407-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/12/2020] [Indexed: 11/26/2022]
Abstract
The properties of the glucopolymer dextran are versatile and linked to its molecular size, structure, branching, and secondary structure. However, suited strategies to control and exploit the variable structures of dextrans are scarce. The aim of this study was to delineate structural and functional differences of dextrans, which were produced in buffers at different conditions using the native dextransucrase released by Liquorilactobacillus (L.) hordei TMW 1.1822. Rheological measurements revealed that dextran produced at pH 4.0 (MW = 1.1 * 108 Da) exhibited the properties of a viscoelastic fluid up to concentrations of 10% (w/v). By contrast, dextran produced at pH 5.5 (MW = 1.86 * 108 Da) was gel-forming already at 7.5% (w/v). As both dextrans exhibited comparable molecular structures, the molecular weight primarily influenced their rheological properties. The addition of maltose to the production assays caused the formation of the trisaccharide panose instead of dextran. Moreover, pre-cultures of L. hordei TMW 1.1822 grown without sucrose were substantial for recovery of higher dextran yields, since the cells stored the constitutively expressed dextransucrase intracellularly, until sucrose became available. These findings can be exploited for the controlled recovery of functionally diverse dextrans and oligosaccharides by the use of one dextransucrase type.
Collapse
Affiliation(s)
- Jonas Schmid
- Chair of Technical Microbiology, Technical University of Munich (TUM), Freising, Germany
| | - Daniel Wefers
- Division of Food Chemistry, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Rudi F Vogel
- Chair of Technical Microbiology, Technical University of Munich (TUM), Freising, Germany
| | - Frank Jakob
- Chair of Technical Microbiology, Technical University of Munich (TUM), Freising, Germany.
| |
Collapse
|
45
|
Heredia-Ponce Z, Gutiérrez-Barranquero JA, Purtschert-Montenegro G, Eberl L, de Vicente A, Cazorla FM. Role of extracellular matrix components in the formation of biofilms and their contribution to the biocontrol activity of Pseudomonas chlororaphis PCL1606. Environ Microbiol 2020; 23:2086-2101. [PMID: 33314481 DOI: 10.1111/1462-2920.15355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022]
Abstract
Pseudomonas chlororaphis PCL1606 (PcPCL1606) displays plant-colonizing features and exhibits antagonistic traits against soil-borne phytopathogenic fungi. Biofilm formation could be relevant for the PcPCL1606 lifestyle, and in this study the role of some putative extracellular matrix components (EMC; Fap-like fibre, alginate and Psl-like polysaccharides) in the biofilm architecture and biocontrol activity of this bacterium were determined. EMC such as the Fap-like fibre and alginate polysaccharide play secondary roles in biofilm formation in PcPCL1606, because they are not fundamental to its biofilm architecture in flow cell chamber, but synergistically they have shown to favour bacterial competition during biofilm formation. Conversely, studies on Psl-like polysaccharide have revealed that it may contain mannose, and that it is strongly involved in the PcPCL1606 biofilm architecture and niche competition. Furthermore, the Fap-like fibre and Psl-like exopolysaccharide play roles in early surface attachment and contribute to biocontrol activity against the white root rot disease caused by Rosellinia necatrix in avocado plants. These results constitute the first report regarding the study of the extracellular matrix of the PcPCL1606 strain and highlight the importance of a putative Fap-like fibre and Psl-like exopolysaccharide produced by PcPCL1606 in the biofilm formation process and interactions with the host plant root.
Collapse
Affiliation(s)
- Zaira Heredia-Ponce
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - José Antonio Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | | | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Francisco M Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| |
Collapse
|
46
|
Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111118. [PMID: 32741760 DOI: 10.1016/j.jenvman.2020.111118] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 05/06/2023]
Abstract
The concept of soil health refers to specific soil properties and the ability to support and sustain crop growth and productivity, while maintaining long-term environmental quality. The key components of healthy soil are high populations of organisms that promote plant growth, such as the plant growth promoting rhizobacteria (PGPR). PGPR plays multiple beneficial and ecological roles in the rhizosphere soil. Among the roles of PGPR in agroecosystems are the nutrient cycling and uptake, inhibition of potential phytopathogens growth, stimulation of plant innate immunity, and direct enhancement of plant growth by producing phytohormones or other metabolites. Other important roles of PGPR are their environmental cleanup capacities (soil bioremediation). In this work, we review recent literature concerning the diverse mechanisms of PGPR in maintaining healthy conditions of agricultural soils, thus reducing (or eliminating) the toxic agrochemicals dependence. In conclusion, this review provides comprehensive knowledge on the current PGPR basic mechanisms and applications as biocontrol agents, plant growth stimulators and soil rhizoremediators, with the final goal of having more agroecological practices for sustainable agriculture.
Collapse
Affiliation(s)
- Zobia Khatoon
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Suiliang Huang
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Mazhar Rafique
- Department of Soil Science, The University of Haripur, 22630, KPK, Pakistan
| | - Ali Fakhar
- Department of Soil Science, Sindh Agricultural University, Tandojam, Pakistan
| | | | - Gustavo Santoyo
- Genomic Diversity Laboratory, Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolas de Hidalgo, 58030, Morelia, Mexico.
| |
Collapse
|
47
|
Debele TA, Su WP. Polysaccharide and protein-based functional wound dressing materials and applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1809403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tilahun Ayane Debele
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 138, Sheng Li Road, Tainan 704, Taiwan
- Department of Medical Biochemistry, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 138, Sheng Li Road, Tainan 704, Taiwan
- Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
48
|
Atykyan N, Revin V, Shutova V. Raman and FT-IR Spectroscopy investigation the cellulose structural differences from bacteria Gluconacetobacter sucrofermentans during the different regimes of cultivation on a molasses media. AMB Express 2020; 10:84. [PMID: 32363535 PMCID: PMC7196602 DOI: 10.1186/s13568-020-01020-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/25/2020] [Indexed: 01/07/2023] Open
Abstract
Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for investigation of structural differences of bacterial celluloses (BC), obtained by cultivation native and immobilized cells of Gluconacetobacter sucrofermentans during static and dynamic regimes of cultivation on a molasses media. It was found that the Raman and FT-IR spectra could characterized the groups of the cellulose molecules. The culturing bacterial cellulose in the presence of results in an increase of crystalline and it increased during cultivated on a molasses media with the addition of 1.5% ethanol-75.62%. The degree of BC crystallinity increased during dynamic regime of cultivation is higher than under static regime one. The maximal BC content was observed when 0.5% ascorbic acid was added to the cultivation medium with molasses and native cells. It was found, the degree of BC crystallinity during static regime cultivation on a molasses medium with ethanol, increased significantly to 73.5%, and during dynamic regime-75.6%. So, in this study, the changes of the bacterial cellulose conformation of were revealed during bacterial cultivation in a medium containing molasses in various cultivation modes.
Collapse
|
49
|
Eida AA, Bougouffa S, L’Haridon F, Alam I, Weisskopf L, Bajic VB, Saad MM, Hirt H. Genome Insights of the Plant-Growth Promoting Bacterium Cronobacter muytjensii JZ38 With Volatile-Mediated Antagonistic Activity Against Phytophthora infestans. Front Microbiol 2020; 11:369. [PMID: 32218777 PMCID: PMC7078163 DOI: 10.3389/fmicb.2020.00369] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Salinity stress is a major challenge to agricultural productivity and global food security in light of a dramatic increase of human population and climate change. Plant growth promoting bacteria can be used as an additional solution to traditional crop breeding and genetic engineering. In the present work, the induction of plant salt tolerance by the desert plant endophyte Cronobacter sp. JZ38 was examined on the model plant Arabidopsis thaliana using different inoculation methods. JZ38 promoted plant growth under salinity stress via contact and emission of volatile compounds. Based on the 16S rRNA and whole genome phylogenetic analysis, fatty acid analysis and phenotypic identification, JZ38 was identified as Cronobacter muytjensii and clearly separated and differentiated from the pathogenic C. sakazakii. Full genome sequencing showed that JZ38 is composed of one chromosome and two plasmids. Bioinformatic analysis and bioassays revealed that JZ38 can grow under a range of abiotic stresses. JZ38 interaction with plants is correlated with an extensive set of genes involved in chemotaxis and motility. The presence of genes for plant nutrient acquisition and phytohormone production could explain the ability of JZ38 to colonize plants and sustain plant growth under stress conditions. Gas chromatography-mass spectrometry analysis of volatiles produced by JZ38 revealed the emission of indole and different sulfur volatile compounds that may play a role in contactless plant growth promotion and antagonistic activity against pathogenic microbes. Indeed, JZ38 was able to inhibit the growth of two strains of the phytopathogenic oomycete Phytophthora infestans via volatile emission. Genetic, transcriptomic and metabolomics analyses, combined with more in vitro assays will provide a better understanding the highlighted genes' involvement in JZ38's functional potential and its interaction with plants. Nevertheless, these results provide insight into the bioactivity of C. muytjensii JZ38 as a multi-stress tolerance promoting bacterium with a potential use in agriculture.
Collapse
Affiliation(s)
- Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- BioScience Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Vladimir B. Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maged M. Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Kwak GY, Choi O, Goo E, Kang Y, Kim J, Hwang I. Quorum Sensing-Independent Cellulase-Sensitive Pellicle Formation Is Critical for Colonization of Burkholderia glumae in Rice Plants. Front Microbiol 2020; 10:3090. [PMID: 32010117 PMCID: PMC6978641 DOI: 10.3389/fmicb.2019.03090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/20/2019] [Indexed: 01/19/2023] Open
Abstract
Bacteria form biofilms as a means to adapt to environmental changes for survival. Pellicle is a floating biofilm formed at the air-liquid interface in static culture conditions; however, its functional roles have received relatively little attention compared to solid surface-associated biofilms in gram-negative bacteria. Here we show that the rice pathogen Burkholderia glumae BGR1 forms cellulase-sensitive pellicles in a bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP)- and flagellum-dependent, but quorum sensing (QS)-independent, manner. Pellicle formation was more favorable at 28°C than at the optimum growth temperature (37°C), and was facilitated by constitutive expression of pelI, a diguanylate cyclase gene from B. glumae, or pleD, the GGDEF response regulator from Agrobacterium tumefaciens. Constitutive expression of pelI or pleD raised the levels of c-di-GMP, facilitated pellicle formation, and suppressed swarming motility in B. glumae. QS-defective mutants of B. glumae formed pellicles, while flagellum-defective mutants did not. Pellicles of B. glumae were sensitive to cellulase but not to proteinase K or DNase I. A gene cluster containing seven genes involved in bacterial cellulose biosynthesis, bcsD, bcsR, bcsQ, bcsA, bcsB, bcsZ, and bcsC, homologous to known genes involved in cellulose biosynthesis in other bacteria, was identified in B. glumae. Mutations in each gene abolished pellicle formation. These results revealed a positive correlation between cellulase-sensitive pellicles and putative cellulose biosynthetic genes. Pellicle-defective mutants did not colonize as successfully as the wild-type strain BGR1 in rice plants, which resulted in a significant reduction in virulence. Our findings show that cellulase-sensitive pellicles produced in a QS-independent manner play important roles in the interactions between rice plants and B. glumae.
Collapse
Affiliation(s)
- Gi-Young Kwak
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Okhee Choi
- Division of Applied Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Eunhye Goo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yongsung Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jinwoo Kim
- Division of Applied Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|