1
|
Mozanzadeh MT, Mohammadian T, Ahangarzadeh M, Houshmand H, Najafabadi MZ, Oosooli R, Seyyedi S, Mehrjooyan S, Saghavi H, Sephdari A, Mirbakhsh M, Osroosh E. Feeding Strategies with Multi-Strain Probiotics Affect Growth, Health Condition, and Disease Resistance in Asian Seabass (Lates calcarifer). Probiotics Antimicrob Proteins 2025; 17:1368-1386. [PMID: 38135810 DOI: 10.1007/s12602-023-10207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
A 16-week feeding trial was done to examine the impacts of continuous feeding (CF) or pulse-feeding (PF) of multi-strain probiotics on Asian seabass (Lates calcarifer, 30.0 ± 0.1 g) juveniles. In this study, three different multi-strain probiotic mixtures were added to a basal diet, including (I) a mixture of different strains of Lactobacillus plantarum, (II) a mixture of the first probiotic (I) + L. delbrueckii sub bulgaricus, L. rhamnosus and L. acidophilus, and (III) a mixture of the second probiotic (II) + two quorum quenching (QQ) bacteria (Bacillus thuringiensis QQ1 and B. cereus QQ2). CF (every day) or PF (every two weeks) strategies were applied for using the abovementioned probiotics to design seven experimental groups including C (control, without probiotics), CF-I (continuous feeding of fish with the probiotic mixture I), CF-II (continuous feeding of fish with the probiotic mixture II), CF-III (continuous feeding of fish with the probiotic mixture III), PF-I (pulse-feeding of fish with the probiotic mixture I), PF-II (pulse-feeding of fish with the probiotic mixture II), and PF-III (pulse-feeding of fish with the probiotic mixture III). Four hundred and twenty fish were stocked into 21 circular polyethylene tanks with 220 L volume (20 fish/tank). Each dietary treatment had three replicates. Tanks were supplied with seawater (temperature = 30.5 °C, salinity = 45 g L-1) in a flow-throw system. Fish in CF-I, CF-II, and CF-III had higher growth rate (ca. 113-145%) and better feed conversion ratio than fish fed C and PF-I (P < 0.05). Fish in the CF-III group had the highest protease activity. Continuous feeding strategy resulted in a higher amount of glutathione and catalase activities in both the liver and plasma as well as higher superoxide dismutase activity in the liver of fish. Pulse-feeding strategy resulted in lower plasma lactate dehydrogenase and aspartate aminotransferase levels than the CF strategy. Regardless of feeding strategy, different probiotic mixtures significantly enhanced blood hemoglobin and hematocrit levels compared to the control. Continuous feeding with the multi-strain probiotics resulted in a higher survival rate against Vibrio harveyi than the PF method. Continuous feeding induced higher mRNA transcription levels of granulocyte-macrophage colony-forming cells and interleukin 10 genes in the gut of fish than PF strategy. In conclusion, continuous feeding with multi-strain probiotics is better than pulse-feeding on growth, feed utilization, antioxidant capacity, and the gut's immune-related genes and led to higher resistance of L. calcarifer in challenge with V. harveyi.
Collapse
Affiliation(s)
- Mansour Torfi Mozanzadeh
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Ahwaz, Iran.
| | - Takavar Mohammadian
- Department of livestock, Poultry and Aquatic Animal Health, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
- Member of Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mina Ahangarzadeh
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Hossein Houshmand
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Mojtaba Zabayeh Najafabadi
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Rahim Oosooli
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Sadra Seyyedi
- Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Shapour Mehrjooyan
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Hamid Saghavi
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Abolfazl Sephdari
- Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
| | - Maryam Mirbakhsh
- Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
| | - Elham Osroosh
- Department of livestock, Poultry and Aquatic Animal Health, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Member of Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
2
|
Yang Q, Yang B, Yang B, Zhang W, Tang X, Sun H, Zhang Y, Li J, Ling J, Dong J. Alleviating Coral Thermal Stress via Inoculation with Quorum Quenching Bacteria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:951-963. [PMID: 39030411 DOI: 10.1007/s10126-024-10344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
In the background of global warming, coral bleaching induced by elevated seawater temperature is the primary cause of coral reef degradation. Coral microbiome engineering using the beneficial microorganisms for corals (BMCs) has become a hot spot in the field of coral reef conservation and restoration. Investigating the potential of alleviating thermal stress by quorum quenching (QQ) bacteria may provide more tools for coral microbial engineering remediation. In this study, QQ bacteria strain Pseudoalteromonas piscicida SCSIO 43740 was screened among 75 coral-derived bacterial strains, and its quorum sensing inhibitor (QSI) compound was isolated and identified as 2,4-di-tert-butylphenol (2,4-DTBP). Then, the thermal stress alleviating potential of QQ bacteria on coral Pocillopora damicornis was tested by a 30-day controlled experiment with three different treatments: control group (Con: 29 °C), high temperature group (HT: 31 °C), and the group of high temperature with QQ bacteria inoculation (HTQQ: 31 °C + QQ bacteria). The results showed that QQ bacteria SCSIO 43740 inoculation can significantly mitigate the loss of symbiotic algae and impairment of photosynthesis efficiency of coral P. damicornis under thermal stress. Significant difference in superoxide dismutase (SOD) and catalase (CAT) enzyme activities between HT and HTQQ was not observed. In addition, QQ bacteria inoculation suppressed the coral microbial community beta-dispersion and improved the stability of microbial co-occurrence network under thermal stress. It was suggested that QQ bacteria inoculation can alleviate coral thermal stress via reshaping microbial interaction and maintain community stability of coral microbiome. This study provided new evidence for the probiotic function of QQ bacteria in corals, which shedding light on the development of new microbiological tools for coral reef conservation.
Collapse
Affiliation(s)
- Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Bing Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Wenqian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Huiming Sun
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Yanying Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Yantai University, Yantai, 264003, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China.
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China.
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.
| |
Collapse
|
3
|
Cruz AAD, Cabeo M, Durán-Viseras A, Sampedro I, Llamas I. Interference of AHL signal production in the phytophatogen Pantoea agglomerans as a sustainable biological strategy to reduce its virulence. Microbiol Res 2024; 285:127781. [PMID: 38795406 DOI: 10.1016/j.micres.2024.127781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Pantoea agglomerans is considered one of the most ubiquitous and versatile organisms that include strains that induce diseases in various crops and occasionally cause opportunistic infections in humans. To develop effective strategies to mitigate its impact on plant health and agricultural productivity, a comprehensive investigation is crucial for better understanding its pathogenicity. One proposed eco-friendly approach involves the enzymatic degradation of quorum sensing (QS) signal molecules like N-acylhomoserine lactones (AHLs), known as quorum quenching (QQ), offering potential treatment for such bacterial diseases. In this study the production of C4 and 3-oxo-C6HSL was identified in the plant pathogenic P. agglomerans CFBP 11141 and correlated to enzymatic activities such as amylase and acid phosphatase. Moreover, the heterologous expression of a QQ enzyme in the pathogen resulted in lack of AHLs production and the attenuation of the virulence by mean of drastically reduction of soft rot disease in carrots and cherry tomatoes. Additionally, the interference with the QS systems of P. agglomerans CFBP 11141 by two the plant growth-promoting and AHL-degrading bacteria (PGP-QQ) Pseudomonas segetis P6 and Bacillus toyonensis AA1EC1 was evaluated as a potential biocontrol approach for the first time. P. segetis P6 and B. toyonensis AA1EC1 demonstrated effectiveness in diminishing soft rot symptoms induced by P. agglomerans CFBP 11141 in both carrots and cherry tomatoes. Furthermore, the virulence of pathogen notably decreased when co-cultured with strain AA1EC1 on tomato plants.
Collapse
Affiliation(s)
- Alba Amaro-da Cruz
- Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, Granada 18071, Spain
| | - Mónica Cabeo
- Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, Granada 18071, Spain
| | - Ana Durán-Viseras
- Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, Granada 18071, Spain
| | - Inmaculada Sampedro
- Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, Granada 18071, Spain; Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada 18106, Spain.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, Granada 18071, Spain; Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada 18106, Spain.
| |
Collapse
|
4
|
Toxqui-Rodríguez S, Holhorea PG, Naya-Català F, Calduch-Giner JÀ, Sitjà-Bobadilla A, Piazzon C, Pérez-Sánchez J. Differential Reshaping of Skin and Intestinal Microbiota by Stocking Density and Oxygen Availability in Farmed Gilthead Sea Bream ( Sparus aurata): A Behavioral and Network-Based Integrative Approach. Microorganisms 2024; 12:1360. [PMID: 39065128 PMCID: PMC11278760 DOI: 10.3390/microorganisms12071360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Fish were kept for six weeks at three different initial stocking densities and water O2 concentrations (low-LD, 8.5 kg/m3 and 95-70% O2 saturation; medium-MD, 17 kg/m3 and 55-75% O2 saturation; high-HD, 25 kg/m3 and 60-45% O2 saturation), with water temperature increasing from 19 °C to 26-27 °C. The improvement in growth performance with the decrease in stocking density was related to changes in skin and intestinal mucosal microbiomes. Changes in microbiome composition were higher in skin, with an increased abundance of Alteromonas and Massilia in HD fish. However, these bacteria genera were mutually exclusive, and Alteromonas abundance was related to a reactive behavior and systemic growth regulation via the liver Gh/Igf system, while Massilia was correlated to a proactive behavior and a growth regulatory transition towards muscle rather than liver. At the intestinal level, microbial abundance showed an opposite trend for two bacteria taxa, rendering in a low abundance of Reyranella and a high abundance of Prauserella in HD fish. This trend was correlated with up-regulated host gene expression, affecting the immune response, epithelial cell turnover, and abiotic stress response. Most of the observed responses are adaptive in nature, and they would serve to infer new welfare indicators for increased stress resilience.
Collapse
Affiliation(s)
- Socorro Toxqui-Rodríguez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (S.T.-R.); (P.G.H.); (F.N.-C.); (J.À.C.-G.)
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (A.S.-B.); (C.P.)
| | - Paul George Holhorea
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (S.T.-R.); (P.G.H.); (F.N.-C.); (J.À.C.-G.)
| | - Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (S.T.-R.); (P.G.H.); (F.N.-C.); (J.À.C.-G.)
| | - Josep Àlvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (S.T.-R.); (P.G.H.); (F.N.-C.); (J.À.C.-G.)
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (A.S.-B.); (C.P.)
| | - Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (A.S.-B.); (C.P.)
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Castellón, Spain; (S.T.-R.); (P.G.H.); (F.N.-C.); (J.À.C.-G.)
| |
Collapse
|
5
|
Lubis AR, Sumon MAA, Dinh-Hung N, Dhar AK, Delamare-Deboutteville J, Kim DH, Shinn AP, Kanjanasopa D, Permpoonpattana P, Doan HV, Linh NV, Brown CL. Review of quorum-quenching probiotics: A promising non-antibiotic-based strategy for sustainable aquaculture. JOURNAL OF FISH DISEASES 2024; 47:e13941. [PMID: 38523339 DOI: 10.1111/jfd.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
The emergence of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquaculture underscores the urgent need for alternative veterinary strategies to combat antimicrobial resistance (AMR). These measures are vital to reduce the likelihood of entering a post-antibiotic era. Identifying environmentally friendly biotechnological solutions to prevent and treat bacterial diseases is crucial for the sustainability of aquaculture and for minimizing the use of antimicrobials, especially antibiotics. The development of probiotics with quorum-quenching (QQ) capabilities presents a promising non-antibiotic strategy for sustainable aquaculture. Recent research has demonstrated the effectiveness of QQ probiotics (QQPs) against a range of significant fish pathogens in aquaculture. QQ disrupts microbial communication (quorum sensing, QS) by inhibiting the production, replication, and detection of signalling molecules, thereby reducing bacterial virulence factors. With their targeted anti-virulence approach, QQPs have substantial promise as a potential alternative to antibiotics. The application of QQPs in aquaculture, however, is still in its early stages and requires additional research. Key challenges include determining the optimal dosage and treatment regimens, understanding the long-term effects, and integrating QQPs with other disease control methods in diverse aquaculture systems. This review scrutinizes the current literature on antibiotic usage, AMR prevalence in aquaculture, QQ mechanisms and the application of QQPs as a sustainable alternative to antibiotics.
Collapse
Affiliation(s)
- Anisa Rilla Lubis
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Md Afsar Ahmed Sumon
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | | | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | | | - Duangkhaetita Kanjanasopa
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand
| | - Patima Permpoonpattana
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Christopher L Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan, South Korea
| |
Collapse
|
6
|
Xu M, Lyu Y, Cheng K, Zhang B, Cai Z, Chen G, Zhou J. Interactions between quorum sensing/quorum quenching and virulence genes may affect coral health by regulating symbiotic bacterial community. ENVIRONMENTAL RESEARCH 2023; 238:117221. [PMID: 37775014 DOI: 10.1016/j.envres.2023.117221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Quorum sensing (QS) and quorum quenching (QQ) are two antagonistic processes that may regulate the composition, function and structure of bacterial community. In coral holobiont, autoinducers signaling mediate the communication pathways between interspecies and intraspecies bacteria, which regulate the expression of the virulence factors that can damage host health. However, under environmental stressors, the interaction between the QS/QQ gene and virulence factors and their role in the bacterial communities and coral bleaching is still not fully clear. To address this question, here, metagenomics method was used to examine the profile of QS/QQ and virulence genes from a deeply sequenced microbial database, obtained from three bleached and non-bleached corals species. The prediction of bacterial genes of bleached samples involved in functional metabolic pathways were remarkably decreased, and the bacterial community structure on bleached samples was significantly different compared to non-bleached samples. The distribution and significant difference in QS/QQ and virulence genes were also carried out. We found that Proteobacteria was dominant bacteria among all samples, and AI-1 system is widespread within this group of bacteria. The identified specific genes consistently exhibited a trend of increased pathogenicity in bleached corals relative to non-bleached corals. The abundance of pathogenicity-associated QS genes, including bapA, pfoA and dgcB genes, were significantly increased in bleached corals and can encode the protein of biofilm formation and the membrane damaging toxins promoting pathogenic adhesion and infection. Similarly, the virulence genes, such as superoxide dismutase (Mn-SOD gene), metalloproteinase (yme1, yydH and zmpB), glycosidases (malE, malF, malG, and malK) and LodAB (lodB) genes significantly increased. Conversely, QQ genes that inhibit QS activity and virulence factors to defense the pathogens, including blpA, lsrK, amiE, aprE and gmuG showed a significant decrease in bleached groups. Furthermore, the significant correlations were found among virulence, QS/QQ genes, and coral associated bacterial community, and the virulence genes interact with key QS/QQ genes, directly or indirectly influence symbiotic bacterial communities homeostasis, thereby impacting coral health. It suggested that the functional and structural divergence in the symbiont bacteria may be partially attribute to the interplay, involving interactions among the host, bacterial communication signal systems, and bacterial virulence factors. In conclusion, these data helped to reveal the characteristic behavior of coral symbiotic bacteria, and facilitated a better understanding of bleaching mechanism from a chemical ecological perspective.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong Province, PR China
| | - Yihua Lyu
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou, 510300, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Boya Zhang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong Province, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
7
|
Hosny RA, El-Badiea ZA, Elmasry DMA, Fadel MA. Efficacy of ceftiofur N-acyl homoserine lactonase niosome in the treatment of multi-resistant Klebsiella pneumoniae in broilers. Vet Res Commun 2023; 47:2083-2100. [PMID: 37430152 DOI: 10.1007/s11259-023-10161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
In this study, the efficiency of the ceftiofur N-acyl homoserine lactonase niosome against multi-resistant Klebsiella pneumoniae in broilers was evaluated. Fifty-six K. pneumoniae isolates previously recovered from different poultry and environmental samples were screened for the ahlK gene. The lactonase enzyme was extracted from eight quorum-quenching isolates. The niosome was formulated, characterized, and tested for minimal inhibitory concentration (MIC) and cytotoxicity. Fourteen-day-old chicks were assigned to six groups: groups Ӏ and П served as negative and positive controls, receiving saline and K. pneumoniae solutions, respectively. In groups Ш and IV, ceftiofur and niosome were administrated intramuscularly at a dose of 10 mg/kg body weight for five consecutive days, while groups V and VI received the injections following the K. pneumoniae challenge. Signs, mortality, and gross lesions were recorded. Tracheal swabs were collected from groups П, V, and VI for counting K. pneumoniae. Pharmacokinetic parameters were evaluated in four treated groups at nine-time points. The niosome was spherical and 56.5 ± 4.41 nm in size. The viability of Vero cells was unaffected up to 5 × MIC (2.4 gml-1). The niosome-treated challenged group showed mild signs and lesions with lower mortality and colony count than the positive control group. The maximum ceftiofur serum concentrations in treated groups were observed 2 h following administration. The elimination half-life in niosome-treated groups was longer than that reported in ceftiofur-treated groups. This is the first report of the administration of N-acyl homoserine lactonase for the control of multi-resistant K. pneumoniae infections in poultry.
Collapse
Affiliation(s)
- Reham A Hosny
- Reference Laboratory for Veterinary Quality Control On Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt.
| | - Zeinab A El-Badiea
- Reference Laboratory for Veterinary Quality Control On Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Dalia M A Elmasry
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mai A Fadel
- Pharmacology and Pyrogen Unit, Department of Chemistry, Toxicology, and Feed Deficiency, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| |
Collapse
|
8
|
Yousuf S, Tyagi A, Singh R. Probiotic Supplementation as an Emerging Alternative to Chemical Therapeutics in Finfish Aquaculture: a Review. Probiotics Antimicrob Proteins 2023; 15:1151-1168. [PMID: 35904730 DOI: 10.1007/s12602-022-09971-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 12/26/2022]
Abstract
Aquaculture is a promising food sector to fulfil nutritional requirements of growing human population. Live weight aquaculture production reached up to 114.5 million tonnes in 2018 and it is further expected to grow by 32% by year 2030. Among total aquaculture production, major product harvested is finfish and its contribution has reached 46% in recent years. Frequent outbreaks of infectious diseases create obstacle in finfish production, result in economic losses to the farmers and threaten the sustainability of aquaculture industry itself. In spite of following the best management practices, the use of antibiotics, chemotherapeutics and phytochemicals often become the method of choice in finfish culture. Among these, phytochemicals have shown lesser effect in animal welfare while antibiotics and other chemotherapeutics have led to negative consequences like emergence of drug-resistant bacteria, and accumulation of residues in host and culture system, resulting in quality degradation of aqua products. Making use of probiotics as viable alternative has paved a way for sustainable aquaculture and minimise the use of antibiotics and other chemotherapeutics that pose adverse effect on host and culture system. This review paper elucidates the knowledge about antibiotics and other chemicals, compilation of probiotics and their effects on health status of finfish as well as overall culture environment. Besides, concoction of probiotics and prebiotics for simultaneous application has also been discussed briefly.
Collapse
Affiliation(s)
- Sufiara Yousuf
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Rahul Singh
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India.
| |
Collapse
|
9
|
Priya PS, Boopathi S, Murugan R, Haridevamuthu B, Arshad A, Arockiaraj J. Quorum sensing signals: Aquaculture risk factor. REVIEWS IN AQUACULTURE 2023; 15:1294-1310. [DOI: 10.1111/raq.12774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/28/2022] [Indexed: 10/16/2023]
Abstract
AbstractBacteria produce several virulence factors and cause massive mortality in fish and crustaceans. Abundant quorum sensing (QS) signals and high cell density are essentially required for the production of such virulence factors. Although several strategies have been developed to control aquatic pathogens through antibiotics and QS inhibition, the impact of pre‐existing QS signals in the aquatic environment has been overlooked. QS signals cause detrimental effects on mammalian cells and induce cell death by interfering with multiple cellular pathways. Moreover, QS signals not only function as a messenger, but also annihilate the functions of the host immune system which implies that QS signals should be designated as a major virulence factor. Despite QS signals' role has been well documented in mammalian cells, their impact on aquatic organisms is still at the budding stage. However, many aquatic organisms produce enzymes that degrade and detoxify such QS signals. In addition, physical and chemical factors also determine the stability of the QS signals in the aqueous environment. The balance between QS signals and existing QS signals degrading factors essentially determines the disease progression in aquatic organisms. In this review, we highlight the impact of QS signals on aquatic organisms and further discussed potential alternative strategies to control disease progression.
Collapse
Affiliation(s)
- P. Snega Priya
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Seenivasan Boopathi
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Negeri Sembilan Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| |
Collapse
|
10
|
Diversity of Bacteria with Quorum Sensing and Quenching Activities from Hydrothermal Vents in the Okinawa Trough. Microorganisms 2023; 11:microorganisms11030748. [PMID: 36985321 PMCID: PMC10052519 DOI: 10.3390/microorganisms11030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Quorum sensing (QS) is a chemical communication system by which bacteria coordinate gene expression and social behaviors. Quorum quenching (QQ) refers to processes of inhibiting the QS pathway. Deep-sea hydrothermal vents are extreme marine environments, where abundant and diverse microbial communities live. However, the nature of chemical communication in bacteria inhabiting the hydrothermal vent is poorly understood. In this study, the QS and QQ activities with N-acyl homoserine lactones (AHLs) as the autoinducer were detected in bacteria isolated from hydrothermal vents in the Okinawa Trough. A total of 18 and 108 isolates possessed AHL-producing and AHL-degrading abilities, respectively. Bacteria mainly affiliated with Rhodobacterales, Hyphomicrobiales, Enterobacterales and Sphingomonadales showed QS activities; QQ was mainly associated with Bacillales, Rhodospirillales and Sphingomonadales. The results showed that the bacterial QS and QQ processes are prevalent in hydrothermal environments in the Okinawa Trough. Furthermore, QS significantly affected the activities of extracellular enzymes represented by β-glucosidase, aminopeptidase and phosphatase in the four isolates with higher QS activities. Our results increase the current knowledge of the diversity of QS and QQ bacteria in extreme marine environments and shed light on the interspecific relationships to better investigate their dynamics and ecological roles in biogeochemical cycling.
Collapse
|
11
|
Gupta DS, Kumar MS. The implications of quorum sensing inhibition in bacterial antibiotic resistance- with a special focus on aquaculture. J Microbiol Methods 2022; 203:106602. [PMID: 36270462 DOI: 10.1016/j.mimet.2022.106602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
The aquaculture industry is an expanding and demanding industry and due to an increase in urbanization, with rise in income of developing countries population, it offers to provide a sustainable food supply. However, the industry is facing a number of challenges, out of which few needs to be tackled immediately to maximise the productivity. An upcoming problem is the emergence of antibiotic resistant pathogens due to the unchecked use of antibiotics in aquaculture and human clinical practices. A wide variety of aquatic pathogens such as Edwardsiella, Vibrio, and Aeromonas spp. use quorum sensing (QS) systems, a regulatory process involving cell communication via signalling molecules for the collective function of pathogens which regulates the genes expression including virulent genes. Quorum sensing results in bacterial biofilms formation, which leads to their reduced susceptibility towards antimicrobial agents. The usage of quorum sensing inhibitors (QSIs) has been proposed as an attractive strategy to tackle this problem. Due to the modulation of virulence genes expression, QSIs can be used as novel and viable approach to overcome antibiotic resistance in aquaculture. In this review, we direct our attention to the quorum sensing phenomenon and its viability as a target pathway for tackling the ever-growing problem of antimicrobial resistance in aquaculture. This review also provides a concise compilation of the currently available QSIs and investigates possible natural sources for quorum quenching.
Collapse
Affiliation(s)
- Dhruv S Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'(S) NMIMS, Vile Parle (w), Mumbai 400056, India
| | - Maushmi S Kumar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'(S) NMIMS, Vile Parle (w), Mumbai 400056, India.
| |
Collapse
|
12
|
Li F, Hu X, Sun X, Li H, Lu J, Li Y, Bao M. Effect of fermentation pH on the structure, rheological properties, and antioxidant activities of exopolysaccharides produced by Alteromonas australica QD. Glycoconj J 2022; 39:773-787. [PMID: 36367683 DOI: 10.1007/s10719-022-10087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
The pH value was essential for the growth and metabolism of microorganisms. Acidic pH exopolysaccharide (AC-EPS) and alkaline pH exopolysaccharide (AL-EPS) secreted by A. australica QD mediated by pH were studied in this paper. The total carbohydrate content and molecular weight of AC-EPS (79.59% ± 2.24% (w/w), 8.374 × 105 Da) and AL-EPS (82.48% ± 1.46% (w/w), 6.182 × 105 Da) were estimated and compared. In AC-EPS, mannose (3.78%) and galactose (3.24%) content was more, while the proportion of glucuronic acid was less in comparison to AL-EPS. The scanning electron microscopy revealed the structural differences among the AC-EPS and AL-EPS. Thermogravimetric analysis showed degradation temperatures of 272.8 °C and 244.9 °C for AC-EPS and AL-EPS, respectively. AC-EPS was found to exhibit better rheological properties and emulsifying capabilities, while AL-EPS had superior antioxidant activities. Overall, both AC-EPS and AL-EPS have the potential to be used as emulsifiers and biological antioxidants.
Collapse
Affiliation(s)
- Fengshu Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinren Lu
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China. .,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
13
|
Rodríguez M, Reina JC, Sampedro I, Llamas I, Martínez-Checa F. Peribacillus castrilensis sp. nov.: A Plant-Growth-Promoting and Biocontrol Species Isolated From a River Otter in Castril, Granada, Southern Spain. FRONTIERS IN PLANT SCIENCE 2022; 13:896728. [PMID: 35812926 PMCID: PMC9262404 DOI: 10.3389/fpls.2022.896728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
A strictly aerobic, chemoheterotrophic, endospore-forming, Gram-positive, rod-shaped bacterial strain N3T was isolated from the feces of a river otter in Castril (Granada, southern Spain). It is halotolerant, motile, and catalase-, oxidase-, ACC deaminase-, and C4- and C8-lipase-positive. It promotes tomato plant growth and can reduce virulence in Erwinia amylovora CECT 222T and Dickeya solani LMG 25993T through interference in their quorum-sensing systems, although other antagonistic mechanisms could also occur. A phylogenetic analysis of the 16S rRNA gene sequence as well as the phenotypic and phylogenomic analyses indicated that the strain N3T is a novel species of the genus Peribacillus, with the highest 16S rRNA sequence similar to that of Bacillus frigoritolerans DSM 8801T (99.93%) and Peribacillus simplex DSM 1321T (99.80%). Genomic digital DNA-DNA hybridization (dDDH) between the strain N3T and Bacillus frigoritolerans DSM 8801T and Peribacillus simplex was 12.8 and 69.1%, respectively, and the average nucleotide identity (ANIb) of strain N3T and Bacillus frigoritolerans DSM 8801T and Peribacillus simplex was 67.84 and 93.21%, respectively. The genomic G + C content was 40.3 mol%. Its main cellular fatty acids were anteiso-C15:0 and iso-C15:0. Using 16S rRNA phylogenetic and in silico phylogenomic analyses, together with the chemotaxonomic and phenotypic data, we demonstrated that the type strain N3T (=CECT 30509T = LMG 32505T) is a novel species of the genus Peribacillus and the name Peribacillus castrilensis sp. nov. is proposed.
Collapse
Affiliation(s)
- Miguel Rodríguez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Inmaculada Sampedro
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Biomedical Research Centre (CIBM), Institute of Biotechnology, University of Granada, Granada, Spain
| | - Fernando Martínez-Checa
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Biomedical Research Centre (CIBM), Institute of Biotechnology, University of Granada, Granada, Spain
| |
Collapse
|
14
|
Sun X, Chen DD, Deng S, Zhang G, Peng X, SA R. Using combined Lactobacillus and quorum quenching enzyme supplementation as an antibiotic alternative to improve broiler growth performance, anti-oxidative status, immune response, and gut microbiota. Poult Sci 2022; 101:101997. [PMID: 35841646 PMCID: PMC9289872 DOI: 10.1016/j.psj.2022.101997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/03/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022] Open
|
15
|
Isolation of Bacteria Capable of Degrading Various AHLs for Biofouling Control in Membrane Bioreactors. WATER 2022. [DOI: 10.3390/w14111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Membrane bioreactors (MBRs) are widely used to treat wastewater, mainly due to the production of high-quality effluent. However, biofilm forming on the surface of membranes can cause many problems, which remains one of the major limitations of this technique. Bacterial quorum quenching (QQ) has been proven to be a successful strategy to control biofouling in MBRs. However, for many QQ bacterial isolates, the detailed degradation rates of acyl homoserine lactones (AHLs) have rarely been reported. Therefore, this study aimed to isolate potential QQ bacteria and investigate their degradation rates against eight different AHLs. Results showed that four isolates (A9, A12, B11, and D3) exhibited consistent C8-HSL–(N-octanoyl-L-homoserine lactone) removal capabilities. These four isolates removed at least 70% of all AHLs tested within 180 min. They might have different QQ enzymes, based on our observation that the locations of enzyme activities differed. The bacteria most closely related to A9, A12, and B11 were Brucella anthropic, Bacillus cereus, and Bacillus toyonensis, respectively. Bacillus species have shown QQ activity in many studies, but AHL-reducing Brucella species have not been previously reported. Overall, this study extends our current knowledge of QQ bacteria that could be used to mitigate biofilm formation on MBR membranes.
Collapse
|
16
|
Reina JC, Pérez P, Llamas I. Quorum Quenching Strains Isolated from the Microbiota of Sea Anemones and Holothurians Attenuate Vibriocorallilyticus Virulence Factors and Reduce Mortality in Artemiasalina. Microorganisms 2022; 10:microorganisms10030631. [PMID: 35336206 PMCID: PMC8950658 DOI: 10.3390/microorganisms10030631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Interference with quorum-sensing (QS) intercellular communication systems by the enzymatic disruption of N-acylhomoserine lactones (AHLs) in Gram-negative bacteria has become a promising strategy to fight bacterial infections. In this study, seven strains previously isolated from marine invertebrates and selected for their ability to degrade C6 and C10-HSL, were identified as Acinetobacter junii, Ruegeria atlantica, Microbulbifer echini, Reinheimera aquimaris, and Pseudomonas sihuiensis. AHL-degrading activity against a wide range of synthetic AHLs were identified by using an agar well diffusion assay and Agrobacterium tumefaciens NTL4 and Chromobacterium violaceum CV026 and VIR07 as biosensors. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis indicated that this activity was not due to an AHL lactonase. All the strains degraded Vibrio coralliilyticus AHLs in coculture experiments, while some strains reduced or abolished the production of virulence factors. In vivo assays showed that strains M3-111 and M3-127 reduced this pathogen’s virulence and increased the survival rate of Artemia salina up to 3-fold, indicating its potential use for biotechnological purposes. To our knowledge, this is the first study to describe AHL-degrading activities in some of these marine species. These findings highlight that the microbiota associated with marine invertebrates constitute an important underexplored source of biological valuable compounds.
Collapse
Affiliation(s)
- José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.C.R.); (P.P.)
| | - Pedro Pérez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.C.R.); (P.P.)
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.C.R.); (P.P.)
- Biomedical Research Center (CIBM), Institute of Biotechnology, University of Granada, 18100 Granada, Spain
- Correspondence:
| |
Collapse
|
17
|
Targeting Acyl Homoserine Lactones (AHLs) by the quorum quenching bacterial strains to control biofilm formation in Pseudomonas aeruginosa. Saudi J Biol Sci 2022; 29:1673-1682. [PMID: 35280554 PMCID: PMC8913397 DOI: 10.1016/j.sjbs.2021.10.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/12/2023] Open
Abstract
Navigating novel biological strategies to mitigate bacterial biofilms have great worth to combat bacterial infections. Bacterial infections caused by the biofilm forming bacteria are 1000 times more resistant to antibiotics than the planktonic bacteria. Among the known bacterial infections, more than 70% involve biofilms which severely complicates treatment options. Biofilm formation is mainly regulated by the Quorum sensing (QS) mechanism. Interference with the QS system by the quorum quenching (QQ) enzyme is a potent strategy to mitigate biofilm. In this study, bacterial strains with QQ activity were identified and their anti-biofilm potential was investigated against the Multidrug Resistant (MDR) Pseudomonas aeruginosa. A Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136-based bioassays were used to confirm the degradation of different Acyl Homoserine Lactones (AHLs) by QQ isolates. The 16S rRNA gene sequencing of the isolated strains identified them as Bacillus cereus strain QSP03, B. subtilis strain QSP10, Pseudomonas putida strain QQ3 and P. aeruginosa strain QSP01. Biofilm mitigation potential of QQ isolates was tested against MDR P. aeruginosa and the results suggested that 50% biofilm reduction was observed by QQ3 and QSP01 strains, and around 60% reduction by QSP10 and QSP03 bacterial isolates. The presence of AHL degrading enzymes, lactonases and acylases, was confirmed by PCR based screening and sequencing of the already annotated genes aiiA, pvdQ and quiP. Altogether, these results exhibit that QQ bacterial strains or their products could be useful to control biofilm formation in P.aeruginosa.
Collapse
|
18
|
Bacterial controlled mitigation of dysbiosis in a seaweed disease. THE ISME JOURNAL 2022; 16:378-387. [PMID: 34341505 PMCID: PMC8776837 DOI: 10.1038/s41396-021-01070-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Disease in the marine environment is predicted to increase with anthropogenic stressors and already affects major habitat-formers, such as corals and seaweeds. Solutions to address this issue are urgently needed. The seaweed Delisea pulchra is prone to a bleaching disease, which is caused by opportunistic pathogens and involves bacterial dysbiosis. Bacteria that can inhibit these pathogens and/or counteract dysbiosis are therefore hypothesised to reduce disease. This study aimed to identify such disease-protective bacteria and investigate their protective action. One strain, Phaeobacter sp. BS52, isolated from healthy D. pulchra, was antagonistic towards bleaching pathogens and significantly increased the proportion of healthy individuals when applied before the pathogen challenge (pathogen-only vs. BS52 + pathogen: 41-80%), and to a level similar to the control. However, no significant negative correlations between the relative abundances of pathogens and BS52 on D. pulchra were detected. Instead, inoculation of BS52 mitigated pathogen-induced changes in the epibacterial community. These observations suggest that the protective activity of BS52 was due to its ability to prevent dysbiosis, rather than direct pathogen inhibition. This study demonstrates the feasibility of manipulating bacterial communities in seaweeds to reduce disease and that mitigation of dysbiosis can have positive health outcomes.
Collapse
|
19
|
Shaheer P, Sreejith VN, Joseph TC, Murugadas V, Lalitha KV. Quorum quenching Bacillus spp.: an alternative biocontrol agent for Vibrio harveyi infection in aquaculture. DISEASES OF AQUATIC ORGANISMS 2021; 146:117-128. [PMID: 34617517 DOI: 10.3354/dao03619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Quorum sensing (QS) is a type of cell to cell communication in bacteria that can also regulate the virulence potential in pathogenic strains. Hence, QS disruption, i.e. the quorum quenching (QQ) mechanism, is presently being explored as a novel bio-control strategy to counter bacterial infections. In the present study, we characterized the QQ ability of Bacillus spp. strains to reduce the expression of some virulence factors of a shrimp pathogen, Vibrio harveyi. We screened a total of 118 spore-forming bacterial isolates from aquaculture ponds and mangrove soil for their ability to degrade the synthetic N-acyl-homoserine lactones (AHLs) C4-HSL, C6-HSL, C8-HSL, and C10-HSL. We then selected the top 17 isolates with high AHL-degradation ability for further study. Among them, B. subtilis MFB10, B. lentus MFB2, and B. firmus MFB7 had the highest ability for degradation. These 3 isolates suppressed the expression of virulence genes encoding protease, lipase, phospholipase, caseinase, chitinase, and gelatinase, and potentially inhibited the biofilm formation of V. harveyi MFB32. The reduction in expression of virulence genes like those coding for metalloprotease, serine protease, and haemolysin were confirmed by real-time PCR analysis. Moreover, in an in vivo challenge experiment, these Bacillus spp. protected Penaeus monodon post-larvae against V. harveyi MFB3 infection. Our results demonstrate the potential application of AHL-degrading Bacillus spp. as an alternative to antibiotics in shrimp hatcheries to control luminescent vibriosis. This novel bio-therapeutic method is a promising approach towards disease control in shrimp aquaculture.
Collapse
Affiliation(s)
- P Shaheer
- Microbiology Fermentation and Biotechnology Division, Central Institute of Fisheries Technology (CIFT), Matsyapuri PO, Cochin 682029, Kerala, India
| | | | | | | | | |
Collapse
|
20
|
Zhang W, Fan X, Li J, Ye T, Mishra S, Zhang L, Chen S. Exploration of the Quorum-Quenching Mechanism in Pseudomonas nitroreducens W-7 and Its Potential to Attenuate the Virulence of Dickeya zeae EC1. Front Microbiol 2021; 12:694161. [PMID: 34413838 PMCID: PMC8369503 DOI: 10.3389/fmicb.2021.694161] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Quorum quenching (QQ) is a novel, promising strategy that opens up a new perspective for controlling quorum-sensing (QS)-mediated bacterial pathogens. QQ is performed by interfering with population-sensing systems, such as by the inhibition of signal synthesis, catalysis of degrading enzymes, and modification of signals. In many Gram-negative pathogenic bacteria, a class of chemically conserved signaling molecules named N-acyl homoserine lactones (AHLs) have been widely studied. AHLs are involved in the modulation of virulence factors in various bacterial pathogens including Dickeya zeae. Dickeya zeae is the causal agent of plant-rot disease of bananas, rice, maize, potatoes, etc., causing enormous economic losses of crops. In this study, a highly efficient AHL-degrading bacterial strain W-7 was isolated from activated-sludge samples and identified as Pseudomonas nitroreducens. Strain W-7 revealed a superior ability to degrade N-(3-oxododecanoyl)-l-homoserine lactone (OdDHL) and completely degraded 0.2 mmol/L of OdDHL within 48 h. Gas chromatography-mass spectrometry (GC-MS) identified N-cyclohexyl-propanamide as the main intermediate metabolite during AHL biodegradation. A metabolic pathway for AHL in strain W-7 was proposed based on the chemical structure of AHL and intermediate products. In addition to the degradation of OdDHL, this strain was also found to be capable of degrading a wide range of AHLs including N-(3-oxohexanoyl)-l-homoserine lactone (OHHL), N-(3-oxooctanoyl)-l-homoserine lactone (OOHL), and N-hexanoyl-l-homoserine lactone (HHL). Moreover, the application of strain W-7 as a biocontrol agent could substantially attenuate the soft rot caused by D. zeae EC1 to suppress tissue maceration in various host plants. Similarly, the application of crude enzymes of strain W-7 significantly reduced the disease incidence and severity in host plants. These original findings unveil the biochemical aspects of a highly efficient AHL-degrading bacterial isolate and provide useful agents that exhibit great potential for the control of infectious diseases caused by AHL-dependent bacterial pathogens.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xinghui Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Tian Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lianhui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
21
|
Packiavathy IASV, Kannappan A, Thiyagarajan S, Srinivasan R, Jeyapragash D, Paul JBJ, Velmurugan P, Ravi AV. AHL-Lactonase Producing Psychrobacter sp. From Palk Bay Sediment Mitigates Quorum Sensing-Mediated Virulence Production in Gram Negative Bacterial Pathogens. Front Microbiol 2021; 12:634593. [PMID: 33935995 PMCID: PMC8079732 DOI: 10.3389/fmicb.2021.634593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Quorum sensing (QS) is a signaling mechanism governed by bacteria used to converse at inter- and intra-species levels through small self-produced chemicals called N-acylhomoserine lactones (AHLs). Through QS, bacteria regulate and organize the virulence factors’ production, including biofilm formation. AHLs can be degraded by an action called quorum quenching (QQ) and hence QQ strategy can effectively be employed to combat biofilm-associated bacterial pathogenesis. The present study aimed to identify novel bacterial species with QQ potential. Screening of Palk Bay marine sediment bacteria for QQ activity ended up with the identification of marine bacterial isolate 28 (MSB-28), which exhibited a profound QQ activity against QS biomarker strain Chromobacterium violaceum ATCC 12472. The isolate MSB-28 was identified as Psychrobacter sp. through 16S-rRNA sequencing. Psychrobacter sp. also demonstrated a pronounced activity in controlling the biofilm formation in different bacteria and biofilm-associated virulence factors’ production in P. aeruginosa PAO1. Solvent extraction, heat inactivation, and proteinase K treatment assays clearly evidence the enzymatic nature of the bioactive lead. Furthermore, AHL’s lactone ring cleavage was confirmed with experiments including ring closure assay and chromatographic analysis, and thus the AHL-lactonase enzyme production in Psychrobacter sp. To conclude, this is the first report stating the AHL-lactonase mediated QQ activity from marine sediment bacteria Psychrobacter sp. Future work deals with the characterization, purification, and mass cultivation of the purified protein and should pave the way to assessing the feasibility of the identified protein in controlling QS and biofilm-mediated multidrug resistant bacterial infections in mono or multi-species conditions.
Collapse
Affiliation(s)
| | - Arunachalam Kannappan
- Department of Biotechnology, Alagappa University, Karaikudi, India.,Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Ramanathan Srinivasan
- Department of Biotechnology, Alagappa University, Karaikudi, India.,Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Danaraj Jeyapragash
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - John Bosco John Paul
- Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Pazhanivel Velmurugan
- Department of Biotechnology, Alagappa University, Karaikudi, India.,Centre for Materials Engineering and Regnerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | | |
Collapse
|
22
|
Wei Y, Bu J, Long H, Zhang X, Cai X, Huang A, Ren W, Xie Z. Community Structure of Protease-Producing Bacteria Cultivated From Aquaculture Systems: Potential Impact of a Tropical Environment. Front Microbiol 2021; 12:638129. [PMID: 33613508 PMCID: PMC7889957 DOI: 10.3389/fmicb.2021.638129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Protease-producing bacteria play vital roles in degrading organic matter of aquaculture system, while the knowledge of diversity and bacterial community structure of protease-producing bacteria is limited in this system, especially in the tropical region. Herein, 1,179 cultivable protease-producing bacterial strains that belonged to Actinobacteria, Firmicutes, and Proteobacteria were isolated from tropical aquaculture systems, of which the most abundant genus was Bacillus, followed by Vibrio. The diversity and relative abundance of protease-producing bacteria in sediment were generally higher than those in water. Twenty-one genera from sediment and 16 genera from water were identified, of which Bacillus dominated by Bacillus hwajinpoensis in both and Vibrio dominated by Vibrio owensii in water were the dominant genera. The unique genera in sediment or water accounted for tiny percentage may play important roles in the stability of community structure. Eighty V. owensii isolates were clustered into four clusters (ET-1-ET-4) at 58% of similarity by ERIC-PCR (enterobacterial repetitive intergenic consensus-polymerase chain reaction), which was identified as a novel branch of V. owensii. Additionally, V. owensii strains belonged to ET-3 and ET-4 were detected in most aquaculture ponds without outbreak of epidemics, indicating that these protease-producing bacteria may be used as potential beneficial bacteria for wastewater purification. Environmental variables played important roles in shaping protease-producing bacterial diversity and community structure in aquaculture systems. In sediment, dissolved oxygen (DO), chemical oxygen demand (COD), and salinity as the main factors positively affected the distributions of dominant genus (Vibrio) and unique genera (Planococcus and Psychrobacter), whereas temperature negatively affected that of Bacillus (except B. hwajinpoensis). In water, Alteromonas as unique genus and Photobacterium were negatively affected by NO3 --N and NO2 --N, respectively, whereas pH as the main factor positively affected the distribution of Photobacterium. These findings will lay a foundation for the development of protease-producing bacterial agents for wastewater purification and the construction of an environment-friendly tropical aquaculture model.
Collapse
Affiliation(s)
- Yali Wei
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jun Bu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| | - Xiang Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| | - Xiaoni Cai
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| | - Aiyou Huang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| | - Wei Ren
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| | - Zhenyu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| |
Collapse
|
23
|
Lv X, Cui T, Du H, Sun M, Bai F, Li J, Zhang D. Lactobacillus plantarum CY 1-1: A novel quorum quenching bacteria and anti-biofilm agent against Aeromonas sobria. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
AhaP, A Quorum Quenching Acylase from Psychrobacter sp. M9-54-1 That Attenuates Pseudomonas aeruginosa and Vibrio coralliilyticus Virulence. Mar Drugs 2021; 19:md19010016. [PMID: 33401388 PMCID: PMC7823738 DOI: 10.3390/md19010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/11/2022] Open
Abstract
Although Psychrobacter strain M9-54-1 had been previously isolated from the microbiota of holothurians and shown to degrade quorum sensing (QS) signal molecules C6 and C10-homoserine lactone (HSL), little was known about the gene responsible for this activity. In this study, we determined the whole genome sequence of this strain and found that the full 16S rRNA sequence shares 99.78-99.66% identity with Psychrobacter pulmonis CECT 5989T and P. faecalis ISO-46T. M9-54-1, evaluated using the agar well diffusion assay method, showed high quorum quenching (QQ) activity against a wide range of synthetic N-acylhomoserine lactone (AHLs) at 4, 15, and 28 °C. High-performance liquid chromatography-mass-spectrometry (HPLC-MS) confirmed that QQ activity was due to an AHL-acylase. The gene encoding for QQ activity in strain M9-54-1 was identified from its genome sequence whose gene product was named AhaP. Purified AhaP degraded substituted and unsubstituted AHLs from C4- to C14-HSL. Furthermore, heterologous expression of ahaP in the opportunistic pathogen Pseudomonas aeruginosa PAO1 reduced the expression of the QS-controlled gene lecA, encoding for a cytotoxic galactophilic lectin and swarming motility protein. Strain M9-54-1 also reduced brine shrimp mortality caused by Vibrio coralliilyticus VibC-Oc-193, showing potential as a biocontrol agent in aquaculture.
Collapse
|
25
|
Abdullah, Algburi A, Asghar A, Huang Q, Mustfa W, Javed HU, Zehm S, Chikindas ML. Black cardamom essential oil prevents Escherichia coli O157:H7 and Salmonella Typhimurium JSG 1748 biofilm formation through inhibition of quorum sensing. Journal of Food Science and Technology 2020; 58:3183-3191. [PMID: 34294980 DOI: 10.1007/s13197-020-04821-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 01/02/2023]
Abstract
This study aimed to investigate the chemical composition, using GC-MS, and anti-biofilm potential of black cardamom essential oil (BCEO) against biofilms of Escherichia coli O157:H7 and Salmonella Typhimurium JSG 1748 through inhibition of bacterial quorum sensing. GC-MS quantification demonstrated that BCEO contains 1,8-cineole (44.24%), α-terpinyl acetate (12.25%), nerolidol (6.03%), and sabinene (5.96%) as the major bioactive compounds. Antioxidant assays for BCEO revealed the total phenolic and flavonoid mean values were 1325.03 ± 7.69 mg GAE 100/g and 168.25 ± 5.26 mg CE/g, respectively. In regards to antimicrobial potential, Candida albicans was the most sensitive species compared to Streptococcus mutans, Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, and Salmonella Typhimurium with the following zones of inhibition; 14.4 ± 0.52, 13.2 ± 0.42, 11.2 ± 0.28, 11.0 ± 0.52, 8.2 ± 0.24 and 6.6 ± 0.18 mm in diameter, respectively. Biofilm inhibition by BCEO was concentration-dependent, when various concentrations of 0.03, 0.06, 0.12, 0.25 and 0.5% were applied, 33.67, 34.14, 38.66, 46.65 and 50.17% of Salmonella Typhimurium biofilm was inhibited, while 47.31, 54.15, 76.57, 83.36 and 84.63% of Escherichia coli biofilm formation was prevented. Chromobacterium violaceum ATCC 12,472 and its product violacein, was used as a microbial indicator for enhancement or inhibition of quorum sensing. Our data showed that 0.5% of BCEO inhibited violacein production without influencing the growth of Chromobacterium violaceum, while 1% of BCEO, caused 100% inhibtion of violacein production together with 30% inhibition of growth. This study shows that BCEO possesses promising antioxidant and antimicrobial potential, and found anti-biofilm activities linked to the quenching of the quorum sensing system of E. coli and S. Typhimurium.
Collapse
Affiliation(s)
- Abdullah
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 China.,Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901 USA
| | - Ammar Algburi
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901 USA.,Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq
| | - Ali Asghar
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901 USA
| | - Warda Mustfa
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026 PR China.,University of Narowal, Punjab, Pakistan
| | - Hafiz U Javed
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 China
| | - Saskia Zehm
- Department of Life Sciences and Technology, Beuth University of Applied Sciences, Berlin, Germany
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, New Brunswick, NJ 08901 USA.,Don State Technical University, Rostov-on-Don, Russia.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
26
|
Ye T, Zhou T, Xu X, Zhang W, Fan X, Mishra S, Zhang L, Zhou X, Chen S. Whole-Genome Sequencing Analysis of Quorum Quenching Bacterial Strain Acinetobacter lactucae QL-1 Identifies the FadY Enzyme for Degradation of the Diffusible Signal Factor. Int J Mol Sci 2020; 21:E6729. [PMID: 32937869 PMCID: PMC7554724 DOI: 10.3390/ijms21186729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
The diffusible signal factor (DSF) is a fatty acid signal molecule and is widely conserved in various Gram-negative bacteria. DSF is involved in the regulation of pathogenic virulence in many bacterial pathogens, including Xanthomonas campestris pv. campestris (Xcc). Quorum quenching (QQ) is a potential approach for preventing and controlling DSF-mediated bacterial infections by the degradation of the DSF signal. Acinetobacter lactucae strain QL-1 possesses a superb DSF degradation ability and effectively attenuates Xcc virulence through QQ. However, the QQ mechanisms in strain QL-1 are still unknown. In the present study, whole-genome sequencing and comparative genomics analysis were conducted to identify the molecular mechanisms of QQ in strain QL-1. We found that the fadY gene of QL-1 is an ortholog of XccrpfB, a known DSF degradation gene, suggesting that strain QL-1 is capable of inactivating DSF by QQ enzymes. The results of site-directed mutagenesis indicated that fadY is required for strain QL-1 to degrade DSF. The determination of FadY activity in vitro revealed that the fatty acyl-CoA synthetase FadY had remarkable catalytic activity. Furthermore, the expression of fadY in transformed Xcc strain XC1 was investigated and shown to significantly attenuate bacterial pathogenicity on host plants, such as Chinese cabbage and radish. This is the first report demonstrating a DSF degradation enzyme from A. lactucae. Taken together, these findings shed light on the QQ mechanisms of A. lactucae strain QL-1, and provide useful enzymes and related genes for the biocontrol of infectious diseases caused by DSF-dependent bacterial pathogens.
Collapse
Affiliation(s)
- Tian Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Tian Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xudan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xinghui Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lianhui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaofan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
27
|
Zhang W, Luo Q, Zhang Y, Fan X, Ye T, Mishra S, Bhatt P, Zhang L, Chen S. Quorum Quenching in a Novel Acinetobacter sp. XN-10 Bacterial Strain against Pectobacterium carotovorum subsp. carotovorum. Microorganisms 2020; 8:microorganisms8081100. [PMID: 32717872 PMCID: PMC7466008 DOI: 10.3390/microorganisms8081100] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023] Open
Abstract
Quorum sensing (QS) is a cell density-dependent mechanism that regulates the expression of specific genes in microbial cells. Quorum quenching (QQ) is a promising strategy for attenuating pathogenicity by interfering with the QS system of pathogens. N-Acyl-homoserine lactones (AHLs) act as signaling molecules in many Gram-negative bacterial pathogens and have received wide attention. In this study, a novel, efficient AHL-degrading bacterium, Acinetobacter sp. strain XN-10, was isolated from agricultural contaminated soil and evaluated for its degradation efficiency and potential use against QS-mediated pathogens. Strain XN-10 could effectively degrade N-(3-oxohexanoyl)-L-homoserine lactone (OHHL), N-hexanoyl-L-homoserine lactone (C6HSL), N-(3-oxododecanoyl)-L-homoserine lactone (3OC12HSL), and N-(3-oxooctanoyl)-L-homoserine lactone (3OC8HSL), which all belong to the AHL family. Analysis of AHL metabolic products by gas chromatography-mass spectrometry (GC-MS) led to the identification of N-cyclohexyl-propanamide, and pentanoic acid, 4-methyl, methyl ester as the main intermediate metabolites, revealing that AHL could be degraded by hydrolysis and dehydroxylation. All intermediates were transitory and faded away without any non-cleavable metabolites at the end of the experiment. Furthermore, strain XN-10 significantly attenuated the pathogenicity of Pectobacterium carotovorum subsp. carotovorum (Pcc) to suppress tissue maceration in carrots, potatoes, and Chinese cabbage. Taken together, our results shed light on the QQ mechanism of a novel AHL-degrading bacterial isolate, and they provide useful information which show potential for biocontrol of infectious diseases caused by AHL-dependent bacterial pathogens.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qingqing Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yiyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xinghui Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Tian Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lianhui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
28
|
Muras A, Otero-Casal P, Blanc V, Otero A. Acyl homoserine lactone-mediated quorum sensing in the oral cavity: a paradigm revisited. Sci Rep 2020; 10:9800. [PMID: 32555242 PMCID: PMC7300016 DOI: 10.1038/s41598-020-66704-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
Acyl homoserine lactones (AHLs), the quorum sensing (QS) signals produced by Gram-negative bacteria, are currently considered to play a minor role in the development of oral biofilm since their production by oral pathogens has not been ascertained thus far. However, we report the presence of AHLs in different oral samples and their production by the oral pathogen Porphyromonas gingivalis. The importance of AHLs is further supported by a very high prevalence of AHL-degradation capability, up to 60%, among bacteria isolated from dental plaque and saliva samples. Furthermore, the wide-spectrum AHL-lactonase Aii20J significantly inhibited oral biofilm formation in different in vitro biofilm models and caused important changes in bacterial composition. Besides, the inhibitory effect of Aii20J on a mixed biofilm of 6 oral pathogens was verified using confocal microscopy. Much more research is needed in order to be able to associate specific AHLs with oral pathologies and to individuate the key actors in AHL-mediated QS processes in dental plaque formation. However, these results indicate a higher relevance of the AHLs in the oral cavity than generally accepted thus far and suggest the potential use of inhibitory strategies against these signals for the prevention and treatment of oral diseases.
Collapse
Affiliation(s)
- Andrea Muras
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paz Otero-Casal
- Departamento de Ciruxía e Especialidade Médico-Cirúrxica, Facultade de Medicina e Odontoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Unit of Oral Health, C.S. Santa Comba-Negreira, SERGAS, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Dentaid S.L., Barcelona, Spain
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
29
|
Rodríguez M, Torres M, Blanco L, Béjar V, Sampedro I, Llamas I. Plant growth-promoting activity and quorum quenching-mediated biocontrol of bacterial phytopathogens by Pseudomonas segetis strain P6. Sci Rep 2020; 10:4121. [PMID: 32139754 PMCID: PMC7058018 DOI: 10.1038/s41598-020-61084-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/18/2020] [Indexed: 01/18/2023] Open
Abstract
Given the major threat of phytopathogenic bacteria to food production and ecosystem stability worldwide, novel alternatives to conventional chemicals-based agricultural practices are needed to combat these bacteria. The objective of this study is to evaluate the ability of Pseudomonas segetis strain P6, which was isolated from the Salicornia europaea rhizosphere, to act as a potential biocontrol agent given its plant growth-promoting (PGP) and quorum quenching (QQ) activities. Seed biopriming and in vivo assays of tomato plants inoculated with strain P6 resulted in an increase in seedling height and weight. We detected QQ activity, involving enzymatic degradation of signal molecules in quorum sensing communication systems, against a broad range of N-acylhomoserine lactones (AHLs). HPLC-MRM data and phylogenetic analysis indicated that the QQ enzyme was an acylase. The QQ activity of strain P6 reduced soft rot symptoms caused by Dickeya solani, Pectobacterium atrosepticum and P. carotovorum on potato and carrot. In vivo assays showed that the PGP and QQ activities of strain P6 protect tomato plants against Pseudomonas syringae pv. tomato, indicating that strain P6 could have biotechnological applications. To our knowledge, this is the first report to show PGP and QQ activities in an indigenous Pseudomonas strain from Salicornia plants.
Collapse
Affiliation(s)
- Miguel Rodríguez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, France
| | - Lydia Blanco
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Victoria Béjar
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Inmaculada Sampedro
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain. .,Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain.
| |
Collapse
|
30
|
Abed RMM, Muthukrishnan T, Al Khaburi M, Al-Senafi F, Munam A, Mahmoud H. Degradability and biofouling of oxo-biodegradable polyethylene in the planktonic and benthic zones of the Arabian Gulf. MARINE POLLUTION BULLETIN 2020; 150:110639. [PMID: 31706724 DOI: 10.1016/j.marpolbul.2019.110639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 05/21/2023]
Abstract
Little is known about the degradability of oxo-biodegradable polyethylene (OXO-PE) and its surface fouling bacterial communities in the marine environment. The degradation of OXO-PE, PE and polyethylene terephthalate (PET) was compared at two depths (2 m and 6 m) in the Arabian Gulf. Scanning electron microcopy (SEM) revealed more fissure formation on OXO-PE and PE than on PET, indicating physical degradation. The formation of hydroxyl groups and carbonyl bonds, by Fourier-transform infrared spectroscopy (FTIR), suggests chemical degradation of OXO-PE. Plastisphere bacterial communities on OXO-PE and PE were different than on PET. Proteobacteria, Bacteriodetes and Planctomycetes were detected on all plastics, however, sequences of Alteromonas and Zoogloea were OXO-PE-specific suggesting a possible involvement of these bacterial genera in OXO-PE degradation. We conclude that OXO-PE shows increased signs of degradation with time owing to the combination of abiotic and biotic processes, and its degradation is higher in the benthic than in the planktonic zone.
Collapse
Affiliation(s)
- Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman.
| | - Thirumahal Muthukrishnan
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Maryam Al Khaburi
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Fahad Al-Senafi
- Department of Marine Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, Kuwait
| | - Abdul Munam
- Chemistry Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Huda Mahmoud
- Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, Kuwait
| |
Collapse
|
31
|
Cui T, Bai F, Sun M, Lv X, Li X, Zhang D, Du H. Lactobacillus crustorum ZHG 2-1 as novel quorum-quenching bacteria reducing virulence factors and biofilms formation of Pseudomonas aeruginosa. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Ghanei-Motlagh R, Mohammadian T, Gharibi D, Menanteau-Ledouble S, Mahmoudi E, Khosravi M, Zarea M, El-Matbouli M. Quorum Quenching Properties and Probiotic Potentials of Intestinal Associated Bacteria in Asian Sea Bass Lates calcarifer. Mar Drugs 2019; 18:md18010023. [PMID: 31888034 PMCID: PMC7024293 DOI: 10.3390/md18010023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Quorum quenching (QQ), the enzymatic degradation of N-acyl homoserine lactones (AHLs), has been suggested as a promising strategy to control bacterial diseases. In this study, 10 AHL-degrading bacteria isolated from the intestine of barramundi were identified by 16S rDNA sequencing. They were able to degrade both short and long-chain AHLs associated with several pathogenic Vibrio species (spp.) in fish, including N-[(RS)-3-Hydroxybutyryl]-l-homoserine lactone (3-oh-C4-HSL), N-Hexanoyl-l-homoserine lactone (C6-HSL), N-(β-Ketocaproyl)-l-homoserine lactone (3-oxo-C6-HSL), N-(3-Oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL), N-(3-Oxotetradecanoyl)-l-homoserine lactone (3-oxo-C14-HSL). Five QQ isolates (QQIs) belonging to the Bacillus and Shewanella genera, showed high capacity to degrade both synthetic AHLs as well as natural AHLs produced by Vibrio harveyi and Vibrio alginolyticus using the well-diffusion method and thin-layer chromatography (TLC). The genes responsible for QQ activity, including aiiA, ytnP, and aaC were also detected. Analysis of the amino acid sequences from the predicted lactonases revealed the presence of the conserved motif HxHxDH. The selected isolates were further characterized in terms of their probiotic potentials in vitro. Based on our scoring system, Bacillus thuringiensis QQ1 and Bacillus cereus QQ2 exhibited suitable probiotic characteristics, including the production of spore and exoenzymes, resistance to bile salts and pH, high potential to adhere on mucus, appropriate growth abilities, safety to barramundi, and sensitivity to antibiotics. These isolates, therefore, constitute new QQ probiotics that could be used to control vibriosis in Lates calcalifer.
Collapse
Affiliation(s)
- Reza Ghanei-Motlagh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria; (R.G.-M.); (M.E.-M.)
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran;
| | - Takavar Mohammadian
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran;
- Correspondence: (T.M.); (S.M.-L.)
| | - Darioush Gharibi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran; (D.G.); (M.K.)
| | - Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria; (R.G.-M.); (M.E.-M.)
- Correspondence: (T.M.); (S.M.-L.)
| | - Esmaeil Mahmoudi
- Department of Plant Protection, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 158-81595, Iran;
| | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran; (D.G.); (M.K.)
| | - Mojtaba Zarea
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran;
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria; (R.G.-M.); (M.E.-M.)
| |
Collapse
|
33
|
Silencing of Phytopathogen Communication by the Halotolerant PGPR Staphylococcus equorum Strain EN21. Microorganisms 2019; 8:microorganisms8010042. [PMID: 31878301 PMCID: PMC7022284 DOI: 10.3390/microorganisms8010042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022] Open
Abstract
Increasing world food demand together with soil erosion and indiscriminate use of chemical fertilization highlight the need to adopt sustainable crop production strategies. In this context, a combination of plant growth-promoting rhizobacteria (PGPR) and pathogen management represents a sustainable and efficient alternative. Though little studied, halophilic and halotolerant PGPR could be a beneficial plant growth promotion strategy for saline and non-saline soils. The virulence of many bacterial phytopathogens is regulated by quorum sensing (QS) systems. Quorum quenching (QQ) involves the enzymatic degradation of phytopathogen-generated signal molecules, mainly N-acyl homoserine lactones (AHLs). In this study, we investigate plant growth-promoting (PGP) activity and the capacity of the halotolerant bacterium Staphylococcus equorum strain EN21 to attenuate phytopathogens virulence through QQ. We used biopriming and in vivo tomato plant experiments to analyse the PGP activity of strain EN21. AHL inactivation was observed to reduce Pseudomonas syringae pv. tomato infections in tomato and Arabidopsis plants. Our study of Dickeya solani, Pectobacterium carotovorum subsp. carotovorum and Erwinia amylovora bacteria in potato tubers, carrots and pears, respectively, also demonstrated the effectiveness of QS interruption by EN21. Overall, this study highlights the potential of strain S. equorum EN21 in plant growth promotion and QQ-driven bacterial phytopathogen biocontrol.
Collapse
|
34
|
Reina JC, Pérez-Victoria I, Martín J, Llamas I. A Quorum-Sensing Inhibitor Strain of Vibrio alginolyticus Blocks Qs-Controlled Phenotypes in Chromobacterium violaceum and Pseudomonas aeruginosa. Mar Drugs 2019; 17:md17090494. [PMID: 31450549 PMCID: PMC6780304 DOI: 10.3390/md17090494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
The cell density-dependent mechanism, quorum sensing (QS), regulates the expression of virulence factors. Its inhibition has been proposed as a promising new strategy to prevent bacterial pathogenicity. In this study, 827 strains from the microbiota of sea anemones and holothurians were screened for their ability to produce quorum-sensing inhibitor (QSI) compounds. The strain M3-10, identified as Vibrio alginolyticus by 16S rRNA gene sequencing, as well as ANIb and dDDH analyses, was selected for its high QSI activity. Bioassay-guided fractionation of the cell pellet extract from a fermentation broth of strain M3-10, followed by LC–MS and NMR analyses, revealed tyramine and N-acetyltyramine as the active compounds. The QS inhibitory activity of these molecules, which was confirmed using pure commercially available standards, was found to significantly inhibit Chromobacterium violaceum ATCC 12472 violacein production and virulence factors, such as pyoverdine production, as well as swarming and twitching motilities, produced by Pseudomonas aeruginosa PAO1. This constitutes the first study to screen QSI-producing strains in the microbiota of anemones and holothurians and provides an insight into the use of naturally produced QSI as a possible strategy to combat bacterial infections.
Collapse
Affiliation(s)
- José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| | - Ignacio Pérez-Victoria
- MEDINA Foundation, Andalusian Center of Excellence for Research into Innovative Medicines, Health Sciences Technological Park (PTS), Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain.
| | - Jesús Martín
- MEDINA Foundation, Andalusian Center of Excellence for Research into Innovative Medicines, Health Sciences Technological Park (PTS), Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
35
|
Wang J, Lin J, Zhang Y, Zhang J, Feng T, Li H, Wang X, Sun Q, Zhang X, Wang Y. Activity Improvement and Vital Amino Acid Identification on the Marine-Derived Quorum Quenching Enzyme MomL by Protein Engineering. Mar Drugs 2019; 17:md17050300. [PMID: 31117226 PMCID: PMC6562636 DOI: 10.3390/md17050300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022] Open
Abstract
MomL is a marine-derived quorum-quenching (QQ) lactonase which can degrade various N-acyl homoserine lactones (AHLs). Intentional modification of MomL may lead to a highly efficient QQ enzyme with broad application potential. In this study, we used a rapid and efficient method combining error-prone polymerase chain reaction (epPCR), high-throughput screening and site-directed mutagenesis to identify highly active MomL mutants. In this way, we obtained two candidate mutants, MomLI144V and MomLV149A. These two mutants exhibited enhanced activities and blocked the production of pathogenic factors of Pectobacterium carotovorum subsp. carotovorum (Pcc). Besides, seven amino acids which are vital for MomL enzyme activity were identified. Substitutions of these amino acids (E238G/K205E/L254R) in MomL led to almost complete loss of its QQ activity. We then tested the effect of MomL and its mutants on Pcc-infected Chinese cabbage. The results indicated that MomL and its mutants (MomLL254R, MomLI144V, MomLV149A) significantly decreased the pathogenicity of Pcc. This study provides an efficient method for QQ enzyme modification and gives us new clues for further investigation on the catalytic mechanism of QQ lactonase.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jing Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yunhui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jingjing Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Tao Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Hui Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xianghong Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Qingyang Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xiaohua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
36
|
Wang TN, Guan QT, Pain A, Kaksonen AH, Hong PY. Discovering, Characterizing, and Applying Acyl Homoserine Lactone-Quenching Enzymes to Mitigate Microbe-Associated Problems Under Saline Conditions. Front Microbiol 2019; 10:823. [PMID: 31057524 PMCID: PMC6479171 DOI: 10.3389/fmicb.2019.00823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
Quorum quenching (QQ) is proposed as a new strategy for mitigating microbe-associated problems (e.g., fouling, biocorrosion). However, most QQ agents reported to date have not been evaluated for their quenching efficacies under conditions representative of seawater desalination plants, cooling towers or marine aquaculture. In this study, bacterial strains were isolated from Saudi Arabian coastal environments and screened for acyl homoserine lactone (AHL)-quenching activities. Five AHL quenching bacterial isolates from the genera Pseudoalteromonas, Pontibacillus, and Altererythrobacter exhibited high AHL-quenching activity at a salinity level of 58 g/L and a pH of 7.8 at 50°C. This result demonstrates the potential use of these QQ bacteria in mitigating microbe-associated problems under saline and alkaline conditions at high (>37°C) temperatures. Further characterizations of the QQ efficacies revealed two bacterial isolates, namely, Pseudoalteromonas sp. L11 and Altererythrobacter sp. S1-5, which could possess enzymatic QQ activity. The genome sequences of L11 and S1-5 with a homologous screening against reported AHL quenching genes suggest the existence of four possible QQ coding genes in each strain. Specifically, two novel AHL enzymes, AiiAS1-5 and EstS1-5 from Altererythrobacter sp. S1-5, both contain signal peptides and exhibit QQ activity over a broad range of pH, salinity, and temperature values. In particular, AiiAS1-5 demonstrated activity against a wide spectrum of AHL molecules. When tested against three bacterial species, namely, Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio alginolyticus, AiiAS1-5 was able to inhibit the motility of all three species under saline conditions. The biofilm formation associated with P. aeruginosa was also significantly inhibited by AiiAS1-5. AiiAS1-5 also reduced the quorum sensing-mediated virulence traits of A. hydrophila, P. aeruginosa, and V. alginolyticus during the mid and late exponential phases of cell growth. The enzyme did not impose any detrimental effects on cell growth, suggesting a lower potential for the target bacterium to develop resistance over long-term exposure. Overall, this study suggested that some QQ enzymes obtained from the bacteria that inhabit saline environments under high temperatures have potential applications in the mitigation of microbe-associated problems.
Collapse
Affiliation(s)
- Tian-Nyu Wang
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Qing-Tian Guan
- Pathogen Genomics Laboratory, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Arnab Pain
- Pathogen Genomics Laboratory, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Pei-Ying Hong
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
37
|
Reina JC, Torres M, Llamas I. Stenotrophomonas maltophilia AHL-Degrading Strains Isolated from Marine Invertebrate Microbiota Attenuate the Virulence of Pectobacterium carotovorum and Vibrio coralliilyticus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:276-290. [PMID: 30762152 DOI: 10.1007/s10126-019-09879-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Many Gram-negative aquacultural and agricultural pathogens control virulence factor expression through a quorum-sensing (QS) mechanism involving the production of N-acylhomoserine (AHL) signalling molecules. Thus, the interruption of QS systems by the enzymatic degradation of signalling molecules, known as quorum quenching (QQ), has been proposed as a novel strategy to combat these infections. Given that the symbiotic bacteria of marine invertebrates are considered to be an important source of new bioactive molecules, this study explores the presence of AHL-degrading bacteria among 827 strains previously isolated from the microbiota of anemones and holothurians. Four of these strains (M3-1, M1-14, M3-13 and M9-54-2), belonging to the species Stenotrophomonas maltophilia, were selected on the basis of their ability to degrade a broad range of AHLs, and the enzymes involved in their activity were identified. Strain M9-54-2, which showed the strongest AHL-degrading activity, was selected for further study. High-performance liquid chromatography-mass-spectrometry confirmed that the QQ enzyme is not a lactonase. Strain M9-54-2 degraded AHL accumulation and reduced the production of enzymatic activity in Pectobacterium carotovorum CECT 225T and Vibrio coralliilyticus VibC-Oc-193 in in vitro co-cultivation experiments. The effect of AHL inactivation was confirmed by a reduction in potato tuber maceration and brine shrimp (Artemia salina) mortality caused by P. carotovorum and Vibrio coralliilyticus, respectively. This study strengthens the evidence of marine organisms as an underexplored and promising source of QQ enzymes, useful to prevent infections in aquaculture and agriculture. To our knowledge, this is the first time that anemones and holothurians have been studied for this purpose.
Collapse
Affiliation(s)
- José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18071, Granada, Spain
- Institute for Integrative Biology of the Cell, CEA, CNRS, University Paris-Sud, University Paris-Saclay, Gif sur Yvette, France
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18071, Granada, Spain.
| |
Collapse
|
38
|
Torres M, Dessaux Y, Llamas I. Saline Environments as a Source of Potential Quorum Sensing Disruptors to Control Bacterial Infections: A Review. Mar Drugs 2019; 17:md17030191. [PMID: 30934619 PMCID: PMC6471967 DOI: 10.3390/md17030191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Saline environments, such as marine and hypersaline habitats, are widely distributed around the world. They include sea waters, saline lakes, solar salterns, or hypersaline soils. The bacteria that live in these habitats produce and develop unique bioactive molecules and physiological pathways to cope with the stress conditions generated by these environments. They have been described to produce compounds with properties that differ from those found in non-saline habitats. In the last decades, the ability to disrupt quorum-sensing (QS) intercellular communication systems has been identified in many marine organisms, including bacteria. The two main mechanisms of QS interference, i.e., quorum sensing inhibition (QSI) and quorum quenching (QQ), appear to be a more frequent phenomenon in marine aquatic environments than in soils. However, data concerning bacteria from hypersaline habitats is scarce. Salt-tolerant QSI compounds and QQ enzymes may be of interest to interfere with QS-regulated bacterial functions, including virulence, in sectors such as aquaculture or agriculture where salinity is a serious environmental issue. This review provides a global overview of the main works related to QS interruption in saline environments as well as the derived biotechnological applications.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
39
|
Kusada H, Zhang Y, Tamaki H, Kimura N, Kamagata Y. Novel N-Acyl Homoserine Lactone-Degrading Bacteria Isolated From Penicillin-Contaminated Environments and Their Quorum-Quenching Activities. Front Microbiol 2019; 10:455. [PMID: 30923518 PMCID: PMC6426785 DOI: 10.3389/fmicb.2019.00455] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/20/2019] [Indexed: 01/28/2023] Open
Abstract
N-Acyl homoserine lactones (AHLs) are signaling molecules used in the quorum sensing (QS) of Gram-negative bacteria. Some bacteria interfere with the QS system using AHL-inactivating enzymes, commonly known as quorum-quenching (QQ) enzymes. We have recently isolated a new QQ bacterium showing high resistance to multiple β-lactam antibiotics, and its QQ enzyme (MacQ) confers β-lactam antibiotic resistance and exhibits QQ activities. This observation suggests the possibility of isolating novel QQ bacteria from β-lactam antibiotic-resistant bacteria. In this direction, we attempted to isolate penicillin G (PENG)-resistant bacteria from penicillin-contaminated river sediments and activated sludge treating penicillin-containing wastewater and characterize their QQ activities. Of 19 PENG-resistant isolates, six isolates showed high QQ activity toward a broad range of AHLs, including AHLs with 3-oxo substituents. Five of the six AHL-degraders showed AHL-acylase activity and hydrolyzed the amide bond of AHLs, whereas the remaining one strain did not show AHL-acylase activity, suggesting that this isolate may likely possess alternative degradation mechanism such as AHL-lactonase activity hydrolyzing the lactone ring of AHLs. The 16S rRNA gene sequence analysis results categorized these six AHL-degrading isolates into at least five genera, namely, Sphingomonas (Alphaproteobacteria), Diaphorobacter (Betaproteobacteria), Acidovorax (Betaproteobacteria), Stenotrophomonas (Gammaproteobacteria), and Mycobacterium (Actinobacteria); of these, Mycobacterium sp. M1 has never been known as QQ bacteria. Moreover, multiple β-lactam antibiotics showed high minimum inhibitory concentrations (MICs) when tested against all of isolates. These results strongly demonstrate that a wide variety of β-lactam antibiotic-resistant bacteria possess QQ activities. Although the genetic and enzymatic elements are yet unclear, this study may infer the functional and evolutionary correlation between β-lactam antibiotic resistance and QQ activities.
Collapse
Affiliation(s)
- Hiroyuki Kusada
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yu Zhang
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,JST ERATO Nomura Microbial Community Control Project, University of Tsukuba, Tsukuba, Japan
| | - Nobutada Kimura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
40
|
Torres M, Hong KW, Chong TM, Reina JC, Chan KG, Dessaux Y, Llamas I. Genomic analyses of two Alteromonas stellipolaris strains reveal traits with potential biotechnological applications. Sci Rep 2019; 9:1215. [PMID: 30718637 PMCID: PMC6361997 DOI: 10.1038/s41598-018-37720-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/27/2018] [Indexed: 11/08/2022] Open
Abstract
The Alteromonas stellipolaris strains PQQ-42 and PQQ-44, previously isolated from a fish hatchery, have been selected on the basis of their strong quorum quenching (QQ) activity, as well as their ability to reduce Vibrio-induced mortality on the coral Oculina patagonica. In this study, the genome sequences of both strains were determined and analyzed in order to identify the mechanism responsible for QQ activity. Both PQQ-42 and PQQ-44 were found to degrade a wide range of N-acylhomoserine lactone (AHL) QS signals, possibly due to the presence of an aac gene which encodes an AHL amidohydrolase. In addition, the different colony morphologies exhibited by the strains could be related to the differences observed in genes encoding cell wall biosynthesis and exopolysaccharide (EPS) production. The PQQ-42 strain produces more EPS (0.36 g l-1) than the PQQ-44 strain (0.15 g l-1), whose chemical compositions also differ. Remarkably, PQQ-44 EPS contains large amounts of fucose, a sugar used in high-value biotechnological applications. Furthermore, the genome of strain PQQ-42 contained a large non-ribosomal peptide synthase (NRPS) cluster with a previously unknown genetic structure. The synthesis of enzymes and other bioactive compounds were also identified, indicating that PQQ-42 and PQQ-44 could have biotechnological applications.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, France
| | - Kar-Wai Hong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Teik-Min Chong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Kok-Gan Chan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, France.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
41
|
Draft Genome Sequence of the Marine Bacterium
Alteromonas
sp. Strain KS69. Microbiol Resour Announc 2019; 8:MRA00022-19. [PMID: 30714027 PMCID: PMC6357633 DOI: 10.1128/mra.00022-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 11/22/2022] Open
Abstract
Alteromonas spp. are Gram-negative, aerobic, marine bacteria. Here, we report the draft genome sequence of Alteromonas sp. strain KS69, isolated from Narragansett Bay deep water samples. Unpublished preliminary data suggest that KS69 reduces expression of the 3-oxo-C12-HSL-dependent, virulence-associated gene lasB of Pseudomonas aeruginosa PAO1, suggesting that it produces a quorum sensing inhibitor. Alteromonas spp. are Gram-negative, aerobic, marine bacteria. Here, we report the draft genome sequence of Alteromonas sp. strain KS69, isolated from Narragansett Bay deep water samples. Unpublished preliminary data suggest that KS69 reduces expression of the 3-oxo-C12-HSL-dependent, virulence-associated gene lasB of Pseudomonas aeruginosa PAO1, suggesting that it produces a quorum sensing inhibitor.
Collapse
|
42
|
Rehman ZU, Leiknes T. Quorum-Quenching Bacteria Isolated From Red Sea Sediments Reduce Biofilm Formation by Pseudomonas aeruginosa. Front Microbiol 2018; 9:1354. [PMID: 30065702 PMCID: PMC6057113 DOI: 10.3389/fmicb.2018.01354] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is the process by which bacteria communicate with each other through small signaling molecules such as N-acylhomoserine lactones (AHLs). Certain bacteria can degrade AHL molecules by a process called quorum quenching (QQ); therefore, QQ can be used to control bacterial infections and biofilm formation. In this study, we aimed to identify new species of bacteria with QQ activity. Red Sea sediments were collected either from the close vicinity of seagrass or from areas with no vegetation. We isolated 72 bacterial strains, which were tested for their ability to degrade/inactivate AHL molecules. Chromobacterium violaceum CV026-based bioassay was used for the initial screening of isolates with QQ activity. QQ activity was further quantified using high-performance liquid chromatography-tandem mass spectrometry. We found that these isolates could degrade AHL molecules of different acyl chain lengths as well as modifications. 16S-rRNA sequencing of positive QQ isolates showed that they belonged to three different genera. Specifically, two isolates belonged to the genus Erythrobacter; four, Labrenzia; and one, Bacterioplanes. The genome of one representative isolate from each genus was sequenced, and potential QQ enzymes, namely, lactonases and acylases, were identified. The ability of these isolates to degrade the 3OXOC12-AHLs produced by Pseudomonas aeruginosa PAO1 and hence inhibit biofilm formation was investigated. Our results showed that the isolate VG12 (genus Labrenzia) is better than other isolates at controlling biofilm formation by PAO1 and degradation of different AHL molecules. Time-course experiments to study AHL degradation showed that VG1 (genus Erythrobacter) could degrade AHLs faster than other isolates. Thus, QQ bacteria or enzymes can be used in combination with an antibacterial to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Zahid Ur Rehman
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - TorOve Leiknes
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
43
|
Torres M, Reina JC, Fuentes-Monteverde JC, Fernández G, Rodríguez J, Jiménez C, Llamas I. AHL-lactonase expression in three marine emerging pathogenic Vibrio spp. reduces virulence and mortality in brine shrimp (Artemia salina) and Manila clam (Venerupis philippinarum). PLoS One 2018; 13:e0195176. [PMID: 29664914 PMCID: PMC5903640 DOI: 10.1371/journal.pone.0195176] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/16/2018] [Indexed: 11/19/2022] Open
Abstract
Bacterial infectious diseases produced by Vibrio are the main cause of economic losses in aquaculture. During recent years it has been shown that the expression of virulence genes in some Vibrio species is controlled by a population-density dependent gene-expression mechanism known as quorum sensing (QS), which is mediated by the diffusion of signal molecules such as N-acylhomoserine lactones (AHLs). QS disruption, especially the enzymatic degradation of signalling molecules, known as quorum quenching (QQ), is one of the novel therapeutic strategies for the treatment of bacterial infections. In this study, we present the detection of AHLs in 34 marine Vibrionaceae strains. Three aquaculture-related pathogenic Vibrio strains, V. mediterranei VibC-Oc-097, V. owensii VibC-Oc-106 and V. coralliilyticus VibC-Oc-193 were selected for further studies based on their virulence and high production of AHLs. This is the first report where the signal molecules have been characterized in these emerging marine pathogens and correlated to the expression of virulence factors. Moreover, the results of AHL inactivation in the three selected strains have been confirmed in vivo against brine shrimps (Artemia salina) and Manila clams (Venerupis philippinarum). This research contributes to the development of future therapies based on AHL disruption, the most promising alternatives for fighting infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Juan Carlos Fuentes-Monteverde
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of A Coruña, A Coruña, Spain
| | - Gerardo Fernández
- Research Support Service (SAI), Central Services (ESCI) University of A Coruña, A Coruña, Spain
| | - Jaime Rodríguez
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of A Coruña, A Coruña, Spain
| | - Carlos Jiménez
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of A Coruña, A Coruña, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
44
|
Muras A, López-Pérez M, Mayer C, Parga A, Amaro-Blanco J, Otero A. High Prevalence of Quorum-Sensing and Quorum-Quenching Activity among Cultivable Bacteria and Metagenomic Sequences in the Mediterranean Sea. Genes (Basel) 2018; 9:E100. [PMID: 29462892 PMCID: PMC5852596 DOI: 10.3390/genes9020100] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence being accumulated regarding the importance of N-acyl homoserine lactones (AHL)-mediated quorum-sensing (QS) and quorum-quenching (QQ) processes in the marine environment, but in most cases, data has been obtained from specific microhabitats, and subsequently little is known regarding these activities in free-living marine bacteria. The QS and QQ activities among 605 bacterial isolates obtained at 90 and 2000 m depths in the Mediterranean Sea were analyzed. Additionally, putative QS and QQ sequences were searched in metagenomic data obtained at different depths (15-2000 m) at the same sampling site. The number of AHL producers was higher in the 90 m sample (37.66%) than in the 2000 m sample (4.01%). However, the presence of QQ enzymatic activity was 1.63-fold higher in the 2000 m sample. The analysis of putative QQ enzymes in the metagenomes supports the relevance of QQ processes in the deepest samples, found in cultivable bacteria. Despite the unavoidable biases in the cultivation methods and biosensor assays and the possible promiscuous activity of the QQ enzymes retrieved in the metagenomic analysis, the results indicate that AHL-related QS and QQ processes could be common activity in the marine environment.
Collapse
Affiliation(s)
- Andrea Muras
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan de Alicante 03202, Spain.
| | - Celia Mayer
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Ana Parga
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Jaime Amaro-Blanco
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
45
|
Abdullah, Asghar A, Butt MS, Shahid M, Huang Q. Evaluating the antimicrobial potential of green cardamom essential oil focusing on quorum sensing inhibition of Chromobacterium violaceum. Journal of Food Science and Technology 2017; 54:2306-2315. [PMID: 28740287 DOI: 10.1007/s13197-017-2668-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 11/29/2022]
Abstract
Spices are well known for their taste and flavor imparting properties. Green cardamom (Elletaria cardamomum), a herb spice belongs to family Zingiberaceae. In current study, GC-MS analysis of green cardamom essential oil (CEO) resulted in identification of twenty-six compounds with α-terpinyl acetate (38.4%), 1,8-cineole (28.71%), linalool acetate (8.42%), sabinene (5.21%), and linalool (3.97%) as major bioactive components. Present study also described the antimicrobial properties like zone of inhibition, minimum inhibitory concentration against microbial strains with special emphasis on quorum sensing inhibition. Disk diffusion assay showed that C. albicans and S. mutans were the most sensitive microorganisms followed by S. aureus, L. monocytogenes, B. cereus and S. typhimurium sensor strains, respectively. Whilst P. aeruginosa was found most resistant strain as CEO did not inhibited its growth. The minimum inhibitory concentration (MIC) values of CEO against tested strains were 10 ± 0.00 mg/mL against S. typhimurium, S. aureus and 5 ± 0.00 mg/mL against S. mutans, C. albicans strains, respectively. Regarding quorum sensing inhibition the tested concentrations 0.625 and 0.313 mg/mL of CEO inhibited violacein production with very little effect on growth of C. violaceum. Conclusively, study proved that quorum sensing inhibition values of CEO were much lower compared to MIC revealed values. Hence, cardamom bioactive constituents can effectively be used to develop novel antimicrobial drugs against conventional antibiotics.
Collapse
Affiliation(s)
- Abdullah
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Ali Asghar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Masood Sadiq Butt
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901 USA
| |
Collapse
|
46
|
Torres M, Uroz S, Salto R, Fauchery L, Quesada E, Llamas I. HqiA, a novel quorum-quenching enzyme which expands the AHL lactonase family. Sci Rep 2017; 7:943. [PMID: 28424524 PMCID: PMC5430456 DOI: 10.1038/s41598-017-01176-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/22/2017] [Indexed: 11/09/2022] Open
Abstract
The screening of a metagenomic library of 250,000 clones generated from a hypersaline soil (Spain) allowed us to identify a single positive clone which confers the ability to degrade N-acyl homoserine lactones (AHLs). The sequencing of the fosmid revealed a 42,318 bp environmental insert characterized by 46 ORFs. The subcloning of these ORFs demonstrated that a single gene (hqiA) allowed AHL degradation. Enzymatic analysis using purified HqiA and HPLC/MS revealed that this protein has lactonase activity on a broad range of AHLs. The introduction of hqiA in the plant pathogen Pectobacterium carotovorum efficiently interfered with both the synthesis of AHLs and quorum-sensing regulated functions, such as swarming motility and the production of maceration enzymes. Bioinformatic analyses highlighted that HqiA showed no sequence homology with the known prototypic AHL lactonases or acylases, thus expanding the AHL-degrading enzymes with a new family related to the cysteine hydrolase (CHase) group. The complete sequence analysis of the fosmid showed that 31 ORFs out of the 46 identified were related to Deltaproteobacteria, whilst many intercalated ORFs presented high homology with other taxa. In this sense, hqiA appeared to be assigned to the Hyphomonas genus (Alphaproteobacteria), suggesting that horizontal gene transfer had occurred.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Stéphane Uroz
- UMR 1136 INRA-Université de Lorraine Interactions Arbres-Microorganismes, Centre INRA de Nancy, Champenoux, France
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Laure Fauchery
- UMR 1136 INRA-Université de Lorraine Interactions Arbres-Microorganismes, Centre INRA de Nancy, Champenoux, France
| | - Emilia Quesada
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain. .,Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain.
| |
Collapse
|