1
|
Rodríguez-Martínez R, Ochoa SA, Valle-Rios R, Jaimes-Ortega GA, Hernández-Castro R, Mancilla-Rojano J, Castro-Escarpulli G, López-Saucedo C, Estrada-García T, Cruz-Córdova A, Xicohtencatl-Cortes J. Genome Sequencing and Assembly of Enterotoxigenic Escherichia coli E9034A: Role of LngA, CstH, and FliC in Intestinal Cell Colonization and the Release of the Proinflammatory Cytokine IL-8. Microorganisms 2025; 13:374. [PMID: 40005742 PMCID: PMC11858209 DOI: 10.3390/microorganisms13020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) produces two types of enterotoxins, LTs and STs, as well as several colonization factors (CFs), including CS21, CS3 fimbriae, and flagellar structures. This study investigated how these structures contribute to ETEC colonization and the immune response in HT-29 and HuTu-80 intestinal cells. ETEC strains with single, double, and triple mutations in the lngA, cstH, and fliC genes were generated and confirmed using PCR and Western blotting. The colonization of HT-29 and HuTu-80 intestinal cells by the ETEC E9034A strain, which was fully sequenced using a hybrid approach involving both Illumina and Oxford Nanopore technologies, was used to generate the mutant and recombinant proteins. The colonization and adherence of E9034A and its mutants were assessed through colony-forming unit (CFU) counts. Cytokine levels were assessed using flow cytometry and analyzed via FlowJo 7.6.1. Quantitative analysis revealed that the absence of the lngA, cstH, and fliC genes significantly (p < 0.01) reduced ETEC adherence to HT-29 and HutU-80 cells. In addition, only ETEC strains expressing the FliC protein induced IL-8 secretion. These findings suggest that LngA, CstH, and FliC in ETEC E9034A enhance adherence to intestinal cells and trigger the release of IL-8.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Martínez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (R.R.-M.); (G.C.-E.)
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (S.A.O.); (J.M.-R.)
| | - Sara A. Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (S.A.O.); (J.M.-R.)
| | - Ricardo Valle-Rios
- Unidad Universitaria de Investigación en Cáncer e Inmunología, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.V.-R.); (G.A.J.-O.)
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Gustavo A. Jaimes-Ortega
- Unidad Universitaria de Investigación en Cáncer e Inmunología, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.V.-R.); (G.A.J.-O.)
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
- Posgrado en Biología Experimental, Departamento de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 09310, Mexico
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General Dr. Manuel Gea González, Mexico City 14080, Mexico;
| | - Jetsi Mancilla-Rojano
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (S.A.O.); (J.M.-R.)
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Graciela Castro-Escarpulli
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (R.R.-M.); (G.C.-E.)
| | - Catalina López-Saucedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados CINVESTAV-IPN, Mexico City 07360, Mexico; (C.L.-S.); (T.E.-G.)
| | - Teresa Estrada-García
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados CINVESTAV-IPN, Mexico City 07360, Mexico; (C.L.-S.); (T.E.-G.)
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Inmunoquímica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (S.A.O.); (J.M.-R.)
| |
Collapse
|
2
|
Smith EM, Grassel CL, Papadimas A, Foulke-Abel J, Barry EM. The role of CFA/I in adherence and toxin delivery by ETEC expressing multiple colonization factors in the human enteroid model. PLoS Negl Trop Dis 2022; 16:e0010638. [PMID: 35881640 PMCID: PMC9355178 DOI: 10.1371/journal.pntd.0010638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/05/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a primary causative agent of diarrhea in travelers and young children in low-to-middle-income countries (LMICs). ETEC adhere to intestinal epithelia via colonization factors (CFs) and secrete heat-stable toxin (ST) and/or heat-labile toxin (LT), causing dysregulated cellular ion transport and water secretion. ETEC isolates often harbor genes encoding more than one CF that are targets as vaccine antigens. CFA/I is a major CF that is associated with ETEC that causes moderate-to-severe diarrhea and plays an important role in pathogenesis. The Global Enteric Multicenter Study finding that 78% of CFA/I-expressing ETEC also encode the minor CF CS21 prompted investigation of the combined role of these two CFs. Western blots and electron microscopy demonstrated growth media-dependent and strain-dependent differences in CFA/I and CS21 expression. The critical role of CFA/I in adherence by ETEC strains expressing CFA/I and CS21 was demonstrated using the human enteroid model and a series of CFA/I- and CS21-specific mutants. Furthermore, only anti-CFA/I antibodies inhibited adherence by global ETEC isolates expressing CFA/I and CS21. Delivery of ST and resulting cGMP secretion was measured in supernatants from infected enteroid monolayers, and strain-specific ST delivery and time-dependent cGMP production was observed. Interestingly, cGMP levels were similar across wildtype and CF-deficient strains, reflecting a limitation of this static aerobic infection model. Despite adherence by ETEC and delivery of ST, the enteroid monolayer integrity was not disrupted, as shown by the lack of decrease in transepithelial electrical resistance and the lack of IL-8 cytokines produced during infection. Taken together, these data demonstrate that targeting CFA/I in global clinical CFA/I-CS21 strains is sufficient for adherence inhibition, supporting a vaccine strategy that focuses on blocking major CFs. In addition, the human enteroid model has significant utility for the study of ETEC pathogenesis and evaluation of vaccine-induced functional antibody responses.
Collapse
Affiliation(s)
- Emily M. Smith
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Christen L. Grassel
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Antonia Papadimas
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Eileen M. Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
3
|
Luo L, Wang H, Payne MJ, Liang C, Bai L, Zheng H, Zhang Z, Zhang L, Zhang X, Yan G, Zou N, Chen X, Wan Z, Xiong Y, Lan R, Li Q. Comparative genomics of Chinese and international isolates of Escherichia albertii: population structure and evolution of virulence and antimicrobial resistance. Microb Genom 2021; 7. [PMID: 34882085 PMCID: PMC8767325 DOI: 10.1099/mgen.0.000710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Escherichia albertii is a recently recognized species in the genus Escherichia that causes diarrhoea. The population structure, genetic diversity and genomic features have not been fully examined. Here, 169 E. albertii isolates from different sources and regions in China were sequenced and combined with 312 publicly available genomes (from additional 14 countries) for genomic analyses. The E. albertii population was divided into two clades and eight lineages, with lineage 3 (L3), L5 and L8 more common in China. Clinical isolates were observed in all clades/lineages. Virulence genes were found to be distributed differently among lineages: subtypes of the intimin encoding gene eae and the cytolethal distending toxin gene cdtB were lineage associated, and the second type three secretion system (ETT2) island was truncated in L3 and L6. Seven new eae subtypes and one new cdtB subtype (cdtB-VI) were identified. Alarmingly, 85.9 % of the Chinese E. albertii isolates were predicted to be multidrug-resistant (MDR) with 35.9 % harbouring genes capable of conferring resistance to 10 to 14 different drug classes. The majority of the MDR isolates were of poultry source from China and belonged to four sequence types (STs) [ST4638, ST4479, ST4633 and ST4488]. Thirty-four plasmids with some carrying MDR and virulence genes, and 130 prophages were identified from 17 complete E. albertii genomes. The 130 intact prophages were clustered into five groups, with group five prophages harbouring more virulence genes. We further identified three E. albertii specific genes as markers for the identification of this species. Our findings provided fundamental insights into the population structure, virulence variation and drug resistance of E. albertii.
Collapse
Affiliation(s)
- Lijuan Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Michael J Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Chelsea Liang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Li Bai
- Division I of Risk Assessment, National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, PR China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Zhengdong Zhang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Ling Zhang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Xiaomei Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Guodong Yan
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Nianli Zou
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Xi Chen
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Ziting Wan
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| |
Collapse
|
4
|
Mancilla-Rojano J, Castro-Jaimes S, Ochoa SA, Bobadilla Del Valle M, Luna-Pineda VM, Bustos P, Laris-González A, Arellano-Galindo J, Parra-Ortega I, Hernández-Castro R, Cevallos MA, Xicohtencatl-Cortes J, Cruz-Córdova A. Whole-Genome Sequences of Five Acinetobacter baumannii Strains From a Child With Leukemia M2. Front Microbiol 2019; 10:132. [PMID: 30787915 PMCID: PMC6372515 DOI: 10.3389/fmicb.2019.00132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/21/2019] [Indexed: 01/05/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen and is one of the primary etiological agents of healthcare-associated infections (HAIs). A. baumannii infections are difficult to treat due to the intrinsic and acquired antibiotic resistance of strains of this bacterium, which frequently limits therapeutic options. In this study, five A. baumannii strains (810CP, 433H, 434H, 483H, and A-2), all of which were isolated from a child with leukemia M2, were characterized through antibiotic susceptibility profiling, the detection of genes encoding carbapenem hydrolyzing oxacillinases, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), adherence and invasion assays toward the A549 cell line, and the whole-genome sequence (WGS). The five strains showed Multidrug resistant (MDR) profiles and amplification of the blaOXA-23 gene, belonging to ST758 and grouped into two PFGE clusters. WGS of 810CP revealed the presence of a circular chromosome and two small plasmids, pAba810CPa and pAba810CPb. Both plasmids carried genes encoding the Sp1TA system, although resistance genes were not identified. A gene-by-gene comparison analysis was performed among the A. baumannii strains isolated in this study and others A. baumannii ST758 strains (HIMFG and INCan), showing that 86% of genes were present in all analyzed strains. Interestingly, the 433H, 434H, and 483H strains varied by 8–10 single-nucleotide variants (SNVs), while the A2 and 810CP strains varied by 46 SNVs. Subsequently, an analysis using BacWGSTdb showed that all of our strains had the same resistance genes and were ST758. However, some variations were observed in relation to virulence genes, mainly in the 810CP strain. The genes involved in the synthesis of hepta-acylated lipooligosaccharides, the pgaABCD locus encoding poly-β-1-6-N-acetylglucosamine, the ompA gene, Csu pili, bap, the two-component system bfms/bfmR, a member of the phospholipase D family, and two iron-uptake systems were identified in our A. baumannii strains genome. The five A. baumannii strains isolated from the child were genetically different and showed important characteristics that promote survival in a hospital environment. The elucidation of their genomic sequences provides important information for understanding their epidemiology, antibiotic resistance, and putative virulence factors.
Collapse
Affiliation(s)
- Jetsi Mancilla-Rojano
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Semiramis Castro-Jaimes
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Miriam Bobadilla Del Valle
- Departamento de Enfermedades Infecciosas Instituto Nacional de Ciencias Médicas y de Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Victor M Luna-Pineda
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Almudena Laris-González
- Departamento de Epidemiología, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - José Arellano-Galindo
- Laboratorio de Infectología, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Israel Parra-Ortega
- Laboratorio Central, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos Hospital General "Dr. Manuel Gea González", Mexico City, Mexico
| | - Miguel A Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
5
|
Interplay of a secreted protein with type IVb pilus for efficient enterotoxigenic Escherichia coli colonization. Proc Natl Acad Sci U S A 2018; 115:7422-7427. [PMID: 29941571 PMCID: PMC6048534 DOI: 10.1073/pnas.1805671115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To avoid the mucosal barrier and attach to the intestinal epithelium, enteric pathogens have evolved a unique proteinaceous fiber called type IVb pilus (T4bP). Despite its importance for bacterial pathogenesis, little is known about the adhesion mechanisms of T4bP, especially regarding the role of the minor pilin subunit located at its tip. Here, we show that the type IVb minor pilin CofB of CFA/III from enterotoxigenic Escherichia coli (ETEC) plays a role not only in T4bP assembly by forming a trimeric initiator complex, but also in bacterial adhesion by anchoring a secreted protein, CofJ, at the trimerization interface of H-type lectin domain. These findings expand our knowledge of T4P biology and provide important insights for developing therapeutics against ETEC infection. Initial attachment and subsequent colonization of the intestinal epithelium comprise critical events allowing enteric pathogens to survive and express their pathogenesis. In enterotoxigenic Escherichia coli (ETEC), these are mediated by a long proteinaceous fiber termed type IVb pilus (T4bP). We have reported that the colonization factor antigen/III (CFA/III), an operon-encoded T4bP of ETEC, possesses a minor pilin, CofB, that carries an H-type lectin domain at its tip. Although CofB is critical for pilus assembly by forming a trimeric initiator complex, its importance for bacterial attachment remains undefined. Here, we show that T4bP is not sufficient for bacterial attachment, which also requires a secreted protein CofJ, encoded within the same CFA/III operon. The crystal structure of CofB complexed with a peptide encompassing the binding region of CofJ showed that CofJ interacts with CofB by anchoring its flexible N-terminal extension to be embedded deeply into the expected carbohydrate recognition site of the CofB H-type lectin domain. By combining this structure and physicochemical data in solution, we built a plausible model of the CofJ–CFA/III pilus complex, which suggested that CofJ acts as a molecular bridge by binding both T4bP and the host cell membrane. The Fab fragments of a polyclonal antibody against CofJ significantly inhibited bacterial attachment by preventing the adherence of secreted CofJ proteins. These findings signify the interplay between T4bP and a secreted protein for attaching to and colonizing the host cell surface, potentially constituting a therapeutic target against ETEC infection.
Collapse
|
6
|
Ng D, Harn T, Altindal T, Kolappan S, Marles JM, Lala R, Spielman I, Gao Y, Hauke CA, Kovacikova G, Verjee Z, Taylor RK, Biais N, Craig L. The Vibrio cholerae Minor Pilin TcpB Initiates Assembly and Retraction of the Toxin-Coregulated Pilus. PLoS Pathog 2016; 12:e1006109. [PMID: 27992883 PMCID: PMC5207764 DOI: 10.1371/journal.ppat.1006109] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/03/2017] [Accepted: 12/02/2016] [Indexed: 01/03/2023] Open
Abstract
Type IV pilus (T4P) systems are complex molecular machines that polymerize major pilin proteins into thin filaments displayed on bacterial surfaces. Pilus functions require rapid extension and depolymerization of the pilus, powered by the assembly and retraction ATPases, respectively. A set of low abundance minor pilins influences pilus dynamics by unknown mechanisms. The Vibrio cholerae toxin-coregulated pilus (TCP) is among the simplest of the T4P systems, having a single minor pilin TcpB and lacking a retraction ATPase. Here we show that TcpB, like its homolog CofB, initiates pilus assembly. TcpB co-localizes with the pili but at extremely low levels, equivalent to one subunit per pilus. We used a micropillars assay to demonstrate that TCP are retractile despite the absence of a retraction ATPase, and that retraction relies on TcpB, as a V. cholerae tcpB Glu5Val mutant is fully piliated but does not induce micropillars movements. This mutant is impaired in TCP-mediated autoagglutination and TcpF secretion, consistent with retraction being required for these functions. We propose that TcpB initiates pilus retraction by incorporating into the growing pilus in a Glu5-dependent manner, which stalls assembly and triggers processive disassembly. These results provide a framework for understanding filament dynamics in more complex T4P systems and the closely related Type II secretion system. Bacterial pathogens utilize a number of highly complex and sophisticated molecular systems to colonize their hosts and alter them, creating customized niches in which to reproduce. One such system is the Type IV pilus system, made up of dozens of proteins that form a macromolecular machine to polymerize small pilin proteins into long thin filaments that are displayed on the bacterial surface. These pili have a remarkable array of functions that rely on their ability to (i) adhere to many substrates, including host cell surfaces, pili from nearby bacteria, DNA and bacterial viruses (bacteriophage), and (ii) to depolymerize or retract, which pulls the bacteria along mucosal surfaces, pulls them close together in protective aggregates, and can even draw in substrates like DNA and bacteriophage for nutrition and genetic variation. For most Type IV pilus systems, retraction is an energy-driven process facilitated by a retraction ATPase. We show here that in the simplest of the Type IV pilus systems, the Vibrio cholerae toxin-coregulated pilus, a pilin-like protein initiates pilus retraction by what appears to be mechanical rather than enzymatic means. Our results provide a framework for understanding more complex Type IV pili and the related Type II secretion systems, which represent targets for novel highly specific antibiotics.
Collapse
Affiliation(s)
- Dixon Ng
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tony Harn
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tuba Altindal
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Subramania Kolappan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jarrad M. Marles
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Rajan Lala
- Biology Department, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
| | - Ingrid Spielman
- Biology Department, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
| | - Yang Gao
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Caitlyn A. Hauke
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Gabriela Kovacikova
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Zia Verjee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Nicolas Biais
- Biology Department, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
- Graduate Center, City University of New York, Brooklyn, New York, United States of America
- * E-mail: (LC); (NB)
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail: (LC); (NB)
| |
Collapse
|