1
|
Sharko FS, Mazloum A, Krotova AO, Byadovskaya OP, Prokhvatilova LB, Chvala IA, Zolotikov UE, Kozlova AD, Krylova AS, Grosfeld EV, Prokopenko AV, Korzhenkov AA, Patrushev MV, Namsaraev ZB, Sprygin AV, Toshchakov SV. Metagenomic profiling of viral and microbial communities from the pox lesions of lumpy skin disease virus and sheeppox virus-infected hosts. Front Vet Sci 2024; 11:1321202. [PMID: 38420205 PMCID: PMC10899707 DOI: 10.3389/fvets.2024.1321202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction It has been recognized that capripoxvirus infections have a strong cutaneous tropism with the manifestation of skin lesions in the form of nodules and scabs in the respective hosts, followed by necrosis and sloughing off. Considering that the skin microbiota is a complex community of commensal bacteria, fungi and viruses that are influenced by infections leading to pathological states, there is no evidence on how the skin microbiome is affected during capripoxvirus pathogenesis. Methods In this study, shotgun metagenomic sequencing was used to investigate the microbiome in pox lesions from hosts infected with lumpy skin disease virus and sheep pox virus. Results The analysis revealed a high degree of variability in bacterial community structures across affected skin samples, indicating the importance of specific commensal microorganisms colonizing individual hosts. The most common and abundant bacteria found in scab samples were Fusobacterium necrophorum, Streptococcus dysgalactiae, Helcococcus ovis and Trueperella pyogenes, irrespective of host. Bacterial reads belonging to the genera Moraxella, Mannheimia, Corynebacterium, Staphylococcus and Micrococcus were identified. Discussion This study is the first to investigate capripox virus-associated changes in the skin microbiome using whole-genome metagenomic profiling. The findings will provide a basis for further investigation into capripoxvirus pathogenesis. In addition, this study highlights the challenge of selecting an optimal bioinformatics approach for the analysis of metagenomic data in clinical and veterinary practice. For example, direct classification of reads using a kmer-based algorithm resulted in a significant number of systematic false positives, which may be attributed to the peculiarities of the algorithm and database selection. On the contrary, the process of de novo assembly requires a large number of target reads from the symbiotic microbial community. In this work, the obtained sequencing data were processed by three different approaches, including direct classification of reads based on k-mers, mapping of reads to a marker gene database, and de novo assembly and binning of metagenomic contigs. The advantages and disadvantages of these techniques and their practicality in veterinary settings are discussed in relation to the results obtained.
Collapse
Affiliation(s)
- Fedor S. Sharko
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Ali Mazloum
- Federal Center for Animal Health FGBI ARRIAH, Vladimir, Russia
| | | | | | | | - Ilya A. Chvala
- Federal Center for Animal Health FGBI ARRIAH, Vladimir, Russia
| | | | | | | | - Erika V. Grosfeld
- National Research Center “Kurchatov Institute”, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | | | | | | | | | | | | |
Collapse
|
2
|
Vigil K, Aw TG. Comparison of de novo assembly using long-read shotgun metagenomic sequencing of viruses in fecal and serum samples from marine mammals. Front Microbiol 2023; 14:1248323. [PMID: 37808316 PMCID: PMC10556685 DOI: 10.3389/fmicb.2023.1248323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Viral diseases of marine mammals are difficult to study, and this has led to a limited knowledge on emerging known and unknown viruses which are ongoing threats to animal health. Viruses are the leading cause of infectious disease-induced mass mortality events among marine mammals. Methods In this study, we performed viral metagenomics in stool and serum samples from California sea lions (Zalophus californianus) and bottlenose dolphins (Tursiops truncates) using long-read nanopore sequencing. Two widely used long-read de novo assemblers, Canu and Metaflye, were evaluated to assemble viral metagenomic sequencing reads from marine mammals. Results Both Metaflye and Canu assembled similar viral contigs of vertebrates, such as Parvoviridae, and Poxviridae. Metaflye assembled viral contigs that aligned with one viral family that was not reproduced by Canu, while Canu assembled viral contigs that aligned with seven viral families that was not reproduced by Metaflye. Only Canu assembled viral contigs from dolphin and sea lion fecal samples that matched both protein and nucleotide RefSeq viral databases using BLASTx and BLASTn for Anelloviridae, Parvoviridae and Circoviridae families. Viral contigs assembled with Canu aligned with torque teno viruses and anelloviruses from vertebrate hosts. Viruses associated with invertebrate hosts including densoviruses, Ambidensovirus, and various Circoviridae isolates were also aligned. Some of the invertebrate and vertebrate viruses reported here are known to potentially cause mortality events and/or disease in different seals, sea stars, fish, and bivalve species. Discussion Canu performed better by producing the most viral contigs as compared to Metaflye with assemblies aligning to both protein and nucleotide databases. This study suggests that marine mammals can be used as important sentinels to surveil marine viruses that can potentially cause diseases in vertebrate and invertebrate hosts.
Collapse
Affiliation(s)
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
3
|
Li C, Zhang Y, Zhao X, Li L, Kong X. Autophagy regulation of virus infection in aquatic animals. REVIEWS IN AQUACULTURE 2023; 15:1405-1420. [DOI: 10.1111/raq.12785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/04/2023] [Indexed: 01/04/2025]
Abstract
AbstractAutophagy is a conserved intracellular degradation process that is required to maintain host homeostasis and cope with invading pathogens. Over the past few decades, studies on mammals have greatly increased our understanding of the relationship between autophagy and virus infection. Autophagy may convey the invader to lysosomes to degrade or activate the host immune response against virus replication. However, many viruses have developed some strategies that evade the degradative nature of autophagy or hijack this pathway for their gain. It follows that autophagy during viral infection is a double‐edged sword. In contrast to mammals, the review on autophagy modulated by the aquatic animal virus is limited. Here, after a brief description of the main information about autophagy, we highlight current progress on the interplays between autophagy and virus infection in aquatic animals, including the phenomenon of autophagy upon virus infection, the effect of modulating autophagy on virus replication, and the crosstalk between autophagy and immune response during virus infection. This review will help us better understand the pathogenic mechanism of aquatic animal viruses and develop proper antiviral countermeasures aimed at modulating autophagy.
Collapse
Affiliation(s)
- Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control College of Fisheries, Henan Normal University Xinxiang Henan Province PR China
| | - Yunli Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control College of Fisheries, Henan Normal University Xinxiang Henan Province PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control College of Fisheries, Henan Normal University Xinxiang Henan Province PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control College of Fisheries, Henan Normal University Xinxiang Henan Province PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control College of Fisheries, Henan Normal University Xinxiang Henan Province PR China
| |
Collapse
|
4
|
Campbell LJ, Castillo NA, Dunn CD, Perez A, Schmitter-Soto JJ, Mejri SC, Boucek RE, Corujo RS, Adams AJ, Rehage JS, Goldberg TL. Viruses of Atlantic Bonefish ( Albula vulpes) in Florida and the Caribbean show geographic patterns consistent with population declines. ENVIRONMENTAL BIOLOGY OF FISHES 2022; 106:303-317. [PMID: 35965638 PMCID: PMC9362051 DOI: 10.1007/s10641-022-01306-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Atlantic Bonefish (Albula vulpes) are economically important due to their popularity with recreational anglers. In the State of Florida, USA, bonefish population numbers declined by approximately 60% between the 1990s and 2015. Habitat loss, water quality impairment, chemical inputs, and other anthropogenic factors have been implicated as causes, but the role of pathogens has been largely overlooked, especially with respect to viruses. We used a metagenomic approach to identify and quantify viruses in the blood of 103 A. vulpes sampled throughout their Western Atlantic range, including populations in Florida that have experienced population declines and populations in Belize, Mexico, Puerto Rico, and The Bahamas that have remained apparently stable. We identified four viruses, all of which are members of families known to infect marine fishes (Flaviviridae, Iflaviridae, Narnaviridae, and Nodaviridae), but all of which were previously undescribed. Bonefish from Florida and Mexico had higher viral richness (numbers of distinct viruses per individual fish) than fish sampled from other areas, and bonefish from the Upper Florida Keys had the highest prevalence of viral infection (proportion of positive fish) than fish sampled from any other location. Bonefish from Florida also had markedly higher viral loads than fish sampled from any other area, both for a novel narnavirus and for all viruses combined. Bonefish viruses may be indicators of environmentally driven physiological and immunological compromise, causes of ill health, or both. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10641-022-01306-9.
Collapse
Affiliation(s)
- Lewis J. Campbell
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Nicholas A. Castillo
- Department of Earth and Environment, Florida International University, Miami, FL USA
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | | | - Juan J. Schmitter-Soto
- Departamento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur, Q.R, Campeche, Mexico
| | - Sahar C. Mejri
- Department of Aquaculture and Stock Enhancement, Florida Atlantic University, Fort Pierce, FL USA
| | | | | | - Aaron J. Adams
- Bonefish & Tarpon Trust, Miami, FL USA
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL USA
| | - Jennifer S. Rehage
- Department of Earth and Environment, Florida International University, Miami, FL USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
5
|
Lin HY, Yen SC, Tsai SK, Shen F, Lin JHY, Lin HJ. Combining Direct PCR Technology and Capillary Electrophoresis for an Easy-to-Operate and Highly Sensitive Infectious Disease Detection System for Shrimp. Life (Basel) 2022; 12:life12020276. [PMID: 35207563 PMCID: PMC8879573 DOI: 10.3390/life12020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
Infectious diseases are considered the greatest threat to the modern high-density shrimp aquaculture industry. Specificity, rapidity, and sensitivity of molecular diagnostic methods for the detection of asymptomatic infected shrimp allows preventive measures to be taken before disease outbreaks. Routine molecular detection of pathogens in infected shrimp can be made easier with the use of a direct polymerase chain reaction (PCR). In this study, four direct PCR reagent brands were tested, and results showed that the detection signal of direct PCR in hepatopancreatic tissue was more severely affected. In addition, portable capillary electrophoresis was applied to improve sensitivity and specificity, resulting in a pathogen detection limit of 25 copies/PCR-reaction. Juvenile shrimp from five different aquaculture ponds were tested for white spot syndrome virus infection, and the results were consistent with the Organization for Animal Health’s certified standard method. Furthermore, this methodology could be used to examine single post larvae shrimp. The overall detection time was reduced by more than 58.2%. Therefore, the combination of direct PCR and capillary electrophoresis for on-site examination is valuable and has potential as a suitable tool for diagnostic, epidemiological, and pathological studies of shrimp aquaculture.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Shao-Chieh Yen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan;
- BiOptic Inc., New Taipei City 23141, Taiwan;
| | | | - Fan Shen
- Giant Bio Technology Inc., New Taipei City 22101, Taiwan;
| | - John Han-You Lin
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
- Correspondence: (J.H.-Y.L.); (H.-J.L.)
| | - Han-Jia Lin
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Correspondence: (J.H.-Y.L.); (H.-J.L.)
| |
Collapse
|
6
|
Identification and Full Characterisation of Two Novel Crustacean Infecting Members of the Family Nudiviridae Provides Support for Two Subfamilies. Viruses 2021; 13:v13091694. [PMID: 34578276 PMCID: PMC8472649 DOI: 10.3390/v13091694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple enveloped viruses with rod-shaped nucleocapsids have been described, infecting the epithelial cell nuclei within the hepatopancreas tubules of crustaceans. These bacilliform viruses share the ultrastructural characteristics of nudiviruses, a specific clade of viruses infecting arthropods. Using histology, electron microscopy and high throughput sequencing, we characterise two further bacilliform viruses from aquatic hosts, the brown shrimp (Crangon crangon) and the European shore crab (Carcinus maenas). We assembled the full double stranded, circular DNA genome sequences of these viruses (~113 and 132 kbp, respectively). Comparative genomics and phylogenetic analyses confirm that both belong within the family Nudiviridae but in separate clades representing nudiviruses found in freshwater and marine environments. We show that the three thymidine kinase (tk) genes present in all sequenced nudivirus genomes, thus far, were absent in the Crangon crangon nudivirus, suggesting there are twenty-eight core genes shared by all nudiviruses. Furthermore, the phylogenetic data no longer support the subdivision of the family Nudiviridae into four genera (Alphanudivirus to Deltanudivirus), as recently adopted by the International Committee on Taxonomy of Viruses (ICTV), but rather shows two main branches of the family that are further subdivided. Our data support a recent proposal to create two subfamilies within the family Nudiviridae, each subdivided into several genera.
Collapse
|
7
|
Mugimba KK, Byarugaba DK, Mutoloki S, Evensen Ø, Munang’andu HM. Challenges and Solutions to Viral Diseases of Finfish in Marine Aquaculture. Pathogens 2021; 10:pathogens10060673. [PMID: 34070735 PMCID: PMC8227678 DOI: 10.3390/pathogens10060673] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Aquaculture is the fastest food-producing sector in the world, accounting for one-third of global food production. As is the case with all intensive farming systems, increase in infectious diseases has adversely impacted the growth of marine fish farming worldwide. Viral diseases cause high economic losses in marine aquaculture. We provide an overview of the major challenges limiting the control and prevention of viral diseases in marine fish farming, as well as highlight potential solutions. The major challenges include increase in the number of emerging viral diseases, wild reservoirs, migratory species, anthropogenic activities, limitations in diagnostic tools and expertise, transportation of virus contaminated ballast water, and international trade. The proposed solutions to these problems include developing biosecurity policies at global and national levels, implementation of biosecurity measures, vaccine development, use of antiviral drugs and probiotics to combat viral infections, selective breeding of disease-resistant fish, use of improved diagnostic tools, disease surveillance, as well as promoting the use of good husbandry and management practices. A multifaceted approach combining several control strategies would provide more effective long-lasting solutions to reduction in viral infections in marine aquaculture than using a single disease control approach like vaccination alone.
Collapse
Affiliation(s)
- Kizito K. Mugimba
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
- Correspondence: (K.K.M.); (H.M.M.); Tel.: +256-772-56-7940 (K.K.M.); +47-98-86-86-83 (H.M.M.)
| | - Denis K. Byarugaba
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Stephen Mutoloki
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; (S.M.); (Ø.E.)
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; (S.M.); (Ø.E.)
| | - Hetron M. Munang’andu
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway
- Correspondence: (K.K.M.); (H.M.M.); Tel.: +256-772-56-7940 (K.K.M.); +47-98-86-86-83 (H.M.M.)
| |
Collapse
|
8
|
Aly SM, Mansour SM, Thabet RY, Mabrok M. Studies on infectious myonecrosis virus (IMNV) and infectious hypodermal and hematopoietic necrosis virus (IHHNV) in cultured penaeid shrimp in Egypt. DISEASES OF AQUATIC ORGANISMS 2021; 143:57-67. [PMID: 33570040 DOI: 10.3354/dao03556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present study aimed to diagnose infectious myonecrosis virus (IMNV) and infectious hypodermal and hematopoietic necrosis virus (IHHNV) among cultured penaeid shrimp (Penaeus semisulcatus, n = 120) collected from private farms in 2 Egyptian provinces (Damietta and North Sinai) along the Mediterranean coast. The collected shrimp were subjected to clinical examination, histopathology, molecular characterization, and phylogenetic analysis. Most of the shrimp infected with IMNV showed a distinctive appearance resembling cooked shrimp and white necrosis on distal abdominal segments and tail fans. Simultaneously, IHHNV-infected cases displayed opaque abdominal muscles, white milky to buff mottling on the shell, and a pathognomonic runt-deformity syndrome. Histopathological examination of infected specimens revealed muscular edema, hemocyte infiltration, deformities, Zenker's necrosis, and eosinophilic intra-nuclear inclusion bodies (Cowdry type A). PCR results gave predictable amplicon sizes of 139 and 81 bp and confirmed the presence of IMNV and IHHNV with a total prevalence of 37.5 and 25%, respectively. A homology search by BLAST analysis showed that the retrieved isolates putatively belonged to IMNV and IHHNV based on 96.3 to 97% nucleotide identity to the corresponding open reading frame gene of each virus. The phylogenetic analysis clearly showed genetic similarity and cross-lineage between our isolates and other isolates from Egypt, the USA, Brazil, Indonesia, China, Korea, Taiwan, and Ecuador. In conclusion, gross inspection and histopathology may aid in the diagnosis of viral diseases; however, molecular tools are indispensable for confirming a possible infection. The current study recommends strict regulations during live shrimp transportation and implementing health control certificates over all imports and exports, especially in developing countries, including Egypt.
Collapse
Affiliation(s)
- Salah M Aly
- Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | | | | |
Collapse
|
9
|
Hooper C, Debnath PP, Biswas S, van Aerle R, Bateman KS, Basak SK, Rahman MM, Mohan CV, Islam HMR, Ross S, Stentiford GD, Currie D, Bass D. A Novel RNA Virus, Macrobrachium rosenbergii Golda Virus (MrGV), Linked to Mass Mortalities of the Larval Giant Freshwater Prawn in Bangladesh. Viruses 2020; 12:v12101120. [PMID: 33023199 PMCID: PMC7601004 DOI: 10.3390/v12101120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Mass mortalities of the larval stage of the giant freshwater prawn, Macrobrachium rosenbergii, have been occurring in Bangladesh since 2011. Mortalities can reach 100% and have resulted in an 80% decline in the number of hatcheries actively producing M. rosenbergii. To investigate a causative agent for the mortalities, a disease challenge was carried out using infected material from a hatchery experiencing mortalities. Moribund larvae from the challenge were prepared for metatranscriptomic sequencing. De novo virus assembly revealed a 29 kb single‑stranded positive-sense RNA virus with similarities in key protein motif sequences to yellow head virus (YHV), an RNA virus that causes mass mortalities in marine shrimp aquaculture, and other viruses in the Nidovirales order. Primers were designed against the novel virus and used to screen cDNA from larvae sampled from hatcheries in the South of Bangladesh from two consecutive years. Larvae from all hatcheries screened from both years were positive by PCR for the novel virus, including larvae from a hatchery that at the point of sampling appeared healthy, but later experienced mortalities. These screens suggest that the virus is widespread in M. rosenbergii hatchery culture in southern Bangladesh, and that early detection of the virus can be achieved by PCR. The hypothesised protein motifs of Macrobrachium rosenbergii golda virus (MrGV) suggest that it is likely to be a new species within the Nidovirales order. Biosecurity measures should be taken in order to mitigate global spread through the movement of post-larvae within and between countries, which has previously been linked to other virus outbreaks in crustacean aquaculture.
Collapse
Affiliation(s)
- Chantelle Hooper
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Weymouth, Dorset DT4 8UB, UK; (R.v.A.); (K.S.B.); (S.R.); (G.D.S.); (D.B.)
- Correspondence: (C.H.); (P.P.D.)
| | - Partho P. Debnath
- WorldFish Bangladesh, Dhaka 1213, Bangladesh; (S.K.B.); (M.M.R.)
- Correspondence: (C.H.); (P.P.D.)
| | - Sukumar Biswas
- Winrock Bangladesh, Dhaka 1212, Bangladesh; (S.B.); (D.C.)
| | - Ronny van Aerle
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Weymouth, Dorset DT4 8UB, UK; (R.v.A.); (K.S.B.); (S.R.); (G.D.S.); (D.B.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter EX4 4QY, UK
| | - Kelly S. Bateman
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Weymouth, Dorset DT4 8UB, UK; (R.v.A.); (K.S.B.); (S.R.); (G.D.S.); (D.B.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter EX4 4QY, UK
| | | | | | | | - H. M. Rakibul Islam
- Bangladesh Fisheries Research Institute, Shrimp Research Station, Bagerhat 9300, Bangladesh;
| | - Stuart Ross
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Weymouth, Dorset DT4 8UB, UK; (R.v.A.); (K.S.B.); (S.R.); (G.D.S.); (D.B.)
| | - Grant D. Stentiford
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Weymouth, Dorset DT4 8UB, UK; (R.v.A.); (K.S.B.); (S.R.); (G.D.S.); (D.B.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter EX4 4QY, UK
| | - David Currie
- Winrock Bangladesh, Dhaka 1212, Bangladesh; (S.B.); (D.C.)
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Weymouth, Dorset DT4 8UB, UK; (R.v.A.); (K.S.B.); (S.R.); (G.D.S.); (D.B.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter EX4 4QY, UK
- Department of Life Sciences, the Natural History Museum, London SW7 5BD, UK
| |
Collapse
|
10
|
Schmidt-Posthaus H, Koch M, Seuberlich T, Birrer C, Hirschi R, Kugler M. Mysterious syndrome causing high mortality in wild brown trout in Eastern Switzerland, pathology and search for a possible cause. JOURNAL OF FISH DISEASES 2020; 43:1317-1324. [PMID: 32830324 DOI: 10.1111/jfd.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Since 2016, annually occurring species-specific die-offs of brown trout (Salmo trutta fario) occurred in the Thur River, situated in the Eastern part of Switzerland. These events lead to drastically reduced population densities in the impacted river regions. Clinical signs in brown trout and mortality were restricted to few weeks in August/September. To characterize the syndrome and to find possible causes, from end of March to November 2018, one-year-old brown trout (Salmo trutta fario) and rainbow trout (Oncorhynchus mykiss) were exposed to water from Thur River, fish were sampled regularly and screened for infectious agents, including viral metagenomics, and pathology was described. Starting approximately four months post-exposure, brown trout showed severe lymphohistiocytic pancarditis and necrotizing and haemorrhagic hepatitis. These lesions were recorded until the end of the experiment in November. Rainbow trout were not affected at any point in time. No infectious agents could be identified so far as cause of disease, especially no viral aetiology. Even if pathogenesis and pathology point in the direction of an infectious agent, a causative relationship could not be confirmed and aetiology remains unclear.
Collapse
Affiliation(s)
- Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University Bern, Bern, Switzerland
| | - Michel Koch
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University Bern, Bern, Switzerland
| | - Torsten Seuberlich
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University Bern, Bern, Switzerland
| | - Christoph Birrer
- Canton St. Gallen, Department of Economic Affairs, Office for Nature, Hunting and Fisheries, St. Gallen, Switzerland
| | - Regula Hirschi
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University Bern, Bern, Switzerland
| | - Michael Kugler
- Canton St. Gallen, Department of Economic Affairs, Office for Nature, Hunting and Fisheries, St. Gallen, Switzerland
| |
Collapse
|
11
|
Kayansamruaj P, Soontara C, Dong HT, Phiwsaiya K, Senapin S. Draft genome sequence of scale drop disease virus (SDDV) retrieved from metagenomic investigation of infected barramundi, Lates calcarifer (Bloch, 1790). JOURNAL OF FISH DISEASES 2020; 43:1287-1298. [PMID: 32829517 DOI: 10.1111/jfd.13240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Scale drop disease virus (SDDV) is a novel viral pathogen considered to be distributed in farmed barramundi (Lates calcarifer) in South-East Asia. Despite the severity of the disease, only limited genomic information related to SDDV is available. In this study, samples of SDDV-infected fish collected in 2019 were used. The microbiome of brain tissue was investigated using Illumina HiSeq DNA sequencing. Taxonomic analysis showed that SDDV was the main pathogen contained in the affected barramundi. De novo metagenome assembly recovered the SDDV genome, named isolate TH2019, 131 kb in length, and comprised of 135 ORFs. Comparison between this genome and the Singaporean SDDV reference genome revealed that the nucleotide identity within the aligned region was 99.97%. Missense, frameshift, insertion and deletion mutations were identified in 26 ORFs. Deletion of four deduced amino acid sequence in ORF_030L, identical to the SDDV isolate previously identified in Thailand, would be a potential biomarker for future strain classification. Interestingly, the genome of SDDV TH2019 harboured a unique 7,695-bp-long genomic region containing six hypothetical protein-encoded genes. Collectively, this study demonstrated that the SDDV genome can be sequenced directly, although with limited coverage depth, using metagenomic analysis of barramundi sample with severe infection.
Collapse
Affiliation(s)
- Pattanapon Kayansamruaj
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Chayanit Soontara
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Ha T Dong
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
- Faculty of Science, Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
| | - Kornsunee Phiwsaiya
- Faculty of Science, Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Pathum Thani, Thailand
| | - Saengchan Senapin
- Faculty of Science, Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Pathum Thani, Thailand
| |
Collapse
|
12
|
Munang'andu HM, Salinas I, Tafalla C, Dalmo RA. Editorial: Vaccines and Immunostimulants for Finfish. Front Immunol 2020; 11:573771. [PMID: 33117370 PMCID: PMC7553079 DOI: 10.3389/fimmu.2020.573771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
| | - Irene Salinas
- Biology Department, University of New Mexico, Albuquerque, NM, United States
| | - Carolina Tafalla
- Animal Health Research Center (Centro de Investigación en Sanidad Animal - Instituto Nacional De Investigaciones Agrarias), Madrid, Spain
| | - Roy Ambli Dalmo
- Universitet i Tromsø – The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
13
|
Maghembe R, Damian D, Makaranga A, Nyandoro SS, Lyantagaye SL, Kusari S, Hatti-Kaul R. Omics for Bioprospecting and Drug Discovery from Bacteria and Microalgae. Antibiotics (Basel) 2020; 9:antibiotics9050229. [PMID: 32375367 PMCID: PMC7277505 DOI: 10.3390/antibiotics9050229] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
"Omics" represent a combinatorial approach to high-throughput analysis of biological entities for various purposes. It broadly encompasses genomics, transcriptomics, proteomics, lipidomics, and metabolomics. Bacteria and microalgae exhibit a wide range of genetic, biochemical and concomitantly, physiological variations owing to their exposure to biotic and abiotic dynamics in their ecosystem conditions. Consequently, optimal conditions for adequate growth and production of useful bacterial or microalgal metabolites are critically unpredictable. Traditional methods employ microbe isolation and 'blind'-culture optimization with numerous chemical analyses making the bioprospecting process laborious, strenuous, and costly. Advances in the next generation sequencing (NGS) technologies have offered a platform for the pan-genomic analysis of microbes from community and strain downstream to the gene level. Changing conditions in nature or laboratory accompany epigenetic modulation, variation in gene expression, and subsequent biochemical profiles defining an organism's inherent metabolic repertoire. Proteome and metabolome analysis could further our understanding of the molecular and biochemical attributes of the microbes under research. This review provides an overview of recent studies that have employed omics as a robust, broad-spectrum approach for screening bacteria and microalgae to exploit their potential as sources of drug leads by focusing on their genomes, secondary metabolite biosynthetic pathway genes, transcriptomes, and metabolomes. We also highlight how recent studies have combined molecular biology with analytical chemistry methods, which further underscore the need for advances in bioinformatics and chemoinformatics as vital instruments in the discovery of novel bacterial and microalgal strains as well as new drug leads.
Collapse
Affiliation(s)
- Reuben Maghembe
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
- Department of Biological and Marine Sciences, Marian University College, P.O. Box 47, Bagamoyo, Tanzania;
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 22100 Lund, Sweden
| | - Donath Damian
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
| | - Abdalah Makaranga
- Department of Biological and Marine Sciences, Marian University College, P.O. Box 47, Bagamoyo, Tanzania;
- International Center for Genetic Engineering and Biotechnology (ICGEB), Omics of Algae Group, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Stephen Samwel Nyandoro
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania;
| | - Sylvester Leonard Lyantagaye
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
- Department of Biochemistry, Mbeya College of Health and Allied Sciences, University of Dar es Salaam, P.O. Box 608, Mbeya, Tanzania
| | - Souvik Kusari
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
- Correspondence: (S.K.); (R.H.-K.); Tel.: +49-2317554086 (S.K.); +46-462224840 (R.H.-K.)
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 22100 Lund, Sweden
- Correspondence: (S.K.); (R.H.-K.); Tel.: +49-2317554086 (S.K.); +46-462224840 (R.H.-K.)
| |
Collapse
|
14
|
Prussin AJ, Belser JA, Bischoff W, Kelley ST, Lin K, Lindsley WG, Nshimyimana JP, Schuit M, Wu Z, Bibby K, Marr LC. Viruses in the Built Environment (VIBE) meeting report. MICROBIOME 2020; 8:1. [PMID: 31901242 PMCID: PMC6942371 DOI: 10.1186/s40168-019-0777-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND During a period of rapid growth in our understanding of the microbiology of the built environment in recent years, the majority of research has focused on bacteria and fungi. Viruses, while probably as numerous, have received less attention. In response, the Alfred P. Sloan Foundation supported a workshop entitled "Viruses in the Built Environment (VIBE)," at which experts in environmental engineering, environmental microbiology, epidemiology, infection prevention, fluid dynamics, occupational health, metagenomics, and virology convened to synthesize recent advances and identify key research questions and knowledge gaps regarding viruses in the built environment. RESULTS Four primary research areas and funding priorities were identified. First, a better understanding of viral communities in the built environment is needed, specifically which viruses are present and their sources, spatial and temporal dynamics, and interactions with bacteria. Second, more information is needed about viruses and health, including viral transmission in the built environment, the relationship between virus detection and exposure, and the definition of a healthy virome. The third research priority is to identify and evaluate interventions for controlling viruses and the virome in the built environment. This encompasses interactions among viruses, buildings, and occupants. Finally, to overcome the challenge of working with viruses, workshop participants emphasized that improved sampling methods, laboratory techniques, and bioinformatics approaches are needed to advance understanding of viruses in the built environment. CONCLUSIONS We hope that identifying these key questions and knowledge gaps will engage other investigators and funding agencies to spur future research on the highly interdisciplinary topic of viruses in the built environment. There are numerous opportunities to advance knowledge, as many topics remain underexplored compared to our understanding of bacteria and fungi. Video abstract.
Collapse
Affiliation(s)
- Aaron J. Prussin
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| | - Jessica A. Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333 USA
| | - Werner Bischoff
- Section on Infectious Diseases, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Scott T. Kelley
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
| | - Kaisen Lin
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| | - William G. Lindsley
- Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | | | - Michael Schuit
- National Biodefense Analysis and Countermeasures Center, Frederick, MD 21702 USA
| | - Zhenyu Wu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Linsey C. Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
15
|
Hewson I. Technical pitfalls that bias comparative microbial community analyses of aquatic disease Ian Hewson. DISEASES OF AQUATIC ORGANISMS 2019; 137:109-124. [PMID: 31854329 DOI: 10.3354/dao03432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The accessibility of high-throughput DNA sequencing technologies has attracted the application of comparative microbial analyses to study diseases. These studies present a window into host microbiome diversity and composition that can be used to address ecological theory in the context of host biology and behavior. Recently, comparative microbiome studies have been used to study non-vertebrate aquatic diseases to elucidate microorganisms potentially involved in disease processes or in disease prevention. These investigations suffer from many well-described biases, especially prior to sequence analyses, that could lead to misleading conclusions. Microbiome-focused studies of aquatic metazoan diseases provide valuable documentation of microbial ecology, although, they are only a starting point for establishing disease etiology, which demands quantitative validation through targeted approaches. The microbiome approach to understanding disease is most useful after laboratory diagnostics guided by pathology have failed to identify a causative agent. This opinion piece presents several technical pitfalls which may affect wider interpretation of microbe-host interactions through comparative microbial community analyses and provides recommendations, based on studies in non-aquatic systems, for incorporation into future aquatic disease research.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Xu C, Xu J, Liu J, Chen Y, Evensen Ø, Munang’andu HM, Qian G. Human adenovirus penton base and encapsidation sequences detected in Pelodiscus sinensis by next generation sequencing. Future Virol 2019. [DOI: 10.2217/fvl-2019-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Chinese soft-shelled turtle ( Pelodiscus sinensis) has become one of the leading cultured organisms in China and South East Asia. The objectives of the present study were to use next generation sequencing to identify viral genomes present in liver tissues from Chinese soft-shelled turtle in China. BLAST analysis of viral sequences from liver samples showed high homology with the human adenovirus (HAdV) penton base and encapsidation proteins. This homology points to possible existence of HAdV in freshwater environments used for the culture of soft-shelled turtles. Therefore, our findings merit further investigations to determine possible contamination of HAdV in aquaculture environments and the possible role of the Chinese soft-shelled turtle in transmitting HAdV to humans.
Collapse
Affiliation(s)
- Cheng Xu
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, PR China
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Sciences & Aquatic Medicine, PO Box 369, 0102, Oslo, Norway
| | - Jiehao Xu
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Jiating Liu
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Yu Chen
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Øystein Evensen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Sciences & Aquatic Medicine, PO Box 369, 0102, Oslo, Norway
| | - Hetron Mweemba Munang’andu
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Sciences & Aquatic Medicine, PO Box 369, 0102, Oslo, Norway
| | - Guoying Qian
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, PR China
| |
Collapse
|
17
|
Asplund M, Kjartansdóttir KR, Mollerup S, Vinner L, Fridholm H, Herrera JAR, Friis-Nielsen J, Hansen TA, Jensen RH, Nielsen IB, Richter SR, Rey-Iglesia A, Matey-Hernandez ML, Alquezar-Planas DE, Olsen PVS, Sicheritz-Pontén T, Willerslev E, Lund O, Brunak S, Mourier T, Nielsen LP, Izarzugaza JMG, Hansen AJ. Contaminating viral sequences in high-throughput sequencing viromics: a linkage study of 700 sequencing libraries. Clin Microbiol Infect 2019; 25:1277-1285. [PMID: 31059795 DOI: 10.1016/j.cmi.2019.04.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Sample preparation for high-throughput sequencing (HTS) includes treatment with various laboratory components, potentially carrying viral nucleic acids, the extent of which has not been thoroughly investigated. Our aim was to systematically examine a diverse repertoire of laboratory components used to prepare samples for HTS in order to identify contaminating viral sequences. METHODS A total of 322 samples of mainly human origin were analysed using eight protocols, applying a wide variety of laboratory components. Several samples (60% of human specimens) were processed using different protocols. In total, 712 sequencing libraries were investigated for viral sequence contamination. RESULTS Among sequences showing similarity to viruses, 493 were significantly associated with the use of laboratory components. Each of these viral sequences had sporadic appearance, only being identified in a subset of the samples treated with the linked laboratory component, and some were not identified in the non-template control samples. Remarkably, more than 65% of all viral sequences identified were within viral clusters linked to the use of laboratory components. CONCLUSIONS We show that high prevalence of contaminating viral sequences can be expected in HTS-based virome data and provide an extensive list of novel contaminating viral sequences that can be used for evaluation of viral findings in future virome and metagenome studies. Moreover, we show that detection can be problematic due to stochastic appearance and limited non-template controls. Although the exact origin of these viral sequences requires further research, our results support laboratory-component-linked viral sequence contamination of both biological and synthetic origin.
Collapse
Affiliation(s)
- M Asplund
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| | - K R Kjartansdóttir
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - S Mollerup
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - L Vinner
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - H Fridholm
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark; Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - J A R Herrera
- Disease Systems Biology Programme, Panum Instituttet, Copenhagen, Denmark; Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - J Friis-Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - T A Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - R H Jensen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - I B Nielsen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - S R Richter
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - A Rey-Iglesia
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - M L Matey-Hernandez
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - D E Alquezar-Planas
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - P V S Olsen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - T Sicheritz-Pontén
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark; Centre of Excellence for Omics-Driven Computational Biodiscovery, AIMST University, Kedah, Malaysia
| | - E Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - O Lund
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - S Brunak
- Disease Systems Biology Programme, Panum Instituttet, Copenhagen, Denmark; Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - T Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - L P Nielsen
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - J M G Izarzugaza
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - A J Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Gałan W, Bąk M, Jakubowska M. Host Taxon Predictor - A Tool for Predicting Taxon of the Host of a Newly Discovered Virus. Sci Rep 2019; 9:3436. [PMID: 30837511 PMCID: PMC6400966 DOI: 10.1038/s41598-019-39847-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/30/2019] [Indexed: 12/04/2022] Open
Abstract
Recent advances in metagenomics provided a valuable alternative to culture-based approaches for better sampling viral diversity. However, some of newly identified viruses lack sequence similarity to any of previously sequenced ones, and cannot be easily assigned to their hosts. Here we present a bioinformatic approach to this problem. We developed classifiers capable of distinguishing eukaryotic viruses from the phages achieving almost 95% prediction accuracy. The classifiers are wrapped in Host Taxon Predictor (HTP) software written in Python which is freely available at https://github.com/wojciech-galan/viruses_classifier. HTP’s performance was later demonstrated on a collection of newly identified viral genomes and genome fragments. In summary, HTP is a culture- and alignment-free approach for distinction between phages and eukaryotic viruses. We have also shown that it is possible to further extend our method to go up the evolutionary tree and predict whether a virus can infect narrower taxa.
Collapse
Affiliation(s)
- Wojciech Gałan
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| | - Maciej Bąk
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Jakubowska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059, Kraków, Poland
| |
Collapse
|
19
|
Piscine Orthoreovirus 3 Is Not the Causative Pathogen of Proliferative Darkening Syndrome (PDS) of Brown Trout ( Salmo trutta fario). Viruses 2019; 11:v11020112. [PMID: 30696111 PMCID: PMC6410266 DOI: 10.3390/v11020112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/18/2019] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
The proliferative darkening syndrome (PDS) is a lethal disease of brown trout (Salmo trutta fario) which occurs in several alpine Bavarian limestone rivers. Because mortality can reach 100%, PDS is a serious threat for affected fish populations. Recently, Kuehn and colleagues reported that a high throughput RNA sequencing approach identified a piscine orthoreovirus (PRV) as a causative agent of PDS. We investigated samples from PDS-affected fish obtained from two exposure experiments performed at the river Iller in 2008 and 2009. Using a RT-qPCR and a well-established next-generation RNA sequencing pipeline for pathogen detection, PRV-specific RNA was not detectable in PDS fish from 2009. In contrast, PRV RNA was readily detectable in several organs from diseased fish in 2008. However, similar virus loads were detectable in the control fish which were not exposed to Iller water and did not show any signs of the disease. Therefore, we conclude that PRV is not the causative agent of PDS of brown trout in the rhithral region of alpine Bavarian limestone rivers. The abovementioned study by Kuehn used only samples from the exposure experiment from 2008 and detected a subclinical PRV bystander infection. Work is ongoing to identify the causative agent of PDS.
Collapse
|
20
|
Kuehn R, Stoeckle BC, Young M, Popp L, Taeubert JE, Pfaffl MW, Geist J. Identification of a piscine reovirus-related pathogen in proliferative darkening syndrome (PDS) infected brown trout (Salmo trutta fario) using a next-generation technology detection pipeline. PLoS One 2018; 13:e0206164. [PMID: 30346982 PMCID: PMC6197672 DOI: 10.1371/journal.pone.0206164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/08/2018] [Indexed: 01/02/2023] Open
Abstract
The proliferative darkening syndrome (PDS) is an annually recurring disease that causes species-specific die-off of brown trout (Salmo trutta fario) with a mortality rate of near 100% in pre-alpine rivers of central Europe. So far the etiology and causation of this disease is still unclear. The objective of this study was to identify the cause of PDS using a next-generation technology detection pipeline. Following the hypothesis that PDS is caused by an infectious agent, brown trout specimens were exposed to water from a heavily affected pre-alpine river with annual occurrence of the disease. Specimens were sampled over the entire time period from potential infection through death. Transcriptomic analysis (microarray) and RT-qPCR of brown trout liver tissue evidenced strong gene expression response of immune-associated genes. Messenger RNA of specimens with synchronous immune expression profiles were ultra-deep sequenced using next-generation sequencing technology (NGS). Bioinformatic processing of generated reads and gap-filling Sanger re-sequencing of the identified pathogen genome revealed strong evidence that a piscine-related reovirus is the causative organism of PDS. The identified pathogen is phylogenetically closely related to the family of piscine reoviruses (PRV) which are considered as the causation of different fish diseases in Atlantic and Pacific salmonid species such as Salmo salar and Onchorhynchus kisutch. This study also highlights that the approach of first screening immune responses along a timeline in order to identify synchronously affected stages in different specimens which subsequently were ultra-deep sequenced is an effective approach in pathogen detection. In particular, the identification of specimens with synchronous molecular immune response patterns combined with NGS sequencing and gap-filling re-sequencing resulted in the successful pathogen detection of PDS.
Collapse
Affiliation(s)
- Ralph Kuehn
- Unit of Molecular Zoology, Department of Zoology, Technical University of Munich, Freising, Germany.,Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, NM, United States of America
| | - Bernhard C Stoeckle
- Unit of Molecular Zoology, Department of Zoology, Technical University of Munich, Freising, Germany.,Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| | - Marc Young
- Unit of Molecular Zoology, Department of Zoology, Technical University of Munich, Freising, Germany
| | - Lisa Popp
- Unit of Molecular Zoology, Department of Zoology, Technical University of Munich, Freising, Germany
| | - Jens-Eike Taeubert
- Fachberatung für Fischerei Niederbayern, Bezirk Niederbayern, Landshut, Germany
| | - Michael W Pfaffl
- Department of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Juergen Geist
- Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| |
Collapse
|
21
|
Monitoring changing cellular characteristics during the development of a fin cell line from Cyprinus carpio. Comp Biochem Physiol B Biochem Mol Biol 2018; 225:1-12. [PMID: 29960082 DOI: 10.1016/j.cbpb.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 11/21/2022]
Abstract
The establishment and in-depth characterization of a novel continuous cell line derived from fin tissue of common carp (Cyprinus carpio), CCApin, is reported. The cells of the cell line could be propagated in Leibovitz's L-15 medium containing 15% foetal calf serum and 0.5% carp serum for >150 passages during the last 24 months, with a stable fast growth. Furthermore, antibody staining indicated that cell types obtained in primary cultures, containing the epithelial stem-cell marker tumorprotein 63, were different from cells in long-term cell cultures, containing tight junction protein zona occludens 1 and cytokeratin 7. These observations suggest a switch of dominant cell types. Molecular analysis of gene expression profiles of caudal fin tissue and CCApin cells showed that genes relevant in epithelial cells but also in mesenchymal cells were expressed. However, during cultivation of CCApin a set of very steadily expressed, primarily mesenchymal genes like collagen 1 alpha 1, fibronectin or cadherin 2 was found. In summary, the long-term cell culture could be described as a stably growing epithelial population with some mesenchymal features. There are several application possibilities, especially for virus susceptibility studies, e.g. cyprinid herpesvirus-3 (CyHV-3). The study leads to a better understanding of molecular and physiological mechanisms of in vitro fish cell cultures.
Collapse
|
22
|
Teleosts Genomics: Progress and Prospects in Disease Prevention and Control. Int J Mol Sci 2018; 19:ijms19041083. [PMID: 29617353 PMCID: PMC5979277 DOI: 10.3390/ijms19041083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/11/2018] [Accepted: 03/29/2018] [Indexed: 12/26/2022] Open
Abstract
Genome wide studies based on conventional molecular tools and upcoming omics technologies are beginning to gain functional applications in the control and prevention of diseases in teleosts fish. Herein, we provide insights into current progress and prospects in the use genomics studies for the control and prevention of fish diseases. Metagenomics has emerged to be an important tool used to identify emerging infectious diseases for the timely design of rational disease control strategies, determining microbial compositions in different aquatic environments used for fish farming and the use of host microbiota to monitor the health status of fish. Expounding the use of antimicrobial peptides (AMPs) as therapeutic agents against different pathogens as well as elucidating their role in tissue regeneration is another vital aspect of genomics studies that had taken precedent in recent years. In vaccine development, prospects made include the identification of highly immunogenic proteins for use in recombinant vaccine designs as well as identifying gene signatures that correlate with protective immunity for use as benchmarks in optimizing vaccine efficacy. Progress in quantitative trait loci (QTL) mapping is beginning to yield considerable success in identifying resistant traits against some of the highly infectious diseases that have previously ravaged the aquaculture industry. Altogether, the synopsis put forth shows that genomics studies are beginning to yield positive contribution in the prevention and control of fish diseases in aquaculture.
Collapse
|