1
|
Wang Z, Wu Q, Shen W, Wan F, He J, Liu L, Tang S, Tan Z. Cooling redistributed endotoxin across different biofluids via modulating the ruminal microbiota and metabolome without altering quorum sensing signal levels in heat-stressed beef bulls. Anim Microbiome 2025; 7:38. [PMID: 40269989 PMCID: PMC12016233 DOI: 10.1186/s42523-025-00400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Cooling is one of the most common and economical methods to ameliorate heat stress (HS), and it has been discovered to alter the lipopolysaccharide (LPS) endotoxin level in ruminants. However, whether the endotoxin variation induced by cooling relates to the quorum sensing (QS) within the ruminal microflora remains unknown. The current study was consequently performed to examine whether cooling could influence the endotoxin distribution across different biofluids, ruminal microbiota, and ruminal metabolisms through affecting the QS of rumen microorganisms in beef cattle exposed to HS. Thirty-two Simmental bulls were used as experimental animals and randomly assigned to either the control (CON) group, or the mechanical ventilation and water spray (MVWS) treatment. The temperature-humidity index (THI) was recorded throughout this trial, and samples of the rumen liquid, blood, and urine were collected. RESULTS Cooling significantly lowered (P < 0.05) the temperature-humidity index (THI), ruminal endotoxin, and endotoxin concentration and excretion in urine, and significantly raised endotoxin level in blood (P < 0.05), but did not change the ruminal concentrations of QS signals including 3-OXO-C6-HSL and the AI-2 (P > 0.05). The linear discriminant analysis effect size (LEfSe) analysis revealed that Prevotellaceae, Rikenellaceae, Monoglobales and their affiliated members, as well as other bacterial taxa were significantly differently (P < 0.05) enriched between the two treatments. The Tax4Fun2 prediction suggested that QS function was upregulated in MVWS compared to CON. The metabolomic analysis indicated that cooling altered the ruminal metabolism profile and downregulated the pathways of lysine degradation, phenylalanine, tyrosine and tryptophan biosynthesis, and ubiquinone and other terpenoid-quinone biosynthesis. The significant (P < 0.05) correlations of the differential bacteria and metabolites with endotoxin and QS molecules were also demonstrated through Spearman analysis. CONCLUSIONS Based on the results of this trial, it could be speculated that the cooling reshaped the endotoxin distribution across different biofluids through manipulating ruminal microbiota and metabolome, which might involve the participation of QS. Further investigations are warranted to disclose and verify the mechanisms for those correlations found in this study.
Collapse
Affiliation(s)
- Zuo Wang
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Qingyang Wu
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Weijun Shen
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China.
| | - Fachun Wan
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Jianhua He
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Shaoxun Tang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| | - Zhiliang Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| |
Collapse
|
2
|
Spaggiari C, Yamukujije C, Pieroni M, Annunziato G. Quorum sensing inhibitors (QSIs): a patent review (2019-2023). Expert Opin Ther Pat 2025:1-17. [PMID: 40219759 DOI: 10.1080/13543776.2025.2491382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
INTRODUCTION The collective behavior of bacteria is regulated by Quorum Sensing (QS), in which bacteria release chemical signals and express virulence genes in a cell density-dependent manner. Quorum Sensing inhibitors (QSIs) are a large class of natural and synthetic compounds that have the potential to competitively inhibit the Quorum Sensing (QS) systems of several pathogens blocking their virulence mechanisms. They are considered promising compounds to deal with antimicrobial resistance, providing an opportunity to develop new drugs against these targets. AREAS COVERED The present review represents a comprehensive analysis of patents and patent applications available on Espacenet and Google Patent, from 2019 to 2023 referring to the therapeutic use of Quorum Sensing inhibitors. EXPERT OPINION Unlike classical antibiotics, which target the basic cellular metabolic processes, QSIs provide a promising alternative to attenuating virulence and pathogenicity without putting selective pressure on bacteria. The general belief is that QSIs pose no or little selective pressure on bacteria since these do not affect their growth. To date, QSIs are seen as the most promising alternative to traditional antibiotics. The next big step in this area of research is its succession to the clinical stage.
Collapse
Affiliation(s)
| | | | - Marco Pieroni
- Department of Food and Drugs, University of Parma, Parma, Italy
| | | |
Collapse
|
3
|
Liu Y, Dai A, Xia L, Zhou Y, Ren T, Huang Y, Zhou Y. Deciphering the roles of nitrogen source in sharping synchronous metabolic pathways of linear alkylbenzene sulfonate and nitrogen in a membrane biofilm for treating greywater. ENVIRONMENTAL RESEARCH 2024; 260:119650. [PMID: 39034023 DOI: 10.1016/j.envres.2024.119650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Nitrogen (N) source is an important factor affecting biological wastewater treatment. Although the oxygen-based membrane biofilm showed excellent greywater treatment performance, how N source impacts the synchronous removal of organics and N is still unclear. In this work, how N species (urea, nitrate and ammonia) affect synchronous metabolic pathways of organics and N were evaluated during greywater treatment in the membrane biofilm. Urea and ammonia achieved efficient chemical oxygen demand (>97.5%) and linear alkylbenzene sulfonate (LAS, >98.5%) removal, but nitrate enabled the maximum total N removal (80.8 ± 2.6%). The nitrate-added system had poor LAS removal ratio and high residual LAS, promoting the accumulation of effluent protein-like organics and fulvic acid matter. N source significantly induced bacterial community succession, and the increasing of corresponded functional flora can promote the transformation and utilization of microbial-mediated N. The nitrate system was more conducive to the accumulation of denitrification related microorganisms and enzymes, enabling the efficient N removal. Combining with high amount of ammonia monooxygenase that contributing to LAS and N co-metabolism, LAS mineralization related microbes and functional enzymes were generously accumulated in the urea and ammonia systems, which achieved the high efficiency of organics and LAS removal.
Collapse
Affiliation(s)
- Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anqi Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Libo Xia
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Keltsch NG, Gazanis A, Dietrich C, Wick A, Heermann R, Tremel W, Ternes TA. Development of an analytical method to quantify N-acyl-homoserine lactones in bacterial cultures, river water, and treated wastewater. Anal Bioanal Chem 2024; 416:3555-3567. [PMID: 38703199 DOI: 10.1007/s00216-024-05306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
N-Acyl-homoserine lactones (AHL) play a major role in the communication of Gram-negative bacteria. They influence processes such as biofilm formation, swarming motility, and bioluminescence in the aquatic environment. A comprehensive analytical method was developed to elucidate the "chemical communication" in pure bacterial cultures as well as in the aquatic environment and engineered environments with biofilms. Due to the high diversity of AHLs and their low concentrations in water, a sensitive and selective LC-ESI-MS/MS method combined with solid-phase extraction was developed for 34 AHLs, optimized and validated to quantify AHLs in bacterial conditioned medium, river water, and treated wastewater. Furthermore, the developed method was optimized in terms of enrichment volume, internal standards, limits of detection, and limits of quantification in several matrices. An unanticipated variety of AHLs was detected in the culture media of Pseudomonas aeruginosa (in total 8 AHLs), Phaeobacter gallaeciensis (in total 6 AHLs), and Methylobacterium mesophilicum (in total 15 AHLs), which to our knowledge have not been described for these bacterial cultures so far. Furthermore, AHLs were detected in river water (in total 5 AHLs) and treated wastewater (in total 3 AHLs). Several detected AHLs were quantified (in total 24) using a standard addition method up to 7.3±1.0 µg/L 3-Oxo-C12-AHL (culture media of P. aeruginosa).
Collapse
Affiliation(s)
- N G Keltsch
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, Koblenz, 56068, Germany
- Universität Koblenz-Landau, Universitätsstraße 1, Koblenz, 56070, Germany
| | - A Gazanis
- Biozentrum II, Institut für Molekulare Physiologie, Mikrobiologie und Biotechnologie, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz, 55128, Germany
| | - C Dietrich
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, Koblenz, 56068, Germany
| | - A Wick
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, Koblenz, 56068, Germany
| | - R Heermann
- Biozentrum II, Institut für Molekulare Physiologie, Mikrobiologie und Biotechnologie, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz, 55128, Germany
| | - W Tremel
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz, 55099, Germany
| | - T A Ternes
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, Koblenz, 56068, Germany.
- Universität Koblenz-Landau, Universitätsstraße 1, Koblenz, 56070, Germany.
| |
Collapse
|
5
|
Adouane E, Mercier C, Mamelle J, Willocquet E, Intertaglia L, Burgunter-Delamare B, Leblanc C, Rousvoal S, Lami R, Prado S. Importance of quorum sensing crosstalk in the brown alga Saccharina latissima epimicrobiome. iScience 2024; 27:109176. [PMID: 38433891 PMCID: PMC10906538 DOI: 10.1016/j.isci.2024.109176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Brown macroalgae are colonized by diverse microorganisms influencing the physiology of their host. However, cell-cell interactions within the surface microbiome (epimicrobiome) are largely unexplored, despite the significance of specific chemical mediators in maintaining host-microbiome homeostasis. In this study, by combining liquid chromatography coupled to mass spectrometry (LC-MS) analysis and bioassays, we demonstrated that the widely diverse fungal epimicrobiota of the brown alga Saccharina latissima can affect quorum sensing (QS), a type of cell-cell interaction, as well as bacterial biofilm formation. We also showed the ability of the bacterial epimicrobiota to form and inhibit biofilm growth, as well as to activate or inhibit QS pathways. Overall, we demonstrate that QS and anti-QS compounds produced by the epimicrobiota are key metabolites in these brown algal epimicrobiota communities and highlight the importance of exploring this epimicrobiome for the discovery of new bioactive compounds, including potentially anti-QS molecules with antifouling properties.
Collapse
Affiliation(s)
- Emilie Adouane
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-Organismes MCAM, UMR 7245, CNRS, Sorbonne Université, 75005 Paris, France
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Camille Mercier
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Jeanne Mamelle
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Emma Willocquet
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Laurent Intertaglia
- Sorbonne Université, CNRS, Bio2Mar, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Bertille Burgunter-Delamare
- Biologie Intégrative des Modèles Marins, LBI2M (Sorbonne Université/CNRS), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Catherine Leblanc
- Biologie Intégrative des Modèles Marins, LBI2M (Sorbonne Université/CNRS), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Sylvie Rousvoal
- Biologie Intégrative des Modèles Marins, LBI2M (Sorbonne Université/CNRS), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Soizic Prado
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-Organismes MCAM, UMR 7245, CNRS, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
6
|
Turnlund AC, Vanwonterghem I, Botté ES, Randall CJ, Giuliano C, Kam L, Bell S, O'Brien P, Negri AP, Webster NS, Lurgi M. Linking differences in microbial network structure with changes in coral larval settlement. ISME COMMUNICATIONS 2023; 3:114. [PMID: 37865659 PMCID: PMC10590418 DOI: 10.1038/s43705-023-00320-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Coral cover and recruitment have decreased on reefs worldwide due to climate change-related disturbances. Achieving reliable coral larval settlement under aquaculture conditions is critical for reef restoration programmes; however, this can be challenging due to the lack of reliable and universal larval settlement cues. To investigate the role of microorganisms in coral larval settlement, we undertook a settlement choice experiment with larvae of the coral Acropora tenuis and microbial biofilms grown for different periods on the reef and in aquaria. Biofilm community composition across conditioning types and time was profiled using 16S and 18S rRNA gene sequencing. Co-occurrence networks revealed that strong larval settlement correlated with diverse biofilm communities, with specific nodes in the network facilitating connections between modules comprised of low- vs high-settlement communities. Taxa associated with high-settlement communities were identified as Myxoccales sp., Granulosicoccus sp., Alcanivoraceae sp., unassigned JTB23 sp. (Gammaproteobacteria), and Pseudovibrio denitrificans. Meanwhile, taxa closely related to Reichenbachiella agariperforans, Pleurocapsa sp., Alcanivorax sp., Sneathiella limmimaris, as well as several diatom and brown algae were associated with low settlement. Our results characterise high-settlement biofilm communities and identify transitionary taxa that may develop settlement-inducing biofilms to improve coral larval settlement in aquaculture.
Collapse
Affiliation(s)
- Abigail C Turnlund
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
| | - Inka Vanwonterghem
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
| | - Emmanuelle S Botté
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Carly J Randall
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - Lisa Kam
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Sara Bell
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Paul O'Brien
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Nicole S Webster
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Department of Climate Change, Energy, the Environment and Water, Australian Antarctic Division, Kingston, ACT, Australia
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
7
|
Uroz S, Geisler O, Fauchery L, Lami R, Rodrigues AMS, Morin E, Leveau JHJ, Oger P. Genomic and transcriptomic characterization of the Collimonas quorum sensing genes and regulon. FEMS Microbiol Ecol 2022; 98:6679101. [PMID: 36040340 DOI: 10.1093/femsec/fiac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/13/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023] Open
Abstract
Collimonads are well-adapted to nutrient-poor environments. They are known to hydrolyse chitin, produce antifungal metabolites, weather minerals, and are effective biocontrol agents protecting plants from fungal diseases. The production of N-acyl homoserine lactones (AHLs) was suggested to be a conserved trait of collimonads, but little is known about the genes that underlie this production or the genes that are controlled by AHLs. To improve our understanding of the role of AHLs in the ecology of collimonads, we carried out transcriptomic analyses, combined with chemical and functional assays, on strain Collimonas pratensis PMB3(1). The main AHLs produced by this strain were identified as 3-hydroxy-hexa- and octa-noyl-homoserine lactone. Genome analysis permitted to identify putative genes coding for the autoinducer synthase (colI) and cognate transcriptional regulator (colR). The ability to produce AHLs was lost in ΔcolI and ΔcolR mutants. Functional assays revealed that the two mutants metabolized glucose, formate, oxalate, and leucine better than the wild-type (WT) strain. Transcriptome sequencing analyses revealed an up-regulation of different metabolic pathways and of motility in the QS-mutants compared to the WT strain. Overall, our results provide insights into the role of the AHL-dependent regulation system of Collimonas in environment colonization, metabolism readjustment, and microbial interactions.
Collapse
Affiliation(s)
- Stephane Uroz
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France.,INRAE, UR1138 "Biogéochimie des écosystèmes forestiers", F-54280 Champenoux, France
| | - Océane Geisler
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France
| | - Laure Fauchery
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM, USR3579), Fédération de Recherche FR3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM, USR3579), Fédération de Recherche FR3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France
| | - Johan H J Leveau
- Department of Plant Pathology, University of California - Davis, Davis, CA 95616, United States
| | - Philippe Oger
- Université Lyon, INSA de Lyon, CNRS UMR 5240, F-69622 Villeurbanne, France
| |
Collapse
|
8
|
Deutsch JM, Mandelare-Ruiz P, Yang Y, Foster G, Routhu A, Houk J, De La Flor YT, Ushijima B, Meyer JL, Paul VJ, Garg N. Metabolomics Approaches to Dereplicate Natural Products from Coral-Derived Bioactive Bacteria. JOURNAL OF NATURAL PRODUCTS 2022; 85:462-478. [PMID: 35112871 DOI: 10.1021/acs.jnatprod.1c01110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stony corals (Scleractinia) are invertebrates that form symbiotic relationships with eukaryotic algal endosymbionts and the prokaryotic microbiome. The microbiome has the potential to produce bioactive natural products providing defense and resilience to the coral host against pathogenic microorganisms, but this potential has not been extensively explored. Bacterial pathogens can pose a significant threat to corals, with some species implicated in primary and opportunistic infections of various corals. In response, probiotics have been proposed as a potential strategy to protect corals in the face of increased incidence of disease outbreaks. In this study, we screened bacterial isolates from healthy and diseased corals for antibacterial activity. The bioactive extracts were analyzed using untargeted metabolomics. Herein, an UpSet plot and hierarchical clustering analyses were performed to identify isolates with the largest number of unique metabolites. These isolates also displayed different antibacterial activities. Through application of in silico and experimental approaches coupled with genome analysis, we dereplicated natural products from these coral-derived bacteria from Florida's coral reef environments. The metabolomics approach highlighted in this study serves as a useful resource to select probiotic candidates and enables insights into natural product-mediated chemical ecology in holobiont symbiosis.
Collapse
Affiliation(s)
- Jessica M Deutsch
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Paige Mandelare-Ruiz
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Yingzhe Yang
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Gabriel Foster
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Apurva Routhu
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jay Houk
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Yesmarie T De La Flor
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Blake Ushijima
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Julie L Meyer
- Department of Soil and Water Sciences, University of Florida, Gainesville, Florida 32603, United States
| | - Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Rodrigues AMS, Lami R, Escoubeyrou K, Intertaglia L, Mazurek C, Doberva M, Pérez-Ferrer P, Stien D. Straightforward N-Acyl Homoserine Lactone Discovery and Annotation by LC-MS/MS-based Molecular Networking. J Proteome Res 2022; 21:635-642. [PMID: 35102742 DOI: 10.1021/acs.jproteome.1c00849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acyl-l-homoserine lactones (AHLs) are a large family of signaling molecules in "quorum sensing" communication. This mechanism is present in a number of bacterial physiological phenomena, including pathogenic phenomena. In this study, we described a simple and accessible way to detect, annotate, and quantify these compounds from bacterial culture media. Analytical standards and ethyl acetate bacterial extracts containing AHLs were analyzed by an ultra-high-performance liquid chromatography system coupled to a mass spectrometer using a nontargeted FullMS data-dependent MS2 method. The results were processed in MZmine2 and then analyzed by a Feature-Based Molecular Networking (FBMN) workflow in the Global Natural Products Social Networking (GNPS) platform for the discovery and annotation of known and unknown AHLs. Our group analyzed 31 AHL standards and included the MS2 spectra in the spectral library of the GNPS platform. We also provide the 31 standard AHL spectrum list for inclusion in molecular networking analyses. FBMN analysis annotated 30 out of 31 standards correctly. Then, as an example, a set of five bacterial extracts was prepared for AHL annotation. Following the method described in this Article, 5 known and 11 unknown AHLs were properly annotated using the FBMN-based molecular network approach. This study offers the possibility for the automatic annotation of known AHLs and the search for nonreferenced AHLs in bacterial extracts in a somewhat straightforward approach even without acquiring analytical standards. The method also provides relative quantification information.
Collapse
Affiliation(s)
- Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-sur-mer, France.,Sorbonne Université, CNRS, Fédération de Recherche, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| | - Karine Escoubeyrou
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-sur-mer, France.,Sorbonne Université, CNRS, Fédération de Recherche, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| | - Laurent Intertaglia
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-sur-mer, France.,Sorbonne Université, CNRS, Fédération de Recherche, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| | - Clément Mazurek
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| | - Margot Doberva
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| | - Pedro Pérez-Ferrer
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| |
Collapse
|
10
|
Urvoy M, Lami R, Dreanno C, Daudé D, Rodrigues AMS, Gourmelon M, L'Helguen S, Labry C. Quorum sensing disruption regulates hydrolytic enzyme and biofilm production in estuarine bacteria. Environ Microbiol 2021; 23:7183-7200. [PMID: 34528354 DOI: 10.1111/1462-2920.15775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Biofilms of heterotrophic bacteria cover organic matter aggregates and constitute hotspots of mineralization, primarily acting through extracellular hydrolytic enzyme production. Nevertheless, regulation of both biofilm and hydrolytic enzyme synthesis remains poorly investigated, especially in estuarine ecosystems. In this study, various bioassays, mass spectrometry and genomics approaches were combined to test the possible involvement of quorum sensing (QS) in these mechanisms. QS is a bacterial cell-cell communication system that relies notably on the emission of N-acylhomoserine lactones (AHLs). In our estuarine bacterial collection, we found that 28 strains (9%), mainly Vibrio, Pseudomonas and Acinetobacter isolates, produced at least 14 different types of AHLs encoded by various luxI genes. We then inhibited the AHL QS circuits of those 28 strains using a broad-spectrum lactonase preparation and tested whether biofilm production as well as β-glucosidase and leucine-aminopeptidase activities were impacted. Interestingly, we recorded contrasted responses, as biofilm production, dissolved and cell-bound β-glucosidase and leucine-aminopeptidase activities significantly increased in 4%-68% of strains but decreased in 0%-21% of strains. These findings highlight the key role of AHL-based QS in estuarine bacterial physiology and ultimately on biogeochemical cycles. They also point out the complexity of QS regulations within natural microbial assemblages.
Collapse
Affiliation(s)
- Marion Urvoy
- Ifremer, DYNECO, Plouzané, F-29280, France.,Université de Bretagne Occidentale, CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Plouzané, F-29280, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), 66650 Banyuls-sur-Mer, France
| | | | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille, 13005, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), 66650 Banyuls-sur-Mer, France
| | | | - Stéphane L'Helguen
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Plouzané, F-29280, France
| | | |
Collapse
|
11
|
Tabraiz S, Petropoulos E, Shamurad B, Quintela-Baluja M, Mohapatra S, Acharya K, Charlton A, Davenport RJ, Dolfing J, Sallis PJ. Temperature and immigration effects on quorum sensing in the biofilms of anaerobic membrane bioreactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112947. [PMID: 34289594 DOI: 10.1016/j.jenvman.2021.112947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/25/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Quorum sensing (QS), a microbial communication mechanism modulated by acyl homoserine lactone (AHL) molecules impacts biofilm formation in bioreactors. This study investigated the effects of temperature and immigration on AHL levels and biofouling in anaerobic membrane bioreactors. The hypothesis was that the immigrant microbial community would increase the AHL-mediated QS, thus stimulating biofouling and that low temperatures would exacerbate this. We observed that presence of immigrants, especially when exposed to low temperatures indeed increased AHL concentrations and fouling in the biofilms on the membranes. At low temperature, the concentrations of the main AHLs observed, N-dodecanoyl-L-homoserine lactone and N-decanoyl-L-homoserine lactone, were significantly higher in the biofilms than in the sludge and correlated significantly with the abundance of immigrant bacteria. Apparently low temperature, immigration and denser community structure in the biofilm stressed the communities, triggering AHL production and excretion. These insights into the social behaviour of reactor communities responding to low temperature and influx of immigrants have implications for biofouling control in bioreactors.
Collapse
Affiliation(s)
- Shamas Tabraiz
- School of Engineering, Newcastle University, Newcastle, NE1 7RU, UK; School of Natural and Applied Sciences, Canterbury Christ Church University, CT1 1QU, UK.
| | | | - Burhan Shamurad
- School of Engineering, Newcastle University, Newcastle, NE1 7RU, UK
| | | | - Sanjeeb Mohapatra
- Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Kishor Acharya
- School of Engineering, Newcastle University, Newcastle, NE1 7RU, UK
| | - Alex Charlton
- School of Natural and Environmental Sciences, Newcastle University, UK
| | | | - Jan Dolfing
- Faculty of Engineering and Environment, Northumbria University, Newcastle, NE1 8QH, UK
| | - Paul J Sallis
- School of Engineering, Newcastle University, Newcastle, NE1 7RU, UK
| |
Collapse
|
12
|
Dow L. How Do Quorum-Sensing Signals Mediate Algae-Bacteria Interactions? Microorganisms 2021; 9:microorganisms9071391. [PMID: 34199114 PMCID: PMC8307130 DOI: 10.3390/microorganisms9071391] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) describes a process by which bacteria can sense the local cell density of their own species, thus enabling them to coordinate gene expression and physiological processes on a community-wide scale. Small molecules called autoinducers or QS signals, which act as intraspecies signals, mediate quorum sensing. As our knowledge of QS has progressed, so too has our understanding of the structural diversity of QS signals, along with the diversity of bacteria conducting QS and the range of ecosystems in which QS takes place. It is now also clear that QS signals are more than just intraspecies signals. QS signals mediate interactions between species of prokaryotes, and between prokaryotes and eukaryotes. In recent years, our understanding of QS signals as mediators of algae-bacteria interactions has advanced such that we are beginning to develop a mechanistic understanding of their effects. This review will summarize the recent efforts to understand how different classes of QS signals contribute to the interactions between planktonic microalgae and bacteria in our oceans, primarily N-acyl-homoserine lactones, their degradation products of tetramic acids, and 2-alkyl-4-quinolones. In particular, this review will discuss the ways in which QS signals alter microalgae growth and metabolism, namely as direct effectors of photosynthesis, regulators of the cell cycle, and as modulators of other algicidal mechanisms. Furthermore, the contribution of QS signals to nutrient acquisition is discussed, and finally, how microalgae can modulate these small molecules to dampen their effects.
Collapse
Affiliation(s)
- Lachlan Dow
- Root Microbe Interactions Laboratory, Australian National University, Canberra 0200, Australia
| |
Collapse
|
13
|
Diversity of Acyl Homoserine Lactone Molecules in Anaerobic Membrane Bioreactors Treating Sewage at Psychrophilic Temperatures. MEMBRANES 2020; 10:membranes10110320. [PMID: 33143124 PMCID: PMC7693955 DOI: 10.3390/membranes10110320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
This study explores the types of acyl homoserine lactone (AHL) and their concentrations in different compartments of different conventional anaerobic bioreactors: (i) an upflow anaerobic membrane bioreactor (UAnMBR, biofilm/mixed liquor (sludge)); (ii) an anaerobic membrane bioreactor (AnMBR, biofilm/mixed liquor (sludge)); and (iii) an upflow sludge blanket (UASB, sludge only), all operating at 15 °C. Ten types of the AHL, namely C4-HSL, 3-oxo-C4-HSL, C6-HSL, 3-oxo-C6-HSL, C8-HSL, 3-oxo-C8-HSL, C10-HSL, 3-oxo-C10-HSL, C12-HSL, and 3-oxo-C12-HSL, which were investigated in this study, were found in UAnMBR and UASB, whilst only six of them (C4-HSL, 3-oxo-C4-HSL, C8-HSL, C10-HSL, 3-oxo-C10-HSL, and C12-HSL) were found in AnMBR. Concentrations of total AHL were generally higher in the biofilm than the sludge for both membrane bioreactors trialed. C10-HSL was the predominant AHL found in all reactors (biofilm and sludge) followed by C4-HSL and C8-HSL. Overall, the UAnMBR biofilm and sludge had 10-fold higher concentrations of AHL compared to the AnMBR. C10-HSL was only correlated with bacteria (p < 0.05), whilst other types of AHL were correlated with both bacteria and archaea. This study improves our understanding of AHL-mediated Quorum Sensing (QS) in the biofilms/sludge of UAnMBR and AnMBR, and provides new information that could contribute to the development of quorum quenching anti-fouling strategies in such systems.
Collapse
|
14
|
Insights on aquatic microbiome of the Indian Sundarbans mangrove areas. PLoS One 2020; 15:e0221543. [PMID: 32097429 PMCID: PMC7041844 DOI: 10.1371/journal.pone.0221543] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Anthropogenic perturbations have strong impact on water quality and ecological health of mangrove areas of Indian Sundarbans. Diversity in microbial community composition is important causes for maintaining the health of the mangrove ecosystem. However, microbial communities of estuarine water in Indian Sundarbans mangrove areas and environmental determinants that contribute to those communities were seldom studied. METHODS Nevertheless, this study attempted first to report bacterial and archaeal communities simultaneously in the water from Matla River and Thakuran River of Maipith coastal areas more accurately using 16S rRNA gene-based amplicon approaches. Attempt also been made to assess the capability of the environmental parameters for explaining the variation in microbial community composition. RESULTS Our investigation indicates the dominancy of halophilic marine bacteria from families Flavobacteriaceae and OM1 clade in the water with lower nutrient load collected from costal regions of a small Island of Sundarban Mangroves (ISM). At higher eutrophic conditions, changes in bacterial communities in Open Marine Water (OMW) were detected, where some of the marine hydrocarbons degrading bacteria under families Oceanospirillaceae and Spongiibacteraceae were dominated. While most abundant bacterial family Rhodobacteracea almost equally (18% of the total community) dominated in both sites. Minor variation in the composition of archaeal community was also observed between OMW and ISM. Redundancy analysis indicates a combination of total nitrogen and dissolved inorganic nutrients for OMW and for ISM, salinity and total nitrogen was responsible for explaining the changes in their respective microbial community composition. CONCLUSIONS Our study contributes the first conclusive overview on how do multiple environmental/anthropogenic stressors (salinity, pollution, eutrophication, land-use) affect the Sundarban estuary water and consequently the microbial communities in concert. However, systematic approaches with more samples for evaluating the effect of environmental pollutions on mangrove microbial communities are recommended.
Collapse
|
15
|
Saurav K, Borbone N, Burgsdorf I, Teta R, Caso A, Bar-Shalom R, Esposito G, Britstein M, Steindler L, Costantino V. Identification of Quorum Sensing Activators and Inhibitors in The Marine Sponge Sarcotragus spinosulus. Mar Drugs 2020; 18:md18020127. [PMID: 32093216 PMCID: PMC7074164 DOI: 10.3390/md18020127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022] Open
Abstract
Marine sponges, a well-documented prolific source of natural products, harbor highly diverse microbial communities. Their extracts were previously shown to contain quorum sensing (QS) signal molecules of the N-acyl homoserine lactone (AHL) type, known to orchestrate bacterial gene regulation. Some bacteria and eukaryotic organisms are known to produce molecules that can interfere with QS signaling, thus affecting microbial genetic regulation and function. In the present study, we established the production of both QS signal molecules as well as QS inhibitory (QSI) molecules in the sponge species Sarcotragus spinosulus. A total of eighteen saturated acyl chain AHLs were identified along with six unsaturated acyl chain AHLs. Bioassay-guided purification led to the isolation of two brominated metabolites with QSI activity. The structures of these compounds were elucidated by comparative spectral analysis of 1HNMR and HR-MS data and were identified as 3-bromo-4-methoxyphenethylamine (1) and 5,6-dibromo-N,N-dimethyltryptamine (2). The QSI activity of compounds 1 and 2 was evaluated using reporter gene assays for long- and short-chain AHL signals (Escherichia coli pSB1075 and E. coli pSB401, respectively). QSI activity was further confirmed by measuring dose-dependent inhibition of proteolytic activity and pyocyanin production in Pseudomonas aeruginosa PAO1. The obtained results show the coexistence of QS and QSI in S. spinosulus, a complex signal network that may mediate the orchestrated function of the microbiome within the sponge holobiont.
Collapse
Affiliation(s)
- Kumar Saurav
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel 31905, Haifa, Israel; (K.S.); (I.B.); (R.B.-S.); (M.B.); (L.S.)
- The Blue Chemistry Lab, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; (N.B.); (R.T.); (A.C.); (G.E.)
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovickýmlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Nicola Borbone
- The Blue Chemistry Lab, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; (N.B.); (R.T.); (A.C.); (G.E.)
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel 31905, Haifa, Israel; (K.S.); (I.B.); (R.B.-S.); (M.B.); (L.S.)
| | - Roberta Teta
- The Blue Chemistry Lab, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; (N.B.); (R.T.); (A.C.); (G.E.)
| | - Alessia Caso
- The Blue Chemistry Lab, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; (N.B.); (R.T.); (A.C.); (G.E.)
| | - Rinat Bar-Shalom
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel 31905, Haifa, Israel; (K.S.); (I.B.); (R.B.-S.); (M.B.); (L.S.)
| | - Germana Esposito
- The Blue Chemistry Lab, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; (N.B.); (R.T.); (A.C.); (G.E.)
| | - Maya Britstein
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel 31905, Haifa, Israel; (K.S.); (I.B.); (R.B.-S.); (M.B.); (L.S.)
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel 31905, Haifa, Israel; (K.S.); (I.B.); (R.B.-S.); (M.B.); (L.S.)
| | - Valeria Costantino
- The Blue Chemistry Lab, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; (N.B.); (R.T.); (A.C.); (G.E.)
- Correspondence: ; Tel.: +39-081-678-504
| |
Collapse
|
16
|
Koch H, Germscheid N, Freese HM, Noriega-Ortega B, Lücking D, Berger M, Qiu G, Marzinelli EM, Campbell AH, Steinberg PD, Overmann J, Dittmar T, Simon M, Wietz M. Genomic, metabolic and phenotypic variability shapes ecological differentiation and intraspecies interactions of Alteromonas macleodii. Sci Rep 2020; 10:809. [PMID: 31964928 PMCID: PMC6972757 DOI: 10.1038/s41598-020-57526-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/23/2019] [Indexed: 01/28/2023] Open
Abstract
Ecological differentiation between strains of bacterial species is shaped by genomic and metabolic variability. However, connecting genotypes to ecological niches remains a major challenge. Here, we linked bacterial geno- and phenotypes by contextualizing pangenomic, exometabolomic and physiological evidence in twelve strains of the marine bacterium Alteromonas macleodii, illuminating adaptive strategies of carbon metabolism, microbial interactions, cellular communication and iron acquisition. In A. macleodii strain MIT1002, secretion of amino acids and the unique capacity for phenol degradation may promote associations with Prochlorococcus cyanobacteria. Strain 83-1 and three novel Pacific isolates, featuring clonal genomes despite originating from distant locations, have profound abilities for algal polysaccharide utilization but without detrimental implications for Ecklonia macroalgae. Degradation of toluene and xylene, mediated via a plasmid syntenic to terrestrial Pseudomonas, was unique to strain EZ55. Benzoate degradation by strain EC673 related to a chromosomal gene cluster shared with the plasmid of A. mediterranea EC615, underlining that mobile genetic elements drive adaptations. Furthermore, we revealed strain-specific production of siderophores and homoserine lactones, with implications for nutrient acquisition and cellular communication. Phenotypic variability corresponded to different competitiveness in co-culture and geographic distribution, indicating linkages between intraspecific diversity, microbial interactions and biogeography. The finding of "ecological microdiversity" helps understanding the widespread occurrence of A. macleodii and contributes to the interpretation of bacterial niche specialization, population ecology and biogeochemical roles.
Collapse
Affiliation(s)
- Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Nora Germscheid
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Heike M Freese
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Beatriz Noriega-Ortega
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Dominik Lücking
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Galaxy Qiu
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- Western Sydney University, Hawkesbury, Australia
| | - Ezequiel M Marzinelli
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Sydney Institute of Marine Science, Mosman, Australia
- University of Sydney, Camperdown, Australia
| | - Alexandra H Campbell
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- University of Sunshine Coast, Sunshine Coast, Australia
| | - Peter D Steinberg
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Sydney Institute of Marine Science, Mosman, Australia
| | - Jörg Overmann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig University of Technology, Braunschweig, Germany
| | - Thorsten Dittmar
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
| |
Collapse
|
17
|
Hoang TPT, Barthélemy M, Lami R, Stien D, Eparvier V, Touboul D. Annotation and quantification of N-acyl homoserine lactones implied in bacterial quorum sensing by supercritical-fluid chromatography coupled with high-resolution mass spectrometry. Anal Bioanal Chem 2020; 412:2261-2276. [PMID: 31919609 DOI: 10.1007/s00216-019-02265-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
In recent years, use of supercritical-fluid chromatography (SFC) with CO2 as the mobile phase has been expanding in the research laboratory and industry since it is considered to be a green analytical method. This technique offers numerous advantages, such as good separation and sensitive detection, short analysis times, and stability of analytes. In this study, a method for quantification of N-acyl homoserine lactones (AHLs), signaling molecules responsible for cell-to-cell communication initially discovered in bacteria, by SFC coupled with high-resolution mass spectrometry (HRMS) was developed. The SFC conditions and MS ionization settings were optimized to obtain the best separation and greatest sensitivity. The optimal analysis conditions allowed quantification of up to 30 AHLs in a single run within 16 min with excellent linearity (R2 > 0.998) and sensitivity (picogram level). This method was then applied to study AHL production by one Gram-negative endophytic bacterium, Paraburkholderia sp. BSNB-0670. Nineteen known AHLs were detected, and nine abundant HSLs were quantified. To further investigate the production of uncommon AHLs, a molecular networking approach was applied on the basis of the SFC-HRMS/MS data. This led to additional identification of four unknown AHLs annotated as N-3-hydroxydodecanoylol homoserine lactone, N-3-hydroxydodecadienoyl homoserine lactone, and N-3-oxododecenoyl homoserine lactones (two isomers).
Collapse
Affiliation(s)
- Thi Phuong Thuy Hoang
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Morgane Barthélemy
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique de Banyuls-sur-Mer, Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique de Banyuls-sur-Mer, Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - Véronique Eparvier
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
18
|
Barnier C, Clerissi C, Lami R, Intertaglia L, Lebaron P, Grimaud R, Urios L. Description of Palleronia rufa sp. nov., a biofilm-forming and AHL-producing Rhodobacteraceae, reclassification of Hwanghaeicola aestuarii as Palleronia aestuarii comb. nov., Maribius pontilimi as Palleronia pontilimi comb. nov., Maribius salinus as Palleronia salina comb. nov., Maribius pelagius as Palleronia pelagia comb. nov. and emended description of the genus Palleronia. Syst Appl Microbiol 2020; 43:126018. [DOI: 10.1016/j.syapm.2019.126018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022]
|
19
|
Krzhizhanovskaya VV, Závodszky G, Lees MH, Dongarra JJ, Sloot PMA, Brissos S, Teixeira J. Simulation Based Exploration of Bacterial Cross Talk Between Spatially Separated Colonies in a Multispecies Biofilm Community. LECTURE NOTES IN COMPUTER SCIENCE 2020. [PMCID: PMC7304696 DOI: 10.1007/978-3-030-50436-6_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We present a simple mesoscopic model for bacterial cross-talk between growing biofilm colonies. The simulation setup mimics a novel microfludic biofilm growth reactor which allows a 2D description. The model is a stiff quasilinear system of diffusion-reaction equations with simultaneously a super-diffusion singularity and a degeneracy (as in the porous medium equation) that leads to the formation of sharp interfaces with finite speed of propagation and gradient blow up. We use a finite volume method with arithmetic flux averaging, and a time adaptive stiff time integrator. We find that signal and nutrient transport between colonies can greatly control and limit biofilm response to induction signals, leading to spatially heterogeneous biofilm behavior.
Collapse
|
20
|
Reen FJ, Gutiérrez-Barranquero JA, McCarthy RR, Woods DF, Scarciglia S, Adams C, Fog Nielsen K, Gram L, O'Gara F. Quorum Sensing Signaling Alters Virulence Potential and Population Dynamics in Complex Microbiome-Host Interactomes. Front Microbiol 2019; 10:2131. [PMID: 31572336 PMCID: PMC6749037 DOI: 10.3389/fmicb.2019.02131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022] Open
Abstract
Despite the discovery of the first N-acyl homoserine lactone (AHL) based quorum sensing (QS) in the marine environment, relatively little is known about the abundance, nature and diversity of AHL QS systems in this diverse ecosystem. Establishing the prevalence and diversity of AHL QS systems and how they may influence population dynamics within the marine ecosystem, may give a greater insight into the evolution of AHLs as signaling molecules in this important and largely unexplored niche. Microbiome profiling of Stelletta normani and BD1268 sponge samples identified several potential QS active genera. Subsequent biosensor-based screening of a library of 650 marine sponge bacterial isolates identified 10 isolates that could activate at least one of three AHL biosensor strains. Each was further validated and profiled by Ultra-High Performance Liquid Chromatography Mass Spectrometry, with AHLs being detected in 8 out of 10 isolate extracts. Co-culture of QS active isolates with S. normani marine sponge samples led to the isolation of genera such as Pseudomonas and Paenibacillus, both of which were low abundance in the S. normani microbiome. Surprisingly however, addition of AHLs to isolates harvested following co-culture did not measurably affect either growth or biofilm of these strains. Addition of supernatants from QS active strains did however impact significantly on biofilm formation of the marine Bacillus sp. CH8a sporeforming strain suggesting a role for QS systems in moderating the microbe-microbe interaction in marine sponges. Genome sequencing and phylogenetic analysis of a QS positive Psychrobacter isolate identified several QS associated systems, although no classical QS synthase gene was identified. The stark contrast between the biodiverse sponge microbiome and the relatively limited diversity that was observed on standard culture media, even in the presence of QS active compounds, serves to underscore the extent of diversity that remains to be brought into culture.
Collapse
Affiliation(s)
- F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | - Ronan R McCarthy
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Sara Scarciglia
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Claire Adams
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Kristian Fog Nielsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,Telethon Kids Institute, Perth Children's Hospital, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
21
|
Girard L. Quorum sensing in Vibrio spp.: the complexity of multiple signalling molecules in marine and aquatic environments. Crit Rev Microbiol 2019; 45:451-471. [PMID: 31241379 DOI: 10.1080/1040841x.2019.1624499] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Quorum sensing (QS) is a density-dependent mechanism enabling bacteria to coordinate their actions via the release of small diffusible molecules named autoinducers (AIs). Vibrio spp. are able to adapt to changing environmental conditions by using a wide range of physiological mechanisms and many species pose a threat for human health and diverse marine and estuarine ecosystems worldwide. Cell-to-cell communication controls many of their vital functions such as niche colonization, survival strategies, or virulence. In this review, I summarize (1) the different known QS pathways (2) the diversity of AIs as well as their biological functions, and (3) the QS-mediated interactions between Vibrio and other organisms. However, the current knowledge is limited to a few pathogenic or bioluminescent species and in order to provide a genus-wide view an inventory of QS genes among 87 Vibrio species has been made. The large diversity of signal molecules and their differential effects on a particular physiological function suggest that the complexity of multiple signalling systems within bacterial communities is far from being fully understood. I question here the real level of specificity of such communication in the environment and discuss the different perspectives in order to better apprehend QS in natural habitats.
Collapse
Affiliation(s)
- Léa Girard
- Centre of Microbial and Plant Genetics , KU Leuven , Belgium
| |
Collapse
|
22
|
Ziesche L, Wolter L, Wang H, Brinkhoff T, Pohlner M, Engelen B, Wagner-Döbler I, Schulz S. An Unprecedented Medium-Chain Diunsaturated N-acylhomoserine Lactone from Marine Roseobacter Group Bacteria. Mar Drugs 2018; 17:md17010020. [PMID: 30602652 PMCID: PMC6356624 DOI: 10.3390/md17010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 01/29/2023] Open
Abstract
N-acylhomoserine lactones (AHLs), bacterial signaling compounds involved in quorum-sensing, are a structurally diverse group of compounds. We describe here the identification, synthesis, occurrence and biological activity of a new AHL, N-((2E,5Z)-2,5-dodecadienoyl)homoserine lactone (11) and its isomer N-((3E,5Z)-3,5-dodecadienoyl)homoserine lactone (13), occurring in several Roseobacter group bacteria (Rhodobacteraceae). The analysis of 26 strains revealed the presence of 11 and 13 in six of them originating from the surface of the macroalgae Fucus spiralis or sediments from the North Sea. In addition, 18 other AHLs were detected in 12 strains. Compound identification was performed by GC/MS. Mass spectral analysis revealed a diunsaturated C12 homoserine lactone as structural element of the new AHL. Synthesis of three likely candidate compounds, 11, 13 and N-((2E,4E)-2,4-dodecadienoyl)homoserine lactone (5), revealed the former to be the natural AHLs. Bioactivity test with quorum-sensing reporter strains showed high activity of all three compounds. Therefore, the configuration and stereochemistry of the double bonds in the acyl chain seemed to be unimportant for the activity, although the chains have largely different shapes, solely the chain length determining activity. In combination with previous results with other Roseobacter group bacteria, we could show that there is wide variance between AHL composition within the strains. Furthermore, no association of certain AHLs with different habitats like macroalgal surfaces or sediment could be detected.
Collapse
Affiliation(s)
- Lisa Ziesche
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| | - Laura Wolter
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany.
| | - Hui Wang
- Helmholtz Centre for Infection Research, Department of Medical Microbiology, Group Microbial Communication, Inhoffenstr. 7, 38124 Braunschweig, Germany.
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany.
| | - Marion Pohlner
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany.
| | - Bert Engelen
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany.
| | - Irene Wagner-Döbler
- Helmholtz Centre for Infection Research, Department of Medical Microbiology, Group Microbial Communication, Inhoffenstr. 7, 38124 Braunschweig, Germany.
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
23
|
Bruns H, Herrmann J, Müller R, Wang H, Wagner Döbler I, Schulz S. Oxygenated N-Acyl Alanine Methyl Esters (NAMEs) from the Marine Bacterium Roseovarius tolerans EL-164. JOURNAL OF NATURAL PRODUCTS 2018; 81:131-139. [PMID: 29261310 DOI: 10.1021/acs.jnatprod.7b00757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The marine bacterium Roseovarius tolerans EL-164 (Rhodobacteraceae) can produce unique N-acylalanine methyl esters (NAMEs) besides strucutrally related N-acylhomoserine lactones (AHLs), bacterial signaling compounds widespread in the Rhodobacteraceae. The structures of two unprecedented NAMEs carrying a rare terminally oxidized acyl chain are reported here. The compounds (Z)-N-16-hydroxyhexadec-9-enoyl-l-alanine methyl ester (Z9-16-OH-C16:1-NAME, 3) and (Z)-N-15-carboxypentadec-9-enoyl-l-alanine methyl ester (16COOH-C16:1-NAME, 4) were isolated, and the structures were determined by NMR and MS experiments. Both compounds were synthesized to prove assignments and to test their biological activity. Finally, non-natural, structurally related Z9-3-OH-C16:1-NAME (18) was synthesized to investigate the mass spectroscopy of structurally related NAMEs. Compound 3 showed moderate antibacterial activity against microorganisms such as Bacillus, Streptococcus, Micrococcus, or Mucor strains. In contrast to AHLs, quorum-sensing or quorum-quenching activity was not observed.
Collapse
Affiliation(s)
- Hilke Bruns
- Institute of Organic Chemistry, Technische Universität Braunschweig , Hagenring 30, 38106 Braunschweig, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , Campus E8.1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , Campus E8.1, 66123 Saarbrücken, Germany
| | - Hui Wang
- Helmholtz Centre for Infection Research , Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Irene Wagner Döbler
- Helmholtz Centre for Infection Research , Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig , Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|