1
|
Martínez H, Santos M, Pedraza L, Testera AM. Advanced Technologies for Large Scale Supply of Marine Drugs. Mar Drugs 2025; 23:69. [PMID: 39997193 PMCID: PMC11857447 DOI: 10.3390/md23020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Marine organisms represent a source of unique chemical entities with valuable biomedical potentialities, broad diversity, and complexity. It is essential to ensure a reliable and sustainable supply of marine natural products (MNPs) for their translation into commercial drugs and other valuable products. From a structural point of view and with few exceptions, MNPs of pharmaceutical importance derive from the so-called secondary metabolism of marine organisms. When production strategies rely on marine macroorganisms, harvesting or culturing coupled with extraction procedures frequently remain the only alternative to producing these compounds on an industrial scale. Their supply can often be implemented with laboratory scale cultures for bacterial, fungal, or microalgal sources. However, a diverse approach, combining traditional methods with modern synthetic biology and biosynthesis strategies, must be considered for invertebrate MNPs, as they are usually naturally accumulated in only very small quantities. This review offers a comprehensive examination of various production strategies for MNPs, addressing the challenges related to supply, synthesis, and scalability. It also underscores recent biotechnological advancements that are likely to transform the current industrial-scale manufacturing methods for pharmaceuticals derived from marine sources.
Collapse
Affiliation(s)
- Henar Martínez
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Computational Chemistry Group, Department of Physical Chemistry and Inorganic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain
| | - Mercedes Santos
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Bioforge, University of Valladolid (UVa), CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Lucía Pedraza
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain;
| | - Ana M. Testera
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Bioforge, University of Valladolid (UVa), CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| |
Collapse
|
2
|
Hilzinger JM, Friedline S, Sivanandan D, Cheng Y, Yamazaki S, Clark DS, Skerker JM, Arkin AP. Acetaminophen production in the edible, filamentous cyanobacterium Arthrospira platensis. Biotechnol Bioeng 2025; 122:44-52. [PMID: 39392130 PMCID: PMC11632167 DOI: 10.1002/bit.28858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/05/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Spirulina is the common name for the edible, nonheterocystous, filamentous cyanobacterium Arthrospira platensis that is grown industrially as a food supplement, animal feedstock, and pigment source. Although there are many applications for engineering this organism, until recently no genetic tools or reproducible transformation methods have been published. While recent work showed the production of a diversity of proteins in A. platensis, including single-domain antibodies for oral delivery, there remains a need for a modular, characterized genetic toolkit. Here, we independently establish a reproducible method for the transformation of A. platensis and engineer this bacterium to produce acetaminophen as proof-of-concept for small molecule production in an edible host. This work opens A. platensis to the wider scientific community for future engineering as a functional food for nutritional enhancement, modification of organoleptic traits, and production of pharmaceuticals for oral delivery.
Collapse
Affiliation(s)
- Jacob M. Hilzinger
- Department of Biological EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
| | - Skyler Friedline
- Department of Biological EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
| | - Divya Sivanandan
- Department of Biological EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
| | - Ya‐Fang Cheng
- QB3‐BerkeleyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Shunsuke Yamazaki
- Department of Biological EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
- Ajinomoto Co., Inc.KawasakiKanagawaJapan
| | - Douglas S. Clark
- Department of Chemical and Biomolecular EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National, LaboratoryBerkeleyCaliforniaUSA
| | - Jeffrey M. Skerker
- Department of Biological EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
| | - Adam P. Arkin
- Department of Biological EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| |
Collapse
|
3
|
Pinchart PE, Marter P, Brinkmann H, Quilichini Y, Mysara M, Petersen J, Pasqualini V, Mastroleo F. The genus Limnospira contains only two species, both unable to produce microcystins: L. maxima and L. platensis. iScience 2024; 27:110845. [PMID: 39290841 PMCID: PMC11407035 DOI: 10.1016/j.isci.2024.110845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Spirulina is the commercial name for edible cyanobacteria of the genus Limnospira. The taxonomy of this genus is confusing with four species distributed in two lineages. Furthermore, the species Limnospira fusiformis has been cited as toxic by potentially producing microcystins. Taxonomic ambiguity combined with suspected health concerns constitute a major issue for spirulina producers. In a collection of six cultivars and one ecotype, we identified strains of the two lineages through metagenetic and morphological analyses. We demonstrated that the genus Limnospira only comprises two distinct species according to genomic comparisons of three genomes obtained in this study and 19 reference genomes. We showed that the V3-V4 region of the 16S rRNA gene is sufficient to identify the genus Limnospira and to distinguish the two species. Toxinogenesis investigations on eleven genomes from each Limnospira species revealed no genes involved in cyanotoxin synthesis, reflecting the inability of this genus to produce microcystins.
Collapse
Affiliation(s)
- Pierre-Etienne Pinchart
- UMR SPE, UAR Stella Mare, Université de Corse, 20250 Corte, France
- Fédération des Spiruliniers de France (FSF), 34800 Clermont-l'Hérault, France
| | - Pia Marter
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- Julius Kühn-Institut (JKI), 06484 Quedlinburg, Germany
| | - Henner Brinkmann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Yann Quilichini
- UMR SPE, UAR Stella Mare, Université de Corse, 20250 Corte, France
| | - Mohamed Mysara
- Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium
- Bioinformatics Group, Center for Informatics Science, Nile University, Giza 12677, Egypt
| | - Jörn Petersen
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | | | - Felice Mastroleo
- Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium
| |
Collapse
|
4
|
Sinetova MA, Kupriyanova EV, Los DA. Spirulina/Arthrospira/Limnospira-Three Names of the Single Organism. Foods 2024; 13:2762. [PMID: 39272527 PMCID: PMC11395459 DOI: 10.3390/foods13172762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Recent advances in research techniques have enabled rapid progress in the study of spirulina, an ancient edible cyanobacteria. Nowadays, spirulina species are classified into three genera: Spirulina, Arthrospira, and Limnospira. The latter now refers to industrially manufactured spirulina strains. Whole-genome sequencing revealed gene clusters involved in metabolite production, and the physiology of spirulina. Omics technologies demonstrated the absence of hazardous compounds in spirulina cells, confirming the safety of this biomass as a food product. Spirulina is a good source of different chemicals used in food manufacturing, food supplements, and pharmaceuticals. Spirulina's enrichment with inherent biologically active substances makes it a potential supplier of natural products for dietary and pharmaceutical applications. Spirulina is also a prospective component of both terrestrial and space-based life support systems. Here, we review current breakthroughs in spirulina research and clarify fallacies that can be found in both professional literature and public media.
Collapse
Affiliation(s)
- Maria A Sinetova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Elena V Kupriyanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Dmitry A Los
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| |
Collapse
|
5
|
García-García RM, Jaramillo-Flores ME. Effect of Arthrospira maxima Phycobiliproteins, Rosiglitazone, and 17β-Estradiol on Lipogenic and Inflammatory Gene Expression during 3T3-L1 Preadipocyte Cell Differentiation. Int J Mol Sci 2024; 25:7566. [PMID: 39062809 PMCID: PMC11277109 DOI: 10.3390/ijms25147566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The study evaluated the effects of Arthrospira maxima phycobiliproteins (PBPs), rosiglitazone (RSG), and 17β-estradiol (E) on the differentiation process of 3T3-L1 cells and on their regulation of lipogenic and inflammatory gene expression at different stages of the process. The results showed that phycobiliproteins promoted cell proliferation after 24 h of treatment. Furthermore, for all three treatments, the regulation of the highest number of markers occurred on days 6 and 12 of differentiation, regardless of when the treatment was applied. Phycobiliproteins reduced lipid droplet accumulation on days 3, 6, 10, and 13 of the adipogenic process, while rosiglitazone showed no differences compared to the control. On day 6, both phycobiliproteins and rosiglitazone positively regulated Acc1 mRNA. Meanwhile, all three treatments negatively regulated Pparγ and C/ebpα. Phycobiliproteins and estradiol also negatively regulated Ucp1 and Glut4 mRNAs. Rosiglitazone and estradiol, on the other hand, negatively regulated Ppara and Il-6 mRNAs. By day 12, phycobiliproteins and rosiglitazone upregulated Pparγ mRNA and negatively regulated Tnfα and Il-1β. Additionally, phycobiliproteins and estradiol positively regulated Il-6 and negatively regulated Ppara, Ucp2, Acc1, and Glut4. Rosiglitazone and estradiol upregulate C/ebpα and Ucp1 mRNAs. The regulation exerted by phycobiliproteins on the mRNA expression of the studied markers was dependent on the phase of cell differentiation. The results of this study highlight that phycobiliproteins have an anti-adipogenic and anti-inflammatory effect by reducing the expression of adipogenic, lipogenic, and inflammatory genes in 3T3-L1 cells at different stages of the differentiation process.
Collapse
Affiliation(s)
| | - María Eugenia Jaramillo-Flores
- Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City CP 07738, Mexico;
| |
Collapse
|
6
|
Yu Z, Zhao W, Sun H, Mou H, Liu J, Yu H, Dai L, Kong Q, Yang S. Phycocyanin from microalgae: A comprehensive review covering microalgal culture, phycocyanin sources and stability. Food Res Int 2024; 186:114362. [PMID: 38729724 DOI: 10.1016/j.foodres.2024.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
As food safety continues to gain prominence, phycocyanin (PC) is increasingly favored by consumers as a natural blue pigment, which is extracted from microalgae and serves the dual function of promoting health and providing coloration. Spirulina-derived PC demonstrates exceptional stability within temperature ranges below 45 °C and under pH conditions between 5.5 and 6.0. However, its application is limited in scenarios involving high-temperature processing due to its sensitivity to heat and light. This comprehensive review provides insights into the efficient production of PC from microalgae, covers the metabolic engineering of microalgae to increase PC yields and discusses various strategies for enhancing its stability in food applications. In addition to the most widely used Spirulina, some red algae and Thermosynechococcus can serve as good source of PC. The genetic and metabolic manipulation of microalgae strains has shown promise in increasing PC yield and improving its quality. Delivery systems including nanoparticles, hydrogels, emulsions, and microcapsules offer a promising solution to protect and extend the shelf life of PC in food products, ensuring its vibrant color and health-promoting properties are preserved. This review highlights the importance of metabolic engineering, multi-omics applications, and innovative delivery systems in unlocking the full potential of this natural blue pigment in the realm of food applications, provides a complete overview of the entire process from production to commercialization of PC, including the extraction and purification.
Collapse
Affiliation(s)
- Zengyu Yu
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Weiyang Zhao
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Hui Yu
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China.
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Tomal A, Szłapka-Kosarzewska J, Mironiuk M, Michalak I, Marycz K. Arthrospira platensis enriched with Cr(III), Mg(II), and Mn(II) ions improves insulin sensitivity and reduces systemic inflammation in equine metabolic affected horses. Front Endocrinol (Lausanne) 2024; 15:1382844. [PMID: 38689728 PMCID: PMC11058661 DOI: 10.3389/fendo.2024.1382844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Equine metabolic syndrome (EMS) is a critical endocrine condition in horses, characterized by hyperinsulinemia, hyperlipidemia, and insulin resistance, posing a significant threat to their health. This study investigates the efficacy of supplementing EMS-affected horses with Arthrospira platensis enriched with Cr(III), Mg(II), and Mn(II) ions using biosorption process in improving insulin sensitivity and glucose tolerance, reducing inflammation, and mitigating obesity-related fat accumulation. Our results demonstrate that Arthrospira supplementation reduces baseline insulin and glucose levels, contributing to decreased adipose tissue inflammation. Furthermore, Arthrospira supplementation results in a decrease in body weight and improvements in overall body condition scores and cresty neck scores. Additionally, administration of Arthrospira leads to reduced levels of triglycerides and aspartate aminotransferase, indicating a decrease in hepatic adiposity and inflammation. These findings suggest that Arthrospira, enriched with essential micro- and macroelements, can be an advanced feed additive to enhance insulin sensitivity, promote weight reduction, and alleviate inflammatory processes, thereby improving the overall condition of horses affected by EMS. The use of Arthrospira as a feed additive has the potential to complement conventional management strategies for EMS.
Collapse
Affiliation(s)
- Artur Tomal
- International Institute of Translational Medicine, Wisznia Mała, Poland
| | | | - Małgorzata Mironiuk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Krzysztof Marycz
- International Institute of Translational Medicine, Wisznia Mała, Poland
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
8
|
Pineda-Rodriguez YY, Pompelli MF, Jarma-Orozco A, Rodríguez NV, Rodriguez-Paez LA. A New and Profitable Protocol to DNA Extraction in Limnospira maxima. Methods Protoc 2023; 6:62. [PMID: 37489429 PMCID: PMC10366785 DOI: 10.3390/mps6040062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
Limnospira maxima is a remarkable organism showing great potential as a versatile and sustainable food source, offering a powerful solution to address the pressing issues of malnutrition and undernourishment worldwide. L. maxima contains high amounts of proteins, vitamins, minerals, and essential fatty acids. It can be grown in both bioreactors and open systems; however, before considering industrial production, optimization studies of the cultivation must be conducted to obtain knowledge about the ideal environmental conditions. Additionally, for the molecular typing of L. maxima strains and their industrial scaling, high-quality and large quantity DNA extraction is required. Notwithstanding, DNA extraction from L. maxima can be challenging due to the low amount of DNA in cells and the presence of difficult-to-remove substances such as polysaccharides and polyphenols. In this study, the quality and quantity of DNA extracted from two types of L. maxima samples (Limnospira maxima strain SISCA accession GenBank: OR195505.1) were evaluated using three commercially available DNA extraction kits and two types of input biological material. The results showed that Pbact-P kit had the highest quantity and quality of DNA, while CTAB-P allowed for a higher quantity and quality of RNA, making them optimal protocols for nucleic acid extraction to improve PCR, rt-PCR, and genome sequencing of L. maxima compared with other extraction methods.
Collapse
Affiliation(s)
| | - Marcelo F Pompelli
- Laboratorio de Biología Molecular Aplicada (INVEPAR) de la Facultad de Ciencias Agrícolas, Universidad de Córdoba, Montería 230002, Colombia
| | - Alfredo Jarma-Orozco
- Laboratorio de Biología Molecular Aplicada (INVEPAR) de la Facultad de Ciencias Agrícolas, Universidad de Córdoba, Montería 230002, Colombia
| | - Novisel Veitía Rodríguez
- Instituto de Biotecnología de las Plantas, Universidad Central "Marta Abreu" de Las Villas, Santa Clara 54830, Cuba
| | - Luis Alfonso Rodriguez-Paez
- Laboratorio de Biología Molecular Aplicada (INVEPAR) de la Facultad de Ciencias Agrícolas, Universidad de Córdoba, Montería 230002, Colombia
| |
Collapse
|
9
|
Pinchart PE, Leruste A, Pasqualini V, Mastroleo F. Microcystins and Cyanobacterial Contaminants in the French Small-Scale Productions of Spirulina ( Limnospira sp.). Toxins (Basel) 2023; 15:354. [PMID: 37368655 DOI: 10.3390/toxins15060354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Spirulina is consumed worldwide, in the form of food or dietary supplements, for its nutritional value and health potential. However, these products may contain cyanotoxins, including hepatotoxic microcystins (MCs), produced by cyanobacterial contaminants. The French spirulina market has the particularity of being supplied half-locally by approximately 180 small-scale spirulina production farms. Data about this particular production and possible contaminations with other cyanobacteria and MCs are scarce. Thus, we collected the results of MC analyses and total cyanobacteria counts, carried out between 2013 and 2021, from 95 French spirulina producers who agreed to share their data. These data consisted of MC concentrations determined with an enzyme-linked immunosorbent assay (ELISA) using 623 dry spirulina samples and 105 samples of spirulina cultures. In addition, potentially unsafe samples of dry spirulina were further investigated through mass spectrometry, as duplicate analysis. We confirmed that the situation of the French spirulina production stayed within the safe regulatory level in terms of MC levels. On the other hand, the inventory of cyanobacterial contaminants, based on 539 count results, included 14 taxa. We present their prevalence, interannual evolution and geographical distribution. We also suggested improvements in cultivation practices to limit their propagation.
Collapse
Affiliation(s)
- Pierre-Etienne Pinchart
- UMR 6134 SPE, Université de Corse Pasquale Paoli (UCPP), 20250 Corte, France
- Fédération des Spiruliniers de France (FSF), 34800 Clermont-l'Hérault, France
| | - Amandine Leruste
- Fédération des Spiruliniers de France (FSF), 34800 Clermont-l'Hérault, France
| | - Vanina Pasqualini
- UMR 6134 SPE, Université de Corse Pasquale Paoli (UCPP), 20250 Corte, France
| | - Felice Mastroleo
- Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium
| |
Collapse
|
10
|
Barone GD, Cernava T, Ullmann J, Liu J, Lio E, Germann AT, Nakielski A, Russo DA, Chavkin T, Knufmann K, Tripodi F, Coccetti P, Secundo F, Fu P, Pfleger B, Axmann IM, Lindblad P. Recent developments in the production and utilization of photosynthetic microorganisms for food applications. Heliyon 2023; 9:e14708. [PMID: 37151658 PMCID: PMC10161259 DOI: 10.1016/j.heliyon.2023.e14708] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
The growing use of photosynthetic microorganisms for food and food-related applications is driving related biotechnology research forward. Increasing consumer acceptance, high sustainability, demand of eco-friendly sources for food, and considerable global economic concern are among the main factors to enhance the focus on the novel foods. In the cases of not toxic strains, photosynthetic microorganisms not only provide a source of sustainable nutrients but are also potentially healthy. Several published studies showed that microalgae are sources of accessible protein and fatty acids. More than 400 manuscripts were published per year in the last 4 years. Furthermore, industrial approaches utilizing these microorganisms are resulting in new jobs and services. This is in line with the global strategy for bioeconomy that aims to support sustainable development of bio-based sectors. Despite the recognized potential of the microalgal biomass value chain, significant knowledge gaps still exist especially regarding their optimized production and utilization. This review highlights the potential of microalgae and cyanobacteria for food and food-related applications as well as their market size. The chosen topics also include advanced production as mixed microbial communities, production of high-value biomolecules, photoproduction of terpenoid flavoring compounds, their utilization for sustainable agriculture, application as source of nutrients in space, and a comparison with heterotrophic microorganisms like yeast to better evaluate their advantages over existing nutrient sources. This comprehensive assessment should stimulate further interest in this highly relevant research topic.
Collapse
Affiliation(s)
- Giovanni D. Barone
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- Corresponding author.
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Jörg Ullmann
- Roquette Klötze GmbH & Co. KG, Lockstedter Chaussee 1, D-38486, Klötze, Germany
| | - Jing Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, 58 Renmin Avenue, Meilan District, Haikou, Hainan Province, 570228, PR China
| | - Elia Lio
- Institute of Chemical Sciences and Technologies (SCITEC) “Giulio Natta” Italian National Research Council (CNR), via Mario Bianco 9, 20131, Milan, Italy
| | - Anna T. Germann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Andreas Nakielski
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - David A. Russo
- Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Lessingstr. 8, D-07743, Jena, Germany
| | - Ted Chavkin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Francesco Secundo
- Institute of Chemical Sciences and Technologies (SCITEC) “Giulio Natta” Italian National Research Council (CNR), via Mario Bianco 9, 20131, Milan, Italy
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, 58 Renmin Avenue, Meilan District, Haikou, Hainan Province, 570228, PR China
| | - Brian Pfleger
- Knufmann GmbH, Bergstraße 23, D-38486, Klötze, Germany
| | - Ilka M. Axmann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40001, Düsseldorf, Germany
- Corresponding author. Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry–Ångström, Uppsala University, Box 523, SE-75120, Uppsala, Sweden
| |
Collapse
|
11
|
Cyanobacteria and Algal-Based Biological Life Support System (BLSS) and Planetary Surface Atmospheric Revitalizing Bioreactor Brief Concept Review. Life (Basel) 2023; 13:life13030816. [PMID: 36983971 PMCID: PMC10057978 DOI: 10.3390/life13030816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Exploring austere environments required a reimagining of resource acquisition and utilization. Cyanobacterial in situ resources utilization (ISRU) and biological life support system (BLSS) bioreactors have been proposed to allow crewed space missions to extend beyond the temporal boundaries that current vehicle mass capacities allow. Many cyanobacteria and other microscopic organisms evolved during a period of Earth’s history that was marked by very harsh conditions, requiring robust biochemical systems to ensure survival. Some species work wonderfully in a bioweathering capacity (siderophilic), and others are widely used for their nutritional power (non-siderophilic). Playing to each of their strengths and having them grow and feed off of each other is the basis for the proposed idea for a series of three bioreactors, starting from regolith processing and proceeding to nutritional products, gaseous liberation, and biofuel production. In this paper, we discuss what that three reactor system will look like, with the main emphasis on the nutritional stage.
Collapse
|
12
|
Cämmerer M, Mayer T, Schott C, Steingroewer J, Petrich R, Borsdorf H. Membrane inlet—ion mobility spectrometry with automatic spectra evaluation as online monitoring tool for the process control of microalgae cultivation. Eng Life Sci 2023; 23:e2200039. [PMID: 37025189 PMCID: PMC10071569 DOI: 10.1002/elsc.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 03/07/2023] Open
Abstract
The cultivation of algae either in open raceway ponds or in closed bioreactors could allow the renewable production of biomass for food, pharmaceutical, cosmetic, or chemical industries. Optimal cultivation conditions are however required to ensure that the production of these compounds is both efficient and economical. Therefore, high-frequency analytical measurements are required to allow timely process control and to detect possible disturbances during algae growth. Such analytical methods are only available to a limited extent. Therefore, we introduced a method for monitoring algae release volatile organic compounds (VOCs) in the headspace above a bioreactor in real time. This method is based on ion mobility spectrometry (IMS) in combination with a membrane inlet (MI). The unique feature of IMS is that complete spectra are detected in real time instead of sum signals. These spectral patterns produced in the ion mobility spectrum were evaluated automatically via principal component analysis (PCA). The detected peak patterns are characteristic for the respective algae culture; allow the assignment of the individual growth phases and reflect the influence of experimental parameters. These results allow for the first time a continuous monitoring of the algae cultivation and thus an early detection of possible disturbances in the biotechnological process.
Collapse
Affiliation(s)
- Malcolm Cämmerer
- Department Monitoring and Exploration Technologies UFZ Helmholtz Centre for Environmental Research Leipzig Germany
| | - Thomas Mayer
- Department Monitoring and Exploration Technologies UFZ Helmholtz Centre for Environmental Research Leipzig Germany
| | - Carolin Schott
- Faculty of Mechanical Science and Engineering Institute of Natural Materials Technology, Technical University Dresden Dresden Germany
| | - Juliane Steingroewer
- Faculty of Mechanical Science and Engineering Institute of Natural Materials Technology, Technical University Dresden Dresden Germany
| | - Ralf Petrich
- IFU GmbH Private Institute for Analytics Frankenberg/Sa. Germany
| | - Helko Borsdorf
- Department Monitoring and Exploration Technologies UFZ Helmholtz Centre for Environmental Research Leipzig Germany
| |
Collapse
|
13
|
Complete Genome Sequence of the Edible Filamentous Cyanobacterium Arthrospira platensis NIES-39, Based on Long-Read Sequencing. Microbiol Resour Announc 2023; 12:e0113922. [PMID: 36537808 PMCID: PMC9872641 DOI: 10.1128/mra.01139-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Arthrospira platensis is a filamentous cyanobacterium that is cultivated and used worldwide as a source of food and food additives. Here, we report the complete genome sequence (6,818,916 bp) of A. platensis NIES-39, one of the model strains of A. platensis, providing an improved reference genome sequence for this strain.
Collapse
|
14
|
Tian X, Thorne JL, Moore JB. Ergothioneine: an underrecognised dietary micronutrient required for healthy ageing? Br J Nutr 2023; 129:104-114. [PMID: 38018890 PMCID: PMC9816654 DOI: 10.1017/s0007114522003592] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 01/06/2023]
Abstract
Ergothioneine is a naturally occurring amino acid and thiol antioxidant found in high amounts in mushrooms and fermented foods. Humans and animals acquire ergothioneine from the diet through the pH-dependent activity of a membrane transporter, the large solute carrier 22A member 4 (SLC22A4), expressed on the apical membrane of the small intestine. The SLC22A4 transporter also functions in the renal reabsorption of ergothioneine in the kidney, with avid absorption and retention of ergothioneine from the diet observed in both animals and humans. Ergothioneine is capable of scavenging a diverse range of reactive oxygen and nitrogen species, has metal chelation properties, and is predicted to directly regulate nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Although not lethal, the genetic knockout of the SLC22A4 gene in multiple organisms increases susceptibility to oxidative stress, damage and inflammation; in agreement with a large body of preclinical data suggesting the physiological function of ergothioneine is as a cellular antioxidant and cytoprotectant agent. In humans, blood levels of ergothioneine decline after the age of 60 years, and lower levels of ergothioneine are associated with more rapid cognitive decline. Conversely, high plasma ergothioneine levels have been associated with significantly reduced cardiovascular mortality and overall mortality risks. In this horizon’s manuscript, we review evidence suggesting critical roles for dietary ergothioneine in healthy ageing and the prevention of cardiometabolic disease. We comment on some of the outstanding research questions in the field and consider the question of whether or not ergothioneine should be considered a conditionally essential micronutrient.
Collapse
Affiliation(s)
- Xiaoying Tian
- School of Food Science & Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - James L. Thorne
- School of Food Science & Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
15
|
Plante CJ, Hill-Spanik KM, Emerson R. Inputs don't equal outputs: bacterial microbiomes of the ingesta, gut, and feces of the keystone deposit feeder Ilyanassa obsoleta. FEMS Microbiol Ecol 2022; 99:6887277. [PMID: 36496168 DOI: 10.1093/femsec/fiac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Bacteria drive energy fluxes and geochemical processes in estuarine sediments. Deposit-feeding invertebrates alter the structure and activity of microbial communities through sediment ingestion, gut passage, and defecation. The eastern mud snail, Ilyanassa obsoleta, is native to estuaries of the northwestern Atlantic, ranging from Nova Scotia, Canada, to Florida in the USA. Given extremely high densities, their deposit-feeding and locomotory activities exert ecological influence on other invertebrates and microbes. Our aim was to characterize the bacterial microbiome of this 'keystone species' and determine how its feeding alters the native bacterial microbiota. We gathered snails from both mudflat and sandflat habitats and collected their fresh fecal pellets in the laboratory. Dissection of these same snails allowed us to compare bacterial assemblages of ingested sediments, shell surfaces, gut sections (esophagus, stomach, intestine), and feces using DNA metabarcoding. Our findings indicate a diverse, resident gut microbiota. The stomach and intestines were dominated by bacteria of the genus Mycoplasma. Comparison of ingesta and feces revealed digestion of several bacterial taxa, introduction of gut residents during passage, in addition to unique bacterial taxa within the feces of unknown provenance. Our results demonstrate that I. obsoleta has the potential to modify microbial community structure in estuarine sediments.
Collapse
Affiliation(s)
- Craig J Plante
- Grice Marine Laboratory, College of Charleston, Charleston, SC 29412, United States
| | | | - Rowan Emerson
- Grice Marine Laboratory, College of Charleston, Charleston, SC 29412, United States
| |
Collapse
|
16
|
Caetano PA, do Nascimento TC, Fernandes AS, Nass PP, Vieira KR, Maróstica Junior MR, Jacob-Lopes E, Zepka LQ. Microalgae-based polysaccharides: Insights on production, applications, analysis, and future challenges. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Araújo RG, Alcantar-Rivera B, Meléndez-Sánchez ER, Martínez-Prado MA, Sosa-Hernández JE, Iqbal HMN, Parra-Saldivar R, Martínez-Ruiz M. Effects of UV and UV-vis Irradiation on the Production of Microalgae and Macroalgae: New Alternatives to Produce Photobioprotectors and Biomedical Compounds. Molecules 2022; 27:5334. [PMID: 36014571 PMCID: PMC9413999 DOI: 10.3390/molecules27165334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
In the last decade, algae applications have generated considerable interest among research organizations and industrial sectors. Bioactive compounds, such as carotenoids, and Mycosporine-like amino acids (MAAs) derived from microalgae may play a vital role in the bio and non-bio sectors. Currently, commercial sunscreens contain chemicals such as oxybenzone and octinoxate, which have harmful effects on the environment and human health; while microalgae-based sunscreens emerge as an eco-friendly alternative to provide photo protector agents against solar radiation. Algae-based exploration ranges from staple foods to pharmaceuticals, cosmetics, and biomedical applications. This review aims to identify the effects of UV and UV-vis irradiation on the production of microalgae bioactive compounds through the assistance of different techniques and extraction methods for biomass characterization. The efficiency and results focus on the production of a blocking agent that does not damage the aquifer, being beneficial for health and possible biomedical applications.
Collapse
Affiliation(s)
- Rafael G. Araújo
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Brian Alcantar-Rivera
- Department of Chemical and Biochemical Engineering, Tecnológico Nacional de México—Instituto Tecnológico de Durango (TecNM-ITD), Durango 34080, Mexico
| | | | - María Adriana Martínez-Prado
- Department of Chemical and Biochemical Engineering, Tecnológico Nacional de México—Instituto Tecnológico de Durango (TecNM-ITD), Durango 34080, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
18
|
LC-MS/MS Validation and Quantification of Cyanotoxins in Algal Food Supplements from the Belgium Market and Their Molecular Origins. Toxins (Basel) 2022; 14:toxins14080513. [PMID: 36006175 PMCID: PMC9415669 DOI: 10.3390/toxins14080513] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Food supplements are gaining popularity worldwide. However, harmful natural compounds can contaminate these products. In the case of algae-based products, the presence of toxin-producing cyanobacteria may cause health risks. However, data about the prevalence of algal food supplements on the Belgian market and possible contaminations with cyanotoxins are scarce. Therefore, we optimized and validated a method based on Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry to quantify eight microcystin congeners and nodularin in algal food supplements. Our analytical method was successfully validated and applied on 35 food supplement samples. Nine out of these samples contained microcystin congeners, of which three exceeded 1 µg g−1, a previously proposed guideline value. Additionally, the mcyE gene was amplified and sequenced in ten products to identify the taxon responsible for the toxin production. For seven out of these ten samples, the mcyE gene could be amplified and associated to Microcystis sp. EFSA and posology consumption data for algal-based food supplements were both combined with our toxin prevalence data to establish different toxin exposure scenarios to assess health risks and propose new guideline values.
Collapse
|
19
|
Microalgae-derived polysaccharides: Potential building blocks for biomedical applications. World J Microbiol Biotechnol 2022; 38:150. [PMID: 35776270 DOI: 10.1007/s11274-022-03342-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
In recent years, the increasing concern about human health well-being has strongly boosted the search for natural alternatives that can be used in different fields, especially in biomedicine. This has put microalgae-based products in evidence since they contain many bioactive compounds, of which polysaccharides are attractive due to the diverse physicochemical properties and new or improved biological roles they play. Polysaccharides from microalgae, specially exopolysaccharides, are critically important for market purposes because they can be used as anti-inflammatory, immunomodulatory, anti-glycemic, antitumor, antioxidant, anticoagulant, antilipidemic, antiviral, antibacterial, and antifungal agents. Therefore, to obtain higher productivity and competitiveness of these naturally available compounds, the cultivation parameters and the extraction/purification processes must be better optimized in order to bring perspectives for the exploitation of products in commercial and clinical practice. In this sense, the objective of the present review is to elucidate the potential biomedical applications of microalgae-derived polysaccharides. A closer look is taken at the main polysaccharides produced by microalgae, methods of extraction, purification and structural determination, biological activities and their applications, and current status.
Collapse
|
20
|
Limnospira fusiformis harbors dinitrogenase reductase (nifH)-like genes, but does not show N2 fixation activity. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Jung CHG, Waldeck P, Sykora S, Braune S, Petrick I, Küpper JH, Jung F. Influence of Different Light-Emitting Diode Colors on Growth and Phycobiliprotein Generation of Arthrospira platensis. Life (Basel) 2022; 12:895. [PMID: 35743926 PMCID: PMC9225284 DOI: 10.3390/life12060895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Light-emitting diodes (LED) can be utilized as tailorable artificial light sources for the cultivation of cyanobacteria such as Arthrospira platensis (AP). To study the influence of different LED light colors on phototrophic growth and biomass composition, AP was cultured in closed bioreactors and exposed to red, green, blue, or white LED lights. The illumination with red LED light resulted in the highest cell growth and highest cell densities compared to all other light sources (order of cell densities: red > white > green > blue LED light). In contrast, the highest phycocyanin concentrations were found when AP was cultured under blue LED light (e.g., order of concentrations: blue > white > red > green LED light). LED-blue light stimulated the accumulation of nitrogen compounds in the form of phycobiliproteins at the expense of cell growth. The results of the study revealed that exposure to different LED light colors can improve the quality and quantity of the biomass gained in AP cultures.
Collapse
Affiliation(s)
- Conrad H. G. Jung
- Carbon Biotech Social Enterprise AG, 01968 Senftenberg, Germany; (C.H.G.J.); (J.-H.K.)
| | - Peter Waldeck
- Institute of Materials Chemistry, Thermodynamics, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany; (P.W.); (I.P.)
| | - Shadi Sykora
- Experimental Physics, Mechanical Engineering, Electrical and Energy Systems, Brandenburg University of Technology, 01968 Senftenberg, Germany;
| | - Steffen Braune
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany;
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Ingolf Petrick
- Institute of Materials Chemistry, Thermodynamics, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany; (P.W.); (I.P.)
| | - Jan-Heiner Küpper
- Carbon Biotech Social Enterprise AG, 01968 Senftenberg, Germany; (C.H.G.J.); (J.-H.K.)
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany;
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany;
| |
Collapse
|
22
|
Blanco-Vieites M, Suárez-Montes D, Delgado F, Álvarez-Gil M, Battez AH, Rodríguez E. Removal of heavy metals and hydrocarbons by microalgae from wastewater in the steel industry. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
23
|
Verma S, Thapa S, Siddiqui N, Chakdar H. Cyanobacterial secondary metabolites towards improved commercial significance through multiomics approaches. World J Microbiol Biotechnol 2022; 38:100. [PMID: 35486205 DOI: 10.1007/s11274-022-03285-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are ubiquitous photosynthetic prokaryotes responsible for the oxygenation of the earth's reducing atmosphere. Apart from oxygen they are producers of a myriad of bioactive metabolites with diverse complex chemical structures and robust biological activities. These secondary metabolites are known to have a variety of medicinal and therapeutic applications ranging from anti-microbial, anti-viral, anti-inflammatory, anti-cancer, and immunomodulating properties. The present review discusses various aspects of secondary metabolites viz. biosynthesis, types and applications, which highlights the repertoire of bioactive constituents they harbor. Majority of these products have been produced from only a handful of genera. Moreover, with the onset of various OMICS approaches, cyanobacteria have become an attractive chassis for improved secondary metabolites production. Also the intervention of synthetic biology tools such as gene editing technologies and a variety of metabolomics and fluxomics approaches, used for engineering cyanobacteria, have significantly enhanced the production of secondary metabolites.
Collapse
Affiliation(s)
- Shaloo Verma
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India
| | - Nahid Siddiqui
- Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India.
| |
Collapse
|
24
|
Mapstone LJ, Leite MN, Purton S, Crawford IA, Dartnell L. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnol Adv 2022; 59:107946. [DOI: 10.1016/j.biotechadv.2022.107946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
|
25
|
Abstract
Genetic engineering of cyanobacteria is currently limited to genomic integration via homologous recombination and RSF1010-based conjugative vector systems. Here, we introduce a rationally designed conjugative vector with two BioBrick-based cloning sites which enables facilitated and modular cloning. This streamlined vector is suitable for a variety of synthetic biology applications, such as expression of multiple enzymes from metabolic pathways for the production of biofuels or secondary metabolites, or screening of modular parts such as promoters, further facilitating applications to improve crop plants using synthetic biology. Finally, we present a general approach to cloning of constructs, as well as detailed protocols for conjugation and culturing of strains carrying said constructs.
Collapse
Affiliation(s)
- Anna Behle
- Department of Biology, Institute for Synthetic Microbiology, Heinrich Heine University, Düsseldorf, Germany
| | - Ilka M Axmann
- Department of Biology, Institute for Synthetic Microbiology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
26
|
Comparative Genomics and Physiological Investigation of a New Arthrospira/Limnospira Strain O9.13F Isolated from an Alkaline, Winter Freezing, Siberian Lake. Cells 2021; 10:cells10123411. [PMID: 34943919 PMCID: PMC8700078 DOI: 10.3390/cells10123411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022] Open
Abstract
Cyanobacteria from the genus Arthrospira/Limnospira are considered haloalkalotolerant organisms with optimal growth temperatures around 35 °C. They are most abundant in soda lakes in tropical and subtropical regions. Here, we report the comprehensive genome-based characterisation and physiological investigation of the new strain O9.13F that was isolated in a temperate climate zone from the winter freezing Solenoye Lake in Western Siberia. Based on genomic analyses, the Siberian strain belongs to the Arthrospira/Limnospira genus. The described strain O9.13F showed the highest relative growth index upon cultivation at 20 °C, lower than the temperature 35 °C reported as optimal for the Arthrospira/Limnospira strains. We assessed the composition of fatty acids, proteins and photosynthetic pigments in the biomass of strain O9.13F grown at different temperatures, showing its potential suitability for cultivation in a temperate climate zone. We observed a decrease of gamma-linolenic acid favouring palmitic acid in the case of strain O9.13F compared to tropical strains. Comparative genomics showed no unique genes had been found for the Siberian strain related to its tolerance to low temperatures. In addition, this strain does not possess a different set of genes associated with the salinity stress response from those typically found in tropical strains. We confirmed the absence of plasmids and functional prophage sequences. The genome consists of a 4.94 Mbp with a GC% of 44.47% and 5355 encoded proteins. The Arthrospira/Limnospira strain O9.13F presented in this work is the first representative of a new clade III based on the 16S rRNA gene, for which a genomic sequence is available in public databases (PKGD00000000).
Collapse
|
27
|
Veerabadhran M, Natesan S, MubarakAli D, Xu S, Yang F. Using different cultivation strategies and methods for the production of microalgal biomass as a raw material for the generation of bioproducts. CHEMOSPHERE 2021; 285:131436. [PMID: 34256200 DOI: 10.1016/j.chemosphere.2021.131436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Microalgal biomass and its fine chemical production from microalgae have pioneered algal bioprocess technology with few limitations such as lab-to-industry. However, laboratory-scale transitions and industrial applications are hindered by a plethora of limitations comprising expensive in culturing methods. Therefore, to emphasize the profitable benefits, the algal culturing techniques appropriately employed for large-scale microalgal biomass yield necessitates intricate assessment to emphasize the profitable benefits. The present review holistically compiles the culturing strategies for improving microalgal biomass production based on appropriate factors like designing better bioreactor designs. On the other hand, synthetic biology approaches for abridging the effective industrial transition success explored recently. Prospects in synthetic biology for enhanced microalgal biomass production based on cultivation strategies and various mechanistic modes approach to enrich cost-effective and viable output are discussed. The State-of-the-art culturing techniques encompassing enhancement of photosynthetic activity, designing bioreactor design, and potential augmenting protocols for biomass yield employing indoor cultivation in both (Open and or/closed) methods are enumerated. Further, limitations hindering the microalgal bioproducts development are critically evaluated for improving culturing techniques for microalgal cell factories, subsequently escalating the cost-benefit ratio in bioproducts synthesis from microalgae. The comprehensive analysis could provide a rational and deeper detailed insight for microalgal entrepreneurs through alternative culturing technology viz., synthetic biology and genome engineering in an Industrial perspective arena.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| | - Sivakumar Natesan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Shuaishuai Xu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
28
|
Shahid A, Khurshid M, Aslam B, Muzammil S, Mehwish HM, Rajoka MSR, Hayat HF, Sarfraz MH, Razzaq MK, Nisar MA, Waseem M. Cyanobacteria derived compounds: Emerging drugs for cancer management. J Basic Microbiol 2021; 62:1125-1142. [PMID: 34747529 DOI: 10.1002/jobm.202100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 11/06/2022]
Abstract
The wide diversity of cyanobacterial species and their role in a variety of biological activities have been reported in the previous few years. Cyanobacteria, especially from marine sources, constitutes a major source of biologically active metabolites that have gained great attention especially due to their anticancer potential. Numerous chemically diverse metabolites from various cyanobacterial species have been recognized to inhibit the growth and progression of tumor cells through the induction of apoptosis in many different types of cancers. These metabolites activate the apoptosis in the cancer cells by different molecular mechanisms, however, the dysregulation of the mitochondrial pathway, death receptors signaling pathways, and the activation of several caspases are the crucial mechanisms that got considerable interest. The array of metabolites and the range of mechanisms involved may also help to overcome the resistance acquired by the different tumor types against the ongoing therapeutic agents. Therefore, the primary or secondary metabolites from the cyanobacteria as well as their synthetic derivates could be used to develop novel anticancer drugs alone or in combination with other chemotherapeutic agents. In this study, we have discussed the role of cyanobacterial metabolites in the induction of cytotoxicity and the potential to inhibit the growth of cancer cells through the induction of apoptosis, cell signaling alteration, oxidative damage, and mitochondrial dysfunctions. Moreover, the various metabolites produced by cyanobacteria have been summarized with their anticancer mechanisms. Furthermore, the ongoing trials and future developments for the therapeutic implications of these compounds in cancer therapy have been discussed.
Collapse
Affiliation(s)
- Aqsa Shahid
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Shahid Riaz Rajoka
- School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen, China.,Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hafiz Fakhar Hayat
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Khuram Razzaq
- Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan.,College of Science and Engineering, Flinders University, Bedford Park, Australia
| | - Muhammad Waseem
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
29
|
Rudi L, Zinicovscaia I, Cepoi L, Chiriac T, Peshkova A, Cepoi A, Grozdov D. Accumulation and Effect of Silver Nanoparticles Functionalized with Spirulina platensis on Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2992. [PMID: 34835756 PMCID: PMC8620753 DOI: 10.3390/nano11112992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022]
Abstract
The effect of unmodified and functionalized Spirulina platensis biomass silver nanoparticles on rats during prolonged oral administration was assessed. Silver nanoparticles were characterized by using transmission electron microscopy, while their uptake by the biomass was confirmed using scanning electron microscopy and energy dispersive analysis. The content of silver in the different organs of rats after a period of administration (28 days) or after an additional clearance period (28 days) was ascertained by using neutron activation analysis. In animals administrated with the unmodified nanoparticles, the highest content of silver was determined in the brain and kidneys, while in animals administrated with AgNP-Spirulina, silver was mainly accumulated in the brain and testicles. After the clearance period, silver was excreted rapidly from the spleen and kidneys; however, the excretion from the brain was very low, regardless of the type of nanoparticles. Hematological and biochemical tests were performed in order to reveal the effect of nanoparticles on rats. The difference in the content of eosinophils in the experimental and control groups was statistically significant. The hematological indices of the rats did not change significantly under the action of the silver nanoparticles except for the content of reticulocytes and eosinophils, which increased significantly. Changes in the biochemical parameters did not exceed the limits of normal values. Silver nanoparticles with the sizes of 8-20 nm can penetrate the blood-brain barrier, and their persistence after a period of clearance indicated the irreversibility of this process.
Collapse
Affiliation(s)
- Ludmila Rudi
- Institute of Microbiology and Biotechnology, 1 Academiei Str., 2028 Chisinau, Moldova; (L.R.); (L.C.); (T.C.); (A.C.)
| | - Inga Zinicovscaia
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia; (A.P.); (D.G.)
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str., MG-6 Bucharest Magurele, Romania
- Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| | - Liliana Cepoi
- Institute of Microbiology and Biotechnology, 1 Academiei Str., 2028 Chisinau, Moldova; (L.R.); (L.C.); (T.C.); (A.C.)
| | - Tatiana Chiriac
- Institute of Microbiology and Biotechnology, 1 Academiei Str., 2028 Chisinau, Moldova; (L.R.); (L.C.); (T.C.); (A.C.)
| | - Alexandra Peshkova
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia; (A.P.); (D.G.)
| | - Anastasia Cepoi
- Institute of Microbiology and Biotechnology, 1 Academiei Str., 2028 Chisinau, Moldova; (L.R.); (L.C.); (T.C.); (A.C.)
| | - Dmitrii Grozdov
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia; (A.P.); (D.G.)
| |
Collapse
|
30
|
|
31
|
Esquivel-Hernández DA, Pennacchio A, Torres-Acosta MA, Parra-Saldívar R, de Souza Vandenberghe LP, Faraco V. Multi-product biorefinery from Arthrospira platensis biomass as feedstock for bioethanol and lactic acid production. Sci Rep 2021; 11:19309. [PMID: 34588465 PMCID: PMC8481326 DOI: 10.1038/s41598-021-97803-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023] Open
Abstract
With the aim to reach the maximum recovery of bulk and specialty bioproducts while minimizing waste generation, a multi-product biorefinery for ethanol and lactic acid production from the biomass of cyanobacterium Arthrospira platensis was investigated. Therefore, the residual biomass resulting from different pretreatments consisting of supercritical fluid extraction (SF) and microwave assisted extraction with non-polar (MN) and polar solvents (MP), previously applied on A. platensis to extract bioactive metabolites, was further valorized. In particular, it was used as a substrate for fermentation with Saccharomyces cerevisiae LPB-287 and Lactobacillus acidophilus ATCC 43121 to produce bioethanol (BE) and lactic acid (LA), respectively. The maximum concentrations achieved were 3.02 ± 0.07 g/L of BE by the MN process at 120 rpm 30 °C, and 9.67 ± 0.05 g/L of LA by the SF process at 120 rpm 37 °C. An economic analysis of BE and LA production was carried out to elucidate the impact of fermentation scale, fermenter costs, production titer, fermentation time and cyanobacterial biomass production cost. The results indicated that the critical variables are fermenter scale, equipment cost, and product titer; time process was analyzed but was not critical. As scale increased, costs tended to stabilize, but also more product was generated, which causes production costs per unit of product to sharply decrease. The median value of production cost was US$ 1.27 and US$ 0.39, for BE and LA, respectively, supporting the concept of cyanobacterium biomass being used for fermentation and subsequent extraction to obtain ethanol and lactic acid as end products from A. platensis.
Collapse
Affiliation(s)
- Diego A. Esquivel-Hernández
- grid.419886.a0000 0001 2203 4701Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, 64849 Monterrey, NL Mexico ,grid.9486.30000 0001 2159 0001Present Address: Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Ave. Universidad 2001, 62210 Cuernavaca, Morelos Mexico ,grid.9486.30000 0001 2159 0001Present Address: Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, 04510 Mexico City, Mexico
| | - Anna Pennacchio
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Mario A. Torres-Acosta
- grid.83440.3b0000000121901201Department of Biochemical Engineering, The Advance Centre for Biochemical Engineering, University College London, London, WC1E 6BT UK
| | - Roberto Parra-Saldívar
- grid.419886.a0000 0001 2203 4701Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, 64849 Monterrey, NL Mexico
| | - Luciana Porto de Souza Vandenberghe
- grid.20736.300000 0001 1941 472XDepartment of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Coronel Francisco H. dos Santos Avenue, 210, Curitiba, 81531-980 Brazil
| | - Vincenza Faraco
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| |
Collapse
|
32
|
Krüger-Genge A, Jung CGH, Braune S, Harb K, Westphal S, Klöpzig S, Küpper JH, Jung F. Effect of Arthrospira powders from different producers on the formation of endothelial cell monolayers. Clin Hemorheol Microcirc 2021; 79:193-203. [PMID: 34487037 DOI: 10.3233/ch-219200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arthrospira platensis (AP) and some of its derived products have well-established biological activities as antioxidants or as agents to reduce cardiovascular disease risk factors. Furthermore, AP products have gained increasing importance as potential anti-cancer agents. However, the ingredients of the available products vary greatly with the origin, the type of production and processing, which could have significant consequences for their biological effects. Therefore, the composition and biological influence of five distinct AP powders, which were acquired commercially or produced at a public biotechnology institute, were investigated in regard to their endothelialization capacity using a cell impedance- (CI) based measurement method. The study revealed that the AP composition and especially the influence on HUVEC proliferation differed significantly between the five AP powders up to 109%.Thus, it could be shown that the method used allows the reliable detection of quantitative differences in biological effects of different AP preparations.
Collapse
Affiliation(s)
- A Krüger-Genge
- Fraunhofer Institute for Applied Polymer Research (IAP), Department of Biomaterials, Healthcare and Cosmeceuticals, Potsdam-Golm, Germany
| | - C G H Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, Senftenberg, Germany
| | - S Braune
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, Senftenberg, Germany
| | - K Harb
- Fraunhofer Institute for Applied Polymer Research (IAP), Department of Biomaterials, Healthcare and Cosmeceuticals, Potsdam-Golm, Germany
| | - S Westphal
- Fraunhofer Institute for Applied Polymer Research (IAP), Department of Biomaterials, Healthcare and Cosmeceuticals, Potsdam-Golm, Germany
| | - S Klöpzig
- Fraunhofer Institute for Applied Polymer Research (IAP), Department of Biomaterials, Healthcare and Cosmeceuticals, Potsdam-Golm, Germany
| | - J-H Küpper
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, Senftenberg, Germany
| | - F Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, Senftenberg, Germany
| |
Collapse
|
33
|
Keller RJ, Porter W, Goli K, Rosenthal R, Butler N, Jones JA. Biologically-Based and Physiochemical Life Support and In Situ Resource Utilization for Exploration of the Solar System-Reviewing the Current State and Defining Future Development Needs. Life (Basel) 2021; 11:844. [PMID: 34440588 PMCID: PMC8398003 DOI: 10.3390/life11080844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/02/2022] Open
Abstract
The future of long-duration spaceflight missions will place our vehicles and crew outside of the comfort of low-Earth orbit. Luxuries of quick resupply and frequent crew changes will not be available. Future missions will have to be adapted to low resource environments and be suited to use resources at their destinations to complete the latter parts of the mission. This includes the production of food, oxygen, and return fuel for human flight. In this chapter, we performed a review of the current literature, and offer a vision for the implementation of cyanobacteria-based bio-regenerative life support systems and in situ resource utilization during long duration expeditions, using the Moon and Mars for examples. Much work has been done to understand the nutritional benefits of cyanobacteria and their ability to survive in extreme environments like what is expected on other celestial objects. Fuel production is still in its infancy, but cyanobacterial production of methane is a promising front. In this chapter, we put forth a vision of a three-stage reactor system for regolith processing, nutritional and atmospheric production, and biofuel production as well as diving into what that system will look like during flight and a discussion on containment considerations.
Collapse
Affiliation(s)
- Ryan J. Keller
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (W.P.); (K.G.); (R.R.); (N.B.); (J.A.J.)
| | | | | | | | | | | |
Collapse
|
34
|
Comparison of two strains of the edible cyanobacteria Arthrospira: Biochemical characterization and antioxidant properties. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Yadav A, Maertens L, Meese T, Van Nieuwerburgh F, Mysara M, Leys N, Cuypers A, Janssen PJ. Genetic Responses of Metabolically Active Limnospira indica Strain PCC 8005 Exposed to γ-Radiation during Its Lifecycle. Microorganisms 2021; 9:1626. [PMID: 34442705 PMCID: PMC8400943 DOI: 10.3390/microorganisms9081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Two morphotypes of the cyanobacterial Limnospira indica (formerly Arthrospira sp.) strain PCC 8005, denoted as P2 (straight trichomes) and P6 (helical trichomes), were subjected to chronic gamma radiation from spent nuclear fuel (SNF) rods at a dose rate of ca. 80 Gy·h-1 for one mass doubling period (approximately 3 days) under continuous light with photoautotrophic metabolism fully active. Samples were taken for post-irradiation growth recovery and RNA-Seq transcriptional analysis at time intervals of 15, 40, and 71.5 h corresponding to cumulative doses of ca. 1450, 3200, and 5700 Gy, respectively. Both morphotypes, which were previously reported by us to display different antioxidant capacities and differ at the genomic level in 168 SNPs, 48 indels and 4 large insertions, recovered equally well from 1450 and 3200 Gy. However, while the P2 straight type recovered from 5700 Gy by regaining normal growth within 6 days, the P6 helical type took about 13 days to recover from this dose, indicating differences in their radiation tolerance and response. To investigate these differences, P2 and P6 cells exposed to the intermediate dose of gamma radiation (3200 Gy) were analyzed for differential gene expression by RNA-Seq analysis. Prior to batch normalization, a total of 1553 genes (887 and 666 of P2 and P6, respectively, with 352 genes in common) were selected based on a two-fold change in expression and a false discovery rate FDR smaller or equal to 0.05. About 85% of these 1553 genes encoded products of yet unknown function. Of the 229 remaining genes, 171 had a defined function while 58 genes were transcribed into non-coding RNA including 21 tRNAs (all downregulated). Batch normalization resulted in 660 differentially expressed genes with 98 having a function and 32 encoding RNA. From PCC 8005-P2 and PCC 8005-P6 expression patterns, it emerges that although the cellular routes used by the two substrains to cope with ionizing radiation do overlap to a large extent, both strains displayed a distinct preference of priorities.
Collapse
Affiliation(s)
- Anu Yadav
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Laurens Maertens
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Research Unit in Biology of Microorganisms (URBM), Narilis Institute, University of Namur, 5000 Namur, Belgium
| | - Tim Meese
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Mohamed Mysara
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Natalie Leys
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Paul Jaak Janssen
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| |
Collapse
|
36
|
Physicochemical Evaluation of Edible Cyanobacterium Arthrospira platensis Collected from the South Atlantic Coast of Morocco: A Promising Source of Dietary Supplements. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3337231. [PMID: 34335805 PMCID: PMC8286187 DOI: 10.1155/2021/3337231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
The cyanobacterium Arthrospira platensis (A. platensis)—a genus of nonheterocystous filamentous cyanobacteria—is used in industrial applications and as a food supply. The current research work aims to study the physicochemical characteristics of A. platensis indigenous to the Moroccan Atlantic coast at Laayoune (Foum El Oued lagoon). The contents of proteins, carbohydrates, vitamins, lipids, minerals, heavy metals, energy value, humidity, ash, pigments, and tannins in A. platensis were investigated using protocols as described in the earlier literature. The values of protein, carbohydrate, and lipid contents in A. platensis were 58.9 ± 0.07, 14.67, and 45.54% respectively. The values of vitamins B2 and B3 dosed in A. platensis were 1.31 ± 0.19 and 30.8 ± 0.001 mg/kg, respectively. The values of heavy metals including lead and chromium were 70 ± 4.5 and 5 ± 0.5 PPB (parts-per-billion), respectively; however, no trace concerning cadmium was detected. The values of energy value, humidity, and ash content were 346.48 ± 0.21, 11.6 ± 0.17%, and 9.1 ± 0.21% kcal/100 g, respectively. The results of pigment content showed the presence of chlorophyll b, chlorophyll a, and carotenoids of 37.506 ± 3.38, 26.066 ± 3.08, and 9.52 ± 0.22 mg/g, respectively. The results obtained revealed that A. platensis indigenous to the Moroccan Atlantic coast at Laayoune was found to be very rich in proteins, carbohydrates, vitamins, minerals, ash, and pigments and lower in heavy metals and saturated fats when compared with species investigated in the literature. Thus, A. platensis indigenous to the Moroccan Atlantic coast at Laayoune fulfills the requirements for being used as dietary supplements.
Collapse
|
37
|
Riadi L, Askitosari TD, Widhi RPD, Laurensia M, Agustin YE, Arifin Y. The kinetics of tempeh wastewater treatment using Arthrospira platensis. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2997-3006. [PMID: 34185694 DOI: 10.2166/wst.2021.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The microalga Arthrospira platensis (Spirulina) was used for tempeh wastewater treatment. Microalga growth and the kinetics of chemical oxygen demand (COD) degradation under different light intensities (2,100 and 4,300 lux), tempeh wastewater concentrations (0, 0.5, 1, 1.5% v/v), and sodium nitrate concentrations (0, 0.75, 1, 2, 2.5 g/L) were studied. Improved cell growth in wastewater indicated that mixotrophic growth was preferred. The addition of sodium nitrate up to 2 g/L increased COD removal. The highest COD removal was 92.2%, which was obtained from cultivation with 1% v/v tempeh wastewater, 2 g/L sodium nitrate, 2,100 lux, and the specific growth rate of 0.33 ± 0.01 day-1. The COD removal followed a pseudo-first-order kinetic model with the kinetic constant of 0.3748 day-1 and the nitrate uptake rate of 0.122 g/L-day. The results can be used to design a pilot-scale tempeh wastewater treatment facility using A. platensis for tertiary treatment. Based on the kinetic model, a 20 m3 reactor can treat tempeh wastewater to reduce the COD from 400 to 100 ppm in 4 days and produces approximately 32.8 kg of dried microalgae.
Collapse
Affiliation(s)
- Lieke Riadi
- Chemical Engineering Department, University of Surabaya, Jalan Raya Kalirungkut, Surabaya 60293, Indonesia
| | - Theresia Desy Askitosari
- Biotechnology Faculty, University of Surabaya, Jalan Raya Kalirungkut, Surabaya 60293, Indonesia
| | | | - Melvina Laurensia
- Chemical Engineering Department, University of Surabaya, Jalan Raya Kalirungkut, Surabaya 60293, Indonesia
| | - Yuana Elly Agustin
- Chemical Engineering Department, University of Surabaya, Jalan Raya Kalirungkut, Surabaya 60293, Indonesia
| | - Yalun Arifin
- Food Business Technology Department, Prasetiya Mulya University, Tangerang 15339, Indonesia E-mail:
| |
Collapse
|
38
|
Hicks M, Tran-Dao TK, Mulroney L, Bernick DL. De-novo Assembly of Limnospira fusiformis Using Ultra-Long Reads. Front Microbiol 2021; 12:657995. [PMID: 33936015 PMCID: PMC8085491 DOI: 10.3389/fmicb.2021.657995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
The Limnospira genus is a recently established clade that is economically important due to its worldwide use in biotechnology and agriculture. This genus includes organisms that were reclassified from Arthrospira, which are commercially marketed as "Spirulina." Limnospira are photoautotrophic organisms that are widely used for research in nutrition, medicine, bioremediation, and biomanufacturing. Despite its widespread use, there is no closed genome for the Limnospira genus, and no reference genome for the type strain, Limnospira fusiformis. In this work, the L. fusiformis genome was sequenced using Oxford Nanopore Technologies MinION and assembled using only ultra-long reads (>35 kb). This assembly was polished with Illumina MiSeq reads sourced from an axenic L. fusiformis culture; axenicity was verified via microscopy and rDNA analysis. Ultra-long read sequencing resulted in a 6.42 Mb closed genome assembled as a single contig with no plasmid. Phylogenetic analysis placed L. fusiformis in the Limnospira clade; some Arthrospira were also placed in this clade, suggesting a misclassification of these strains. This work provides a fully closed and accurate reference genome for the economically important type strain, L. fusiformis. We also present a rapid axenicity method to isolate L. fusiformis. These contributions enable future biotechnological development of L. fusiformis by way of genetic engineering.
Collapse
Affiliation(s)
- McKenna Hicks
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA United States
| | - Thuy-Khanh Tran-Dao
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA United States
| | - Logan Mulroney
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA United States
| | - David L. Bernick
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA United States
| |
Collapse
|
39
|
Orona-Navar A, Aguilar-Hernández I, Nigam KDP, Cerdán-Pasarán A, Ornelas-Soto N. Alternative sources of natural pigments for dye-sensitized solar cells: Algae, cyanobacteria, bacteria, archaea and fungi. J Biotechnol 2021; 332:29-53. [PMID: 33771626 DOI: 10.1016/j.jbiotec.2021.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Abstract
Dye-sensitized solar cells have been of great interest in photovoltaic technology due to their capacity to convert energy at a low cost. The use of natural pigments means replacing expensive chemical synthesis processes by easily extractable pigments that are non-toxic and environmentally friendly. Although most of the pigments used for this purpose are obtained from higher plants, there are potential alternative sources that have been underexploited and have shown encouraging results, since pigments can also be obtained from organisms like bacteria, cyanobacteria, microalgae, yeast, and molds, which have the potential of being cultivated in bioreactors or optimized by biotechnological processes. The aforementioned organisms are sources of diverse sensitizers like photosynthetic pigments, accessory pigments, and secondary metabolites such as chlorophylls, bacteriochlorophylls, carotenoids, and phycobiliproteins. Moreover, retinal proteins, photosystems, and reaction centers from these organisms can also act as sensitizers. In this review, the use of natural sensitizers extracted from algae, cyanobacteria, bacteria, archaea, and fungi is assessed. The reported photoconversion efficiencies vary from 0.001 % to 4.6 % for sensitizers extracted from algae and microalgae, 0.004 to 1.67 % for bacterial sensitizers, 0.07-0.23 % for cyanobacteria, 0.09 to 0.049 % for archaea and 0.26-2.3 % for pigments from fungi.
Collapse
Affiliation(s)
- A Orona-Navar
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, N.L., C.P. 64849, Mexico
| | - I Aguilar-Hernández
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, N.L., C.P. 64849, Mexico.
| | - K D P Nigam
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, N.L., C.P. 64849, Mexico; Department of Chemical Engineering at Indian Institute of Technology, Delhi, India
| | - Andrea Cerdán-Pasarán
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - N Ornelas-Soto
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, N.L., C.P. 64849, Mexico.
| |
Collapse
|
40
|
McNulty MJ, Xiong YM, Yates K, Karuppanan K, Hilzinger JM, Berliner AJ, Delzio J, Arkin AP, Lane NE, Nandi S, McDonald KA. Molecular pharming to support human life on the moon, mars, and beyond. Crit Rev Biotechnol 2021; 41:849-864. [PMID: 33715563 DOI: 10.1080/07388551.2021.1888070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Space missions have always assumed that the risk of spacecraft malfunction far outweighs the risk of human system failure. This assumption breaks down for longer duration exploration missions and exposes vulnerabilities in space medical systems. Space agencies can no longer reduce the majority of the human health and performance risks through crew members selection process and emergency re-supply or evacuation. No mature medical solutions exist to address this risk. With recent advances in biotechnology, there is promise for lessening this risk by augmenting a space pharmacy with a biologically-based space foundry for the on-demand manufacturing of high-value medical products. Here we review the challenges and opportunities of molecular pharming, the production of pharmaceuticals in plants, as the basis of a space medical foundry to close the risk gap in current space medical systems. Plants have long been considered to be an important life support object in space and can now also be viewed as programmable factories in space. Advances in molecular pharming-based space foundries will have widespread applications in promoting simple and accessible pharmaceutical manufacturing on Earth.
Collapse
Affiliation(s)
- Matthew J McNulty
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Yongao Mary Xiong
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Kevin Yates
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Kalimuthu Karuppanan
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Radcliffe Department of Medicine, Oxford University, Oxford, UK
| | - Jacob M Hilzinger
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Aaron J Berliner
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Jesse Delzio
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Adam P Arkin
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, School of Medicine, University of California, Davis, CA, USA
| | - Somen Nandi
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Chemical Engineering, University of California, Davis, CA, USA.,Global HealthShare® Initiative, University of California, Davis, CA, USA
| | - Karen A McDonald
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.,Department of Chemical Engineering, University of California, Davis, CA, USA.,Global HealthShare® Initiative, University of California, Davis, CA, USA
| |
Collapse
|
41
|
Burkhardt W, Rausch T, Klopfleisch R, Blaut M, Braune A. Impact of dietary sulfolipid-derived sulfoquinovose on gut microbiota composition and inflammatory status of colitis-prone interleukin-10-deficient mice. Int J Med Microbiol 2021; 311:151494. [PMID: 33711649 DOI: 10.1016/j.ijmm.2021.151494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
The interplay between diet, intestinal microbiota and host is a major factor impacting health. A diet rich in unsaturated fatty acids has been reported to stimulate the growth of Bilophila wadsworthia by increasing the proportion of the sulfonated bile acid taurocholate (TC). The taurine-induced overgrowth of B. wadsworthia promoted the development of colitis in interleukin-10-deficient (IL-10-/-) mice. This study aimed to investigate whether intake of the sulfonates sulfoquinovosyl diacylglycerols (SQDG) with a dietary supplement or their degradation product sulfoquinovose (SQ), stimulate the growth of B. wadsworthia in a similar manner and, thereby, cause intestinal inflammation. Conventional IL-10-/- mice were fed a diet supplemented with the SQDG-rich cyanobacterium Arthrospira platensis (Spirulina). SQ or TC were orally applied to conventional IL-10-/- mice and gnotobiotic IL-10-/- mice harboring a simplified human intestinal microbiota with or without B. wadsworthia. Analyses of inflammatory parameters revealed that none of the sulfonates induced severe colitis, but both, Spirulina and TC, induced expression of pro-inflammatory cytokines in cecal mucosa. Cell numbers of B. wadsworthia decreased almost two orders of magnitude by Spirulina feeding but slightly increased in gnotobiotic SQ and conventional TC mice. Changes in microbiota composition were observed in feces as a result of Spirulina or TC feeding in conventional mice. In conclusion, the dietary sulfonates SQDG and their metabolite SQ did not elicit bacteria-induced intestinal inflammation in IL-10-/- mice and, thus, do not promote colitis.
Collapse
Affiliation(s)
- Wiebke Burkhardt
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Theresa Rausch
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universitaet Berlin, Berlin, Germany
| | - Michael Blaut
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Annett Braune
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| |
Collapse
|
42
|
Tzachor A, Rozen O, Khatib S, Jensen S, Avni D. Photosynthetically Controlled Spirulina, but Not Solar Spirulina, Inhibits TNF-α Secretion: Potential Implications for COVID-19-Related Cytokine Storm Therapy. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:149-155. [PMID: 33566210 PMCID: PMC7874025 DOI: 10.1007/s10126-021-10020-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 05/30/2023]
Abstract
An array of infections, including the novel coronavirus (SARS-CoV-2), trigger macrophage activation syndrome (MAS) and subsequently hypercytokinemia, commonly referred to as a cytokine storm (CS). It is postulated that CS is mainly responsible for critical COVID-19 cases, including acute respiratory distress syndrome (ARDS). Recognizing the therapeutic potential of Spirulina blue-green algae (Arthrospira platensis), in this in vitro stimulation study, LPS-activated macrophages and monocytes were treated with aqueous extracts of Spirulina, cultivated in either natural or controlled light conditions. We report that an extract of photosynthetically controlled Spirulina (LED Spirulina), at a concentration of 0.1 µg/mL, decreases macrophage and monocyte-induced TNF-α secretion levels by over 70% and 40%, respectively. We propose prompt in vivo studies in animal models and human subjects to determine the putative effectiveness of a natural, algae-based treatment for viral CS and ARDS, and explore the potential of a novel anti-TNF-α therapy.
Collapse
Affiliation(s)
- Asaf Tzachor
- Centre for the Study of Existential Risk & Cambridge Global Food Security Research Center, University of Cambridge, Cambridge, UK
| | - Or Rozen
- Sphingolipids, Active Metabolites and Immune Modulation Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel
| | - Soliman Khatib
- Natural compounds and analytical chemistry Laboratory, MIGAL - Galilee Research Institute and Tel Hai college, Kiryat Shemona, Israel
| | - Sophie Jensen
- MATIS - Food and Biotech Research and Development, Reykjavík, Iceland
| | - Dorit Avni
- Sphingolipids, Active Metabolites and Immune Modulation Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel.
| |
Collapse
|
43
|
Tiwari AK, Tiwari BS. Cyanotherapeutics: an emerging field for future drug discovery. APPLIED PHYCOLOGY 2020; 1:44-57. [DOI: 10.1080/26388081.2020.1744480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/08/2020] [Indexed: 10/11/2024]
Affiliation(s)
- Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biological Sciences & Biotechnology, Institute of Advanced Research/IIAR, Gandhinagar, India
| | - Budhi Sagar Tiwari
- Plant Cell & Molecular Biology Laboratory Department of Biological Sciences & Biotechnology, Institute of Advanced Research/IIAR, Gandhinagar, India
| |
Collapse
|
44
|
Elleuch J, Hadj Kacem F, Ben Amor F, Hadrich B, Michaud P, Fendri I, Abdelkafi S. Extracellular neutral protease from Arthrospira platensis: Production, optimization and partial characterization. Int J Biol Macromol 2020; 167:1491-1498. [PMID: 33202265 DOI: 10.1016/j.ijbiomac.2020.11.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022]
Abstract
Proteases are industrially important catalysts. They belong to a complex family of enzymes that perform highly focused proteolysis functions. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. In the present study, a novel extracellular neutral protease produced from Arthrospira platensis was detected and characterized. Its proteolytic activity was strongly activated by β-mercaptoethanol, 5,5-dithio-bis-(2-nitrobenzoic acid) and highly inhibited by Hg2+ and Zn2+ metal ions which support the fact that the studied protease belongs to the cysteine protease family. Using statistical modelling methodology, the logistic model has been selected to predict A. platensis growth-kinetic values. The optimal culture conditions for neutral protease production were found using Box-Behnken Design. The maximum experimental protease activities (159.79 U/mL) was achieved after 13 days of culture in an optimized Zarrouk medium containing 0.625 g/L NaCl, 0.625 g/L K2HPO4 and set on 9.5 initial pH. The extracellular protease of A. platensis can easily be used in the food industry for its important activity at neutral pH and its low production cost since it is a valuation of the residual culture medium after biomass recovery.
Collapse
Affiliation(s)
- Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Farah Hadj Kacem
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Faten Ben Amor
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Bilel Hadrich
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoroire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| |
Collapse
|
45
|
Beyond inflammation: Centrally mediated antinociceptive properties of Spirulina platensis LEB-18 biomass via the opioid system. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
46
|
Munawaroh HSH, Gumilar GG, Alifia CR, Marthania M, Stellasary B, Yuliani G, Wulandari AP, Kurniawan I, Hidayat R, Ningrum A, Koyande AK, Show PL. Photostabilization of phycocyanin from Spirulina platensis modified by formaldehyde. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Maghembe R, Damian D, Makaranga A, Nyandoro SS, Lyantagaye SL, Kusari S, Hatti-Kaul R. Omics for Bioprospecting and Drug Discovery from Bacteria and Microalgae. Antibiotics (Basel) 2020; 9:antibiotics9050229. [PMID: 32375367 PMCID: PMC7277505 DOI: 10.3390/antibiotics9050229] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
"Omics" represent a combinatorial approach to high-throughput analysis of biological entities for various purposes. It broadly encompasses genomics, transcriptomics, proteomics, lipidomics, and metabolomics. Bacteria and microalgae exhibit a wide range of genetic, biochemical and concomitantly, physiological variations owing to their exposure to biotic and abiotic dynamics in their ecosystem conditions. Consequently, optimal conditions for adequate growth and production of useful bacterial or microalgal metabolites are critically unpredictable. Traditional methods employ microbe isolation and 'blind'-culture optimization with numerous chemical analyses making the bioprospecting process laborious, strenuous, and costly. Advances in the next generation sequencing (NGS) technologies have offered a platform for the pan-genomic analysis of microbes from community and strain downstream to the gene level. Changing conditions in nature or laboratory accompany epigenetic modulation, variation in gene expression, and subsequent biochemical profiles defining an organism's inherent metabolic repertoire. Proteome and metabolome analysis could further our understanding of the molecular and biochemical attributes of the microbes under research. This review provides an overview of recent studies that have employed omics as a robust, broad-spectrum approach for screening bacteria and microalgae to exploit their potential as sources of drug leads by focusing on their genomes, secondary metabolite biosynthetic pathway genes, transcriptomes, and metabolomes. We also highlight how recent studies have combined molecular biology with analytical chemistry methods, which further underscore the need for advances in bioinformatics and chemoinformatics as vital instruments in the discovery of novel bacterial and microalgal strains as well as new drug leads.
Collapse
Affiliation(s)
- Reuben Maghembe
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
- Department of Biological and Marine Sciences, Marian University College, P.O. Box 47, Bagamoyo, Tanzania;
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 22100 Lund, Sweden
| | - Donath Damian
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
| | - Abdalah Makaranga
- Department of Biological and Marine Sciences, Marian University College, P.O. Box 47, Bagamoyo, Tanzania;
- International Center for Genetic Engineering and Biotechnology (ICGEB), Omics of Algae Group, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Stephen Samwel Nyandoro
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania;
| | - Sylvester Leonard Lyantagaye
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
- Department of Biochemistry, Mbeya College of Health and Allied Sciences, University of Dar es Salaam, P.O. Box 608, Mbeya, Tanzania
| | - Souvik Kusari
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
- Correspondence: (S.K.); (R.H.-K.); Tel.: +49-2317554086 (S.K.); +46-462224840 (R.H.-K.)
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 22100 Lund, Sweden
- Correspondence: (S.K.); (R.H.-K.); Tel.: +49-2317554086 (S.K.); +46-462224840 (R.H.-K.)
| |
Collapse
|
48
|
Waleron M, Misztak A, Waleron MM, Furmaniak M, Mrozik A, Waleron K. Arthrospiribacter ruber gen. nov., sp. nov., a novel bacterium isolated from Arthrospira cultures. Syst Appl Microbiol 2020; 43:126072. [PMID: 32094022 DOI: 10.1016/j.syapm.2020.126072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/13/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Polyphasic analysis of ten isolates of the red-pigmented bacteria isolated from ten Arthrospira cultures originating from different parts of the world is described. The 16S rRNA analysis showed <95 % identity with the known bacteria on public databases, therefore, additional analyses of fatty acids profiles, MALDI-TOF/MS, genome sequencing of the chosen isolate and following phylogenomic analyses were performed. Gram-stain-negative, strictly aerobic rods were positive for catalase, negative for oxidase, proteolytic and urease activity. Major fatty acids were 15 : 0 iso, 17:0 iso 3 OH and 17:1 iso w9c/16:0 10-methyl. The whole phylogenomic analyses revealed that the genomic sequence of newly isolated strain DPMB0001 was most closely related to members of Cyclobacteriaceae family and clearly indicated distinctiveness of newly isolated bacteria. The average nucleotide identity and in silico DNA-DNA hybridisation values were calculated between representative of the novel strains DPMB0001 and its phylogenetically closest species, Indibacter alkaliphilus CCUG57479 (LW1)T (ANI 69.2 % is DDH 17.2 %) and Mariniradius saccharolyticus AK6T (ANI 80.02 % isDDH 26.1 %), and were significantly below the established cut-off <94 % (ANI) and <70 % (isDDH) for species and genus delineation. The obtained results showed that the analysed isolates represent novel genus and species, for which names Arthrospiribacter gen nov. and Arthrospiribacter ruber sp. nov. (type strain DPMB0001=LMG 31078=PCM 3008) is proposed.
Collapse
Affiliation(s)
- Malgorzata Waleron
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Agnieszka Misztak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Michal Mateusz Waleron
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland; Department of Pharmaceutical Microbiology, the Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. Hallera 107, 80-416 Gdansk, Poland
| | - Magda Furmaniak
- Department of Pharmaceutical Microbiology, the Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. Hallera 107, 80-416 Gdansk, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, the Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. Hallera 107, 80-416 Gdansk, Poland.
| |
Collapse
|
49
|
Abstract
Continual increases in the human population and growing concerns related to the energy crisis, food security, disease outbreaks, global warming, and other environmental issues require a sustainable solution from nature. One of the promising resources is cyanobacteria, also known as blue-green algae. They require simple ingredients to grow and possess a relatively simple genome. Cyanobacteria are known to produce a wide variety of bioactive compounds. In addition, cyanobacteria’s remarkable growth rate enables its potential use in a wide range of applications in the fields of bioenergy, biotechnology, natural products, medicine, agriculture, and the environment. In this review, we have summarized the potential applications of cyanobacteria in different areas of science and development, especially related to their use in producing biofuels and other valuable co-products. We have also discussed the challenges that hinder such development at an industrial level and ways to overcome such obstacles.
Collapse
|
50
|
Carbon Mass Balance in Arthrospira platensis Culture with Medium Recycle and High CO2 Supply. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app10010228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Medium recycling combined with CO2 recovery helps sustainable use of the alkaline medium in Arthrospira culture. However, high CO2 supply may cause inorganic carbon accumulation and pH reduction, which could result in low CO2 recovery and reduced algal growth. This study aimed to elucidate the effect of medium recycling and high CO2 supply through carbon mass balance analysis in Arthrospira culture. In all CO2 supply conditions, carbon supply was higher than Arthrospira carbon assimilation, which accounted for 30–58% of supply. However, CO2 recovery of nearly 100% and 63% for lower (0.20 and 0.39 gC L−1 d−1) and higher (0.59 gC L−1 d−1) CO2 supply rates were achieved, respectively, because of the high concentration of the alkaline agent. The excess carbon accumulated in the medium and ultimately escaped from the system in a form of dissolved inorganic carbon (DIC). Dissolved organic carbon (DOC) contributed to 16–24% of the total photosynthetically assimilated carbon, and the final concentration reached 260–367 mgC L−1, but there was no significant growth reduction caused by DIC and DOC accumulation. This study demonstrated the stability of the medium-recycling process even at high CO2 supply rates although a balanced supply is recommended for longer operations.
Collapse
|