1
|
Saadh MJ, Muhammad FA, Albadr RJ, Sanghvi G, Jyothi SR, Kundlas M, Joshi KK, Gulyamov S, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. From protein to immunology: comprehensive insights into Marburg virus vaccines, mechanism, and application. Arch Microbiol 2025; 207:74. [PMID: 40025302 DOI: 10.1007/s00203-025-04277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
The Marburg virus (MARV), a member of the Filoviridae family, is a highly lethal pathogen that causes Marburg virus disease (MVD), a severe hemorrhagic fever with high fatality rates.Despite recurrent outbreaks, no licensed vaccine is currently available. This review explores MARV's genomic architecture, structural proteins, and recent advancements in vaccine development. It highlights the crucial role of MARV's seven monocistronic genes in viral replication and pathogenesis, with a focus on structural proteins such as nucleoprotein (NP), glycoprotein (GP), and viral proteins VP35, VP40, and VP24. These proteins are essential for viral entry, immune evasion, and replication. The review further examines various vaccine platforms, including multi-epitope vaccines, DNA-based vaccines, viral vector vaccines, virus-like particles (VLPs), and mRNA vaccines. Cutting-edge immunoinformatics approaches are discussed for identifying conserved epitopes critical for broad-spectrum protection. The immunological responses induced by these vaccine candidates, particularly their efficacy in preclinical trials, are analyzed, showcasing promising results in generating both humoral and cellular immunity. Moreover, the review addresses challenges and future directions in MARV vaccine development, emphasizing the need for enhanced immunogenicity, safety, and global accessibility. The integration of omics technologies (genomics, transcriptomics, proteomics) with immunoinformatics is presented as a transformative approach for next-generation vaccine design. Innovative platforms such as mRNA and VLP-based vaccines offer rapid and effective development opportunities. In this study, underscores the urgent need for a licensed MARV vaccine to prevent future outbreaks and strengthen global preparedness. By synthesizing the latest research and technological advancements, it provides a strategic roadmap for developing safe, effective, and broadly protective vaccines. The fight against MARV is a global priority, requiring coordinated efforts from researchers, policymakers, and public health organizations.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, 248002, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Surat Gulyamov
- Department of Dentistry and Pediatric Dentistry, Tashkent Pediatric Medical Institute, Bogishamol Street 223, 100140, Tashkent, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
2
|
Zhang HQ, Zhang YN, Deng CL, Zhu QX, Zhang ZR, Li XD, Yuan ZM, Zhang B. Rational design of self-amplifying virus-like vesicles with Ebola virus glycoprotein as vaccines. Mol Ther 2024; 32:3695-3711. [PMID: 39217415 PMCID: PMC11489537 DOI: 10.1016/j.ymthe.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
As emerging and re-emerging pathogens, filoviruses, especially Ebola virus (EBOV), pose a great threat to public health and require sustained attention and ongoing surveillance. More vaccines and antiviral drugs are imperative to be developed and stockpiled to respond to unpredictable outbreaks. Virus-like vesicles, generated by alphavirus replicons expressing homogeneous or heterogeneous glycoproteins (GPs), have demonstrated the capacity of self-propagation and shown great potential in vaccine development. Here, we describe a novel class of EBOV-like vesicles (eVLVs) incorporating both EBOV GP and VP40. The eVLVs exhibited similar antigenicity as EBOV. In murine models, eVLVs were highly attenuated and elicited robust GP-specific antibodies with neutralizing activities. Importantly, a single dose of eVLVs conferred complete protection in a surrogate EBOV lethal mouse model. Furthermore, our VLVs strategy was also successfully applied to Marburg virus (MARV), the representative member of the genus Marburgvirus. Taken together, our findings indicate the feasibility of an alphavirus-derived VLVs strategy in combating infection of filoviruses represented by EBOV and MARV, which provides further evidence of the potential of this platform for universal live-attenuated vaccine development.
Collapse
Affiliation(s)
- Hong-Qing Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Nan Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Cheng-Lin Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China
| | - Qin-Xuan Zhu
- Hunan Normal University, School of Medicine, Changsha 410081, China
| | - Zhe-Rui Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China
| | - Xiao-Dan Li
- Hunan Normal University, School of Medicine, Changsha 410081, China
| | - Zhi-Ming Yuan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Bo Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Jiangxia Laboratory, Wuhan 430200, China.
| |
Collapse
|
3
|
Silva-Pilipich N, Beloki U, Salaberry L, Smerdou C. Self-Amplifying RNA: A Second Revolution of mRNA Vaccines against COVID-19. Vaccines (Basel) 2024; 12:318. [PMID: 38543952 PMCID: PMC10974399 DOI: 10.3390/vaccines12030318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/12/2024] Open
Abstract
SARS-CoV-2 virus, the causative agent of COVID-19, has produced the largest pandemic in the 21st century, becoming a very serious health problem worldwide. To prevent COVID-19 disease and infection, a large number of vaccines have been developed and approved in record time, including new vaccines based on mRNA encapsulated in lipid nanoparticles. While mRNA-based vaccines have proven to be safe and effective, they are more expensive to produce compared to conventional vaccines. A special type of mRNA vaccine is based on self-amplifying RNA (saRNA) derived from the genome of RNA viruses, mainly alphaviruses. These saRNAs encode a viral replicase in addition to the antigen, usually the SARS-CoV-2 spike protein. The replicase can amplify the saRNA in transfected cells, potentially reducing the amount of RNA needed for vaccination and promoting interferon I responses that can enhance adaptive immunity. Preclinical studies with saRNA-based COVID-19 vaccines in diverse animal models have demonstrated the induction of robust protective immune responses, similar to conventional mRNA but at lower doses. Initial clinical trials have confirmed the safety and immunogenicity of saRNA-based vaccines in individuals that had previously received authorized COVID-19 vaccines. These findings have led to the recent approval of two of these vaccines by the national drug agencies of India and Japan, underscoring the promising potential of this technology.
Collapse
Affiliation(s)
- Noelia Silva-Pilipich
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Uxue Beloki
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Laura Salaberry
- Facultad de Ingeniería, Universidad ORT Uruguay, Montevideo 11100, Uruguay;
- Nanogrow Biotech, Montevideo 11500, Uruguay
| | - Cristian Smerdou
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| |
Collapse
|
4
|
Zhang HQ, Zhang QY, Yuan ZM, Zhang B. The potential epidemic threat of Ebola virus and the development of a preventive vaccine. JOURNAL OF BIOSAFETY AND BIOSECURITY 2023; 5:67-78. [DOI: 10.1016/j.jobb.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
5
|
Lundstrom K. Application of DNA Replicons in Gene Therapy and Vaccine Development. Pharmaceutics 2023; 15:pharmaceutics15030947. [PMID: 36986808 PMCID: PMC10054396 DOI: 10.3390/pharmaceutics15030947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
DNA-based gene therapy and vaccine development has received plenty of attention lately. DNA replicons based on self-replicating RNA viruses such as alphaviruses and flaviviruses have been of particular interest due to the amplification of RNA transcripts leading to enhanced transgene expression in transfected host cells. Moreover, significantly reduced doses of DNA replicons compared to conventional DNA plasmids can elicit equivalent immune responses. DNA replicons have been evaluated in preclinical animal models for cancer immunotherapy and for vaccines against infectious diseases and various cancers. Strong immune responses and tumor regression have been obtained in rodent tumor models. Immunization with DNA replicons has provided robust immune responses and protection against challenges with pathogens and tumor cells. DNA replicon-based COVID-19 vaccines have shown positive results in preclinical animal models.
Collapse
|
6
|
Krähling V, Erbar S, Kupke A, Nogueira SS, Walzer KC, Berger H, Dietzel E, Halwe S, Rohde C, Sauerhering L, Aragão-Santiago L, Moreno Herrero J, Witzel S, Haas H, Becker S, Sahin U. Self-amplifying RNA vaccine protects mice against lethal Ebola virus infection. Mol Ther 2023; 31:374-386. [PMID: 36303436 PMCID: PMC9931551 DOI: 10.1016/j.ymthe.2022.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022] Open
Abstract
Emerging and re-emerging viruses, such as Zaire Ebola virus (EBOV), pose a global threat and require immediate countermeasures, including the rapid development of effective vaccines that are easy to manufacture. Synthetic self-amplifying RNAs (saRNAs) attend to these needs, being safe and strong immune stimulators that can be inexpensively produced in large quantities, using cell-free systems and good manufacturing practice. Here, the first goal was to develop and optimize an anti-EBOV saRNA-based vaccine in terms of its antigen composition and route of administration. Vaccinating mice with saRNAs expressing the EBOV glycoprotein (GP) alone or in combination with the nucleoprotein (NP) elicited antigen-specific immune responses. GP-specific antibodies showed neutralizing activity against EBOV. Strong CD4+ T cell response against NP and GP and CD8+ T cell response against NP were detected by ELISpot assays. Intramuscular vaccination with saRNAs conferred better immune response than intradermal. Finally, mice vaccinated in a prime-boost regimen with saRNAs encoding both GP and NP or with GP alone survived an EBOV infection. In addition, a single dose of GP and NP saRNAs was also protective against fatal EBOV infection. Overall, saRNAs expressing viral antigens represent a promising vaccine platform.
Collapse
Affiliation(s)
- Verena Krähling
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | | | - Alexandra Kupke
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | | | | | | | - Erik Dietzel
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Sandro Halwe
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | | | | | - Sonja Witzel
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstraße 12, 55131 Mainz, Germany
| | - Heinrich Haas
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany.
| | - Ugur Sahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| |
Collapse
|
7
|
Liu Y, Sun B, Pan J, Feng Y, Ye W, Xu J, Lan M, Sun H, Zhang X, Sun Y, Yang S, Shi J, Zhang F, Cheng L, Jiang D, Yang K. Construction and evaluation of DNA vaccine encoding Ebola virus glycoprotein fused with lysosome-associated membrane protein. Antiviral Res 2021; 193:105141. [PMID: 34274417 DOI: 10.1016/j.antiviral.2021.105141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/20/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Ebola virus (EBOV) of the genus Ebolavirus belongs to the family Filoviridae, which cause disease in both humans and non-human primates. Zaire Ebola virus accounts for the highest fatality rate, reaching 90%. Considering that EBOV has a high infection and fatality rate, the development of a highly effective vaccine has become a top public health priority. Glycoprotein (GP) plays a critical role during infection and protective immune responses. Herein, we developed an EBOV GP recombinant DNA vaccine that targets the major histocompatibility complex (MHC) class II compartment by fusing with lysosomal-associated membrane protein 1 (LAMP1). Through lysosome trafficking and antigen presentation transferring, the LAMP1 targeting strategy successfully improved both humoral and cellular EBOV-GP-specific immune responses. After three consecutive immunizations, the serum antibody titers, especially the neutralizing activity of mice immunized with the pVAX-LAMP/GPEBO vaccine were significantly higher than those of the other groups. Antigen-specific T cells showed positive activity against three dominant peptides, EAAVSHLTTLATIST, IGEWAFWETKKNLTR, and ELRTFSILNRKAIDF, with high affinity for MHC class II molecules predicted by IEDB-recommended. Preliminary safety observation denied histological alterations. DNA vaccine candidate pVAX-LAMP/GPEBO shows promise against Ebola epidemic and further evaluation is guaranteed.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- BALB 3T3 Cells
- Ebola Vaccines/administration & dosage
- Ebola Vaccines/adverse effects
- Ebola Vaccines/genetics
- Ebola Vaccines/immunology
- Ebolavirus/genetics
- Ebolavirus/immunology
- Female
- Glycoproteins/genetics
- Glycoproteins/immunology
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Lysosomal Membrane Proteins/genetics
- Lysosomal Membrane Proteins/immunology
- Mice
- Neutralization Tests
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/adverse effects
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Yang Liu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Baozeng Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Jingyu Pan
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Yuancai Feng
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Wei Ye
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Jiahao Xu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Mingfu Lan
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Hao Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Xiyang Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Yuanjie Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Shuya Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Jingqi Shi
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Fanglin Zhang
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Linfeng Cheng
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China.
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 86-710032, PR China.
| |
Collapse
|
8
|
Ebola Virus Disease, Diagnostics and Therapeutics: Where is the Consensus in Over Three Decades of Clinical Research? SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Lundstrom K. Impact of a Plasmid DNA-Based Alphavirus Vaccine on Immunization Efficiency. Methods Mol Biol 2021; 2197:33-47. [PMID: 32827131 DOI: 10.1007/978-1-0716-0872-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Alphavirus vectors have been engineered for high-level gene expression relying originally on replication-deficient recombinant particles, more recently designed for plasmid DNA-based administration. As alphavirus-based DNA vectors encode the alphavirus RNA replicon genes, enhanced transgene expression in comparison to conventional DNA plasmids is achieved. Immunization studies with alphavirus-based DNA plasmids have elicited specific antibody production, have generated tumor regression and protection against challenges with infectious agents and tumor cells in various animal models. A limited number of clinical trials have been conducted with alphavirus DNA vectors. Compared to conventional plasmid DNA-based immunization, alphavirus DNA vectors required 1000-fold less DNA to elicit similar immune responses in rodents.
Collapse
|
10
|
Chen Y, Yang Z, Dong Y, Chen Y. Recombinant PAL/PilE/FlaA DNA vaccine provides protective immunity against Legionella pneumophila in BALB/c mice. BMC Biotechnol 2020; 20:28. [PMID: 32423439 PMCID: PMC7236329 DOI: 10.1186/s12896-020-00620-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background Legionella pneumophila (L.pneumophila), a Gram-negative small microorganism, causes hospital-acquired pneumonia especially in immunocompromised patients. Vaccination may be an effective method for preventing L.pneumophila infection. Therefore, it is necessary to develop a better vaccine against this disease. In this study, we developed a recombinant peptidoglycan-associated lipoprotein (PAL)/type IV pilin (PilE)/lagellin (FlaA) DNA vaccine and evaluated its immunogenicity and efficacy to protect against L.pneumophila infection. Results According to the results, the expression of PAL, PilE, FlaA proteins and PAL/PilE/FlaA fusion protein in 293 cells was confirmed. Immunization with PAL/PilE/FlaA DNA vaccine resulted in highest IgG titer and strongest cytotoxic T-lymphocyte (CTL) response. Furthermore, the histopathological changes in lung tissues of mice challenged with a lethal dose of L.pneumophila were alleviated by PAL/PilE/FlaA DNA vaccine immunization. The production of T-helper-1 (Th1) cytokines (IFNγ, TGF-α, and IL-12), and Th2 cytokines (IL-4 and IL-10) were promoted in PAL/PilE/FlaA DNA vaccine group. Finally, immunization with PAL/PilE/FlaA vaccine raised the survival rate of mice to 100% after challenging with a lethal dose of L.pneumophila for 10 consecutive days. Conclusions Our study suggests that the newly developed PAL/PilE/FlaA DNA vaccine stimulates strong humoral and cellular immune responses and may be a potential intervention on L.pneumophila infection.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China
| | - Zehui Yang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China
| | - Ying Dong
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China
| | - Yu Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
11
|
Iraqi M, Edri A, Greenshpan Y, Kundu K, Bolel P, Cahana A, Ottolenghi A, Gazit R, Lobel L, Braiman A, Porgador A. N-Glycans Mediate the Ebola Virus-GP1 Shielding of Ligands to Immune Receptors and Immune Evasion. Front Cell Infect Microbiol 2020; 10:48. [PMID: 32211339 PMCID: PMC7068452 DOI: 10.3389/fcimb.2020.00048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
The Ebola Virus (EBOV) glycoprotein (GP) sterically shields cell-membrane ligands to immune receptors such as human leukocyte antigen class-1 (HLA-I) and MHC class I polypeptide-related sequence A (MICA), thus mediating immunity evasion. It was suggested that the abundant N-glycosylation of the EBOV-GP is involved in this steric shielding. We aimed to characterize (i) the GP N-glycosylation sites contributing to the shielding, and (ii) the effect of mutating these sites on immune subversion by the EBOV-GP. The two highly glycosylated domains of GP are the mucin-like domain (MLD) and the glycan cap domain (GCD) with three and six N-glycosylation sites, respectively. We mutated the N-glycosylation sites either in MLD or in GCD or in both domains. We showed that the glycosylation sites in both the MLD and GCD domains contribute to the steric shielding. This was shown for the steric shielding of either HLA-I or MICA. We then employed the fluorescence resonance energy transfer (FRET) method to measure the effect of N-glycosylation site removal on the distance in the cell membrane between the EBOV-GP and HLA-I (HLA.A*0201 allele). We recorded high FRET values for the interaction of CFP-fused HLA.A*0201 and YFP-fused EBOV-GP, demonstrating the very close distance (<10 nm) between these two proteins on the cell membrane of GP-expressing cells. The co-localization of HLA-I and Ebola GP was unaffected by the disruption of steric shielding, as the removal of N-glycosylation sites on Ebola GP revealed similar FRET values with HLA-I. However, these mutations directed to N-glycosylation sites had restored immune cell function otherwise impaired due to steric shielding over immune cell ligands by WT Ebola GP. Overall, we showed that the GP-mediated steric shielding aimed to impair immune function is facilitated by the N-glycans protruding from its MLD and GCD domains, but these N-glycans are not controlling the close distance between GP and its shielded proteins.
Collapse
Affiliation(s)
- Muhammed Iraqi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Yariv Greenshpan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Kiran Kundu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Priyanka Bolel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Avishag Cahana
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Leslie Lobel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
12
|
Xu S, Jiao C, Jin H, Li W, Li E, Cao Z, Shi Z, Yan F, Zhang S, He H, Chi H, Feng N, Zhao Y, Gao Y, Yang S, Wang J, Wang H, Xia X. A Novel Bacterium-Like Particle-Based Vaccine Displaying the SUDV Glycoprotein Induces Potent Humoral and Cellular Immune Responses in Mice. Viruses 2019; 11:v11121149. [PMID: 31835785 PMCID: PMC6950126 DOI: 10.3390/v11121149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/01/2019] [Accepted: 12/07/2019] [Indexed: 01/24/2023] Open
Abstract
Sudan virus (SUDV) causes severe lethal hemorrhagic fever in humans and nonhuman primates. The most effective and economical way to protect against Sudan ebolavirus disease is prophylactic vaccination. However, there are no licensed vaccines to prevent SUDV infections. In this study, a bacterium-like particle (BLP)-based vaccine displaying the extracellular domain of the SUDV glycoprotein (eGP) was developed based on a gram-positive enhancer matrix-protein anchor (GEM-PA) surface display system. Expression of the recombinant GEM-displayed eGP (eGP-PA-GEM) was verified by Western blotting and immunofluorescence assays. The SUDV BLPs (SBLPs), which were mixed with Montanide ISA 201VG plus Poly (I:C) combined adjuvant, could induce high SUDV GP-specific IgG titers of up to 1:40,960 and robust virus-neutralizing antibody titers reached 1:460. The SBLP also elicited T-helper 1 (Th1) and T-helper 2 (Th2) cell-mediated immunity. These data indicate that the SBLP subunit vaccine has the potential to be developed into a promising candidate vaccine against SUDV infections.
Collapse
Affiliation(s)
- Shengnan Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.X.); (Z.S.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
| | - Cuicui Jiao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
| | - Hongli Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zengguo Cao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhikang Shi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.X.); (Z.S.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
| | - Shengnan Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hongbin He
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China;
| | - Hang Chi
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Jianzhong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.X.); (Z.S.)
- Correspondence: (J.W.); (X.X.)
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
- Correspondence: (J.W.); (X.X.)
| |
Collapse
|
13
|
Khrustalev VV, Khrustaleva TA, Stojarov AN, Sharma N, Bhaskar B, Giri R. The history of mutational pressure changes during the evolution of adeno-associated viruses: A message to gene therapy and DNA-vaccine vectors designers. INFECTION GENETICS AND EVOLUTION 2019; 77:104100. [PMID: 31678645 DOI: 10.1016/j.meegid.2019.104100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/25/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
The use of virus-associated vectors for gene therapy and vaccination have emerged as safe and effective delivery system. Like all other genetic materials, these vehicles are also prone to spontaneous mutations. To understand what types of nucleotide mutations are expected in the vector, one needs to know distinct characteristics of mutational process in the corresponding virus. In this study we analyzed mutational pressure directions along the length of the genomes of all types of primate adeno-associated viruses (AAV) that are frequently used in gene therapy or DNA-vaccines. We observed clear evidences of transcription-associated mutational pressure in AAV: nucleotide usage biases are changing drastically after each of the three promoters: the higher the rate of transcription, the stronger the bias towards GC to AT mutations. Moreover, the usage of G decreased at the lower transcription rate (after P19 promoter) than the usage of C (after P40 promoter). Since nucleotide usage biases are retrospective indices, we created a scenario of changes in transcriptional map during the AAV evolution. Current mutational pressure directions are different for AAV types, while all of them demonstrate high rates of T to C transitions in the second long ORF. Since transcription rate and cell tropism are the main factors determining the preferable direction of nucleotide mutations in AAV, mutational pressure should be checked experimentally in DNA vectors before their final design with the aim to make the transferred gene more stable against those mutations.
Collapse
Affiliation(s)
| | - Tatyana Aleksandrovna Khrustaleva
- Biochemical Group of Multidisciplinary Diagnostic Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | | | - Nitin Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India
| | - Bhaskar Bhaskar
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India; BioX Centre, Indian Institute of Technology Mandi, VPO Kamand, 175005, India
| |
Collapse
|
14
|
Suschak JJ, Schmaljohn CS. Vaccines against Ebola virus and Marburg virus: recent advances and promising candidates. Hum Vaccin Immunother 2019; 15:2359-2377. [PMID: 31589088 DOI: 10.1080/21645515.2019.1651140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The filoviruses Ebola virus and Marburg virus are among the most dangerous pathogens in the world. Both viruses cause viral hemorrhagic fever, with case fatality rates of up to 90%. Historically, filovirus outbreaks had been relatively small, with only a few hundred cases reported. However, the recent West African Ebola virus outbreak underscored the threat that filoviruses pose. The three year-long outbreak resulted in 28,646 Ebola virus infections and 11,323 deaths. The lack of Food and Drug Administration (FDA) licensed vaccines and antiviral drugs hindered early efforts to contain the outbreak. In response, the global scientific community has spurred the advanced development of many filovirus vaccine candidates. Novel vaccine platforms, such as viral vectors and DNA vaccines, have emerged, leading to the investigation of candidate vaccines that have demonstrated protective efficacy in small animal and nonhuman primate studies. Here, we will discuss several of these vaccine platforms with a particular focus on approaches that have advanced into clinical development.
Collapse
Affiliation(s)
- John J Suschak
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | - Connie S Schmaljohn
- Headquarters Division, U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
15
|
Lundstrom K. Plasmid DNA-based Alphavirus Vaccines. Vaccines (Basel) 2019; 7:vaccines7010029. [PMID: 30857255 PMCID: PMC6466081 DOI: 10.3390/vaccines7010029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/28/2022] Open
Abstract
Alphaviruses have been engineered as vectors for high-level transgene expression. Originally, alphavirus-based vectors were applied as recombinant replication-deficient particles, subjected to expression studies in mammalian and non-mammalian cell lines, primary cell cultures, and in vivo. However, vector engineering has expanded the application range to plasmid DNA-based delivery and expression. Immunization studies with DNA-based alphavirus vectors have demonstrated tumor regression and protection against challenges with infectious agents and tumor cells in animal tumor models. The presence of the RNA replicon genes responsible for extensive RNA replication in the RNA/DNA layered alphavirus vectors provides superior transgene expression in comparison to conventional plasmid DNA-based expression. Immunization with alphavirus DNA vectors revealed that 1000-fold less DNA was required to elicit similar immune responses compared to conventional plasmid DNA. In addition to DNA-based delivery, immunization with recombinant alphavirus particles and RNA replicons has demonstrated efficacy in providing protection against lethal challenges by infectious agents and tumor cells.
Collapse
|
16
|
Su QD, He SH, Yi Y, Qiu F, Lu XX, Jia ZY, Meng QL, Fan XT, Tian RG, Audet J, Qiu XG, Bi SL. Intranasal vaccination with ebola virus GP amino acids 258-601 protects mice against lethal challenge. Vaccine 2018; 36:6053-6060. [PMID: 30195490 DOI: 10.1016/j.vaccine.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/06/2018] [Accepted: 09/01/2018] [Indexed: 02/06/2023]
Abstract
Ebola virus (EBOV) disease (EVD) leads to lethal hemorrhagic fever with a case fatality rate as high as 90%, thus posing a serious global public health concern. However, while several vaccines based on the EBOV glycoprotein have been confirmed to be effective in animal experiments, no licensed vaccines or effective treatments have been approved since the first outbreak was reported in 1976. In this study, we prepared the extracellular domain of the EBOV GP protein (designated as N20) by prokaryotic expression and purification via chromatography. Using CTA1-DD (designated as H45) as a mucosal adjuvant, we evaluated the immunogenicity of N20 by intranasal administration and the associated protective efficacy against mouse-adapted EBOV challenge in mice. We found that intranasal vaccination with H45-adjuvanted N20 could stimulate humoral immunity, as supported by GP-specific IgG titers; Th1 cellular immunity, based on IgG subclasses and IFN-γ/IL-4 secreting cells; and mucosal immunity, based on the presence of anti-EBOV IgA in vaginal lavages. We also confirmed that the vaccine could completely protect mice against a lethal mouse-adapted EBOV (MA-EBOV) challenge with few side effects (based on weight loss). In comparison, mice that received N20 or H45 alone succumbed to lethal MA-EBOV challenge. Therefore, mucosal vaccination with H45-adjuvanted N20 represents a potential vaccine candidate for the prevention of EBOV in an effective, safe, and convenient manner.
Collapse
Affiliation(s)
- Qiu-Dong Su
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Shi-Hua He
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yao Yi
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Feng Qiu
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Xue-Xin Lu
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Zhi-Yuan Jia
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Qing-Ling Meng
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Xue-Ting Fan
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Rui-Guang Tian
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Jonathan Audet
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Xiang-Guo Qiu
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Depatment of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Sheng-Li Bi
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China.
| |
Collapse
|
17
|
Öhlund P, García-Arriaza J, Zusinaite E, Szurgot I, Männik A, Kraus A, Ustav M, Merits A, Esteban M, Liljeström P, Ljungberg K. DNA-launched RNA replicon vaccines induce potent anti-Ebolavirus immune responses that can be further improved by a recombinant MVA boost. Sci Rep 2018; 8:12459. [PMID: 30127450 PMCID: PMC6102224 DOI: 10.1038/s41598-018-31003-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022] Open
Abstract
There are currently no licensed therapeutic treatment or preventive vaccines against Ebolavirus disease, and the 2013-2016 West African outbreak of Ebolavirus disease spread rapidly and resulted in almost 30,000 cases and more than 11,000 deaths. However, the devastating outbreak has spurred the development of novel Ebolavirus vaccines. Here, we demonstrate that alphavirus-based DNA-launched self-replicating RNA replicon vaccines (DREP) encoding either the glycoprotein (GP) gene or co-expressing the GP and VP40 genes of Sudan or Zaire Ebolavirus are immunogenic in mice inducing both binding and neutralizing antibodies as well as CD8 T cell responses. In addition, antibodies were cross-reactive against another Ebolavirus, although the specificity was higher for the vaccination antigen. DREP vaccines were more immunogenic than recombinant MVA vaccines expressing the same Ebolavirus antigens. However, a DREP prime followed by an MVA boost immunization regimen improved vaccine immunogenicity as compared to DREP and MVA homologous prime-boost immunizations. Moreover, we show that a bivalent approach targeting both Sudan and Zaire Ebolavirus can be employed without significant loss of immunity. This opens for further investigation of a pan-Ebolavirus or even a pan-filovirus vaccine.
Collapse
Affiliation(s)
- Pontus Öhlund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical Science and Veterinary Public Health, Virology Unit, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Inga Szurgot
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andres Männik
- Icosagen Cell Factory OÜ, Ülenurme vald, Tartumaa, Estonia
| | - Annette Kraus
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Mart Ustav
- Icosagen Cell Factory OÜ, Ülenurme vald, Tartumaa, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Dhama K, Karthik K, Khandia R, Chakraborty S, Munjal A, Latheef SK, Kumar D, Ramakrishnan MA, Malik YS, Singh R, Malik SVS, Singh RK, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs, and Therapies to Counter Ebola Virus. Front Immunol 2018; 9:1803. [PMID: 30147687 PMCID: PMC6095993 DOI: 10.3389/fimmu.2018.01803] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/23/2018] [Indexed: 01/10/2023] Open
Abstract
Ebola virus (EBOV), a member of the family Filoviridae, is responsible for causing Ebola virus disease (EVD) (formerly named Ebola hemorrhagic fever). This is a severe, often fatal illness with mortality rates varying from 50 to 90% in humans. Although the virus and associated disease has been recognized since 1976, it was only when the recent outbreak of EBOV in 2014-2016 highlighted the danger and global impact of this virus, necessitating the need for coming up with the effective vaccines and drugs to counter its pandemic threat. Albeit no commercial vaccine is available so far against EBOV, a few vaccine candidates are under evaluation and clinical trials to assess their prophylactic efficacy. These include recombinant viral vector (recombinant vesicular stomatitis virus vector, chimpanzee adenovirus type 3-vector, and modified vaccinia Ankara virus), Ebola virus-like particles, virus-like replicon particles, DNA, and plant-based vaccines. Due to improvement in the field of genomics and proteomics, epitope-targeted vaccines have gained top priority. Correspondingly, several therapies have also been developed, including immunoglobulins against specific viral structures small cell-penetrating antibody fragments that target intracellular EBOV proteins. Small interfering RNAs and oligomer-mediated inhibition have also been verified for EVD treatment. Other treatment options include viral entry inhibitors, transfusion of convalescent blood/serum, neutralizing antibodies, and gene expression inhibitors. Repurposed drugs, which have proven safety profiles, can be adapted after high-throughput screening for efficacy and potency for EVD treatment. Herbal and other natural products are also being explored for EVD treatment. Further studies to better understand the pathogenesis and antigenic structures of the virus can help in developing an effective vaccine and identifying appropriate antiviral targets. This review presents the recent advances in designing and developing vaccines, drugs, and therapies to counter the EBOV threat.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Shyma K. Latheef
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Satya Veer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|