1
|
Zuo J, Xiao P, Heino J, Tan F, Soininen J, Chen H, Yang J. Eutrophication increases the similarity of cyanobacterial community features in lakes and reservoirs. WATER RESEARCH 2024; 250:120977. [PMID: 38128306 DOI: 10.1016/j.watres.2023.120977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/05/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Eutrophication of inland waters is a mostly anthropogenic phenomenon impacting aquatic biodiversity worldwide, and might change biotic community structure and ecosystem functions. However, little is known about the patterns of cyanobacterial community variations and changes both on alpha and beta diversity levels in response to eutrophication. Here, we investigated cyanobacterial communities sampled at 140 sites from 59 lakes and reservoirs along a strong eutrophication gradient in eastern China through using CPC-IGS and 16S rRNA gene amplicon sequencing. We found that taxonomic diversity increased, but phylogenetic diversity decreased significantly along the eutrophication gradient. Both niche width and niche overlap of cyanobacteria significantly decreased from low- to high-nutrient waterbodies. Cyanobacterial community distance-decay relationship became weaker from mesotrophic to hypereutrophic waterbodies, while ecological uniqueness (i.e., local contributions to beta diversity) tended to increase in high-nutrient waterbodies. Latitude and longitude were more important in shaping cyanobacterial community structure than other environmental variables. These findings suggest that eutrophication affects alpha and beta diversity of cyanobacterial communities, leading to increasingly similar community structures in lakes and reservoirs with a higher level of eutrophication. Our work highlights how cyanobacterial communities respond to anthropogenic eutrophication and calls for an urgent need to develop conservation and management strategies to control lake eutrophication and protect freshwater biodiversity.
Collapse
Affiliation(s)
- Jun Zuo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| | - Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 8000, Oulu FI-90014, Finland
| | - Fengjiao Tan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki FI-00014, Finland
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
2
|
Xiao X, Peng Y, Zhang W, Yang X, Zhang Z, Ren B, Zhu G, Zhou S. Current status and prospects of algal bloom early warning technologies: A Review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119510. [PMID: 37951110 DOI: 10.1016/j.jenvman.2023.119510] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
In recent years, frequent occurrences of algal blooms due to environmental changes have posed significant threats to the environment and human health. This paper analyzes the reasons of algal bloom from the perspective of environmental factors such as nutrients, temperature, light, hydrodynamics factors and others. Various commonly used algal bloom monitoring methods are discussed, including traditional field monitoring methods, remote sensing techniques, molecular biology-based monitoring techniques, and sensor-based real-time monitoring techniques. The advantages and limitations of each method are summarized. Existing algal bloom prediction models, including traditional models and machine learning (ML) models, are introduced. Support Vector Machine (SVM), deep learning (DL), and other ML models are discussed in detail, along with their strengths and weaknesses. Finally, this paper provides an outlook on the future development of algal bloom warning techniques, proposing to combine various monitoring methods and prediction models to establish a multi-level and multi-perspective algal bloom monitoring system, further improving the accuracy and timeliness of early warning, and providing more effective safeguards for environmental protection and human health.
Collapse
Affiliation(s)
- Xiang Xiao
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yazhou Peng
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Xiuzhen Yang
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Zhi Zhang
- Laboratory of Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, China
| | - Bozhi Ren
- School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Guocheng Zhu
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Saijun Zhou
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
3
|
Chong JWR, Khoo KS, Chew KW, Ting HY, Show PL. Trends in digital image processing of isolated microalgae by incorporating classification algorithm. Biotechnol Adv 2023; 63:108095. [PMID: 36608745 DOI: 10.1016/j.biotechadv.2023.108095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/17/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Identification of microalgae species is of importance due to the uprising of harmful algae blooms affecting both the aquatic habitat and human health. Despite this occurence, microalgae have been identified as a green biomass and alternative source due to its promising bioactive compounds accumulation that play a significant role in many industrial applications. Recently, microalgae species identification has been conducted through DNA analysis and various microscopy techniques such as light, scanning electron, transmission electron, and atomic force -microscopy. The aforementioned procedures have encouraged researchers to consider alternate ways due to limitations such as costly validation, requiring skilled taxonomists, prolonged analysis, and low accuracy. This review highlights the potential innovations in digital microscopy with the incorporation of both hardware and software that can produce a reliable recognition, detection, enumeration, and real-time acquisition of microalgae species. Several steps such as image acquisition, processing, feature extraction, and selection are discussed, for the purpose of generating high image quality by removing unwanted artifacts and noise from the background. These steps of identification of microalgae species is performed by reliable image classification through machine learning as well as deep learning algorithms such as artificial neural networks, support vector machines, and convolutional neural networks. Overall, this review provides comprehensive insights into numerous possibilities of microalgae image identification, image pre-processing, and machine learning techniques to address the challenges in developing a robust digital classification tool for the future.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Huong-Yong Ting
- Drone Research and Application Centre, University of Technology Sarawak, No.1, Jalan Universiti, 96000 Sibu, Sarawak, Malaysia
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| |
Collapse
|
4
|
Cai H, McLimans CJ, Beyer JE, Krumholz LR, Hambright KD. Microcystis pangenome reveals cryptic diversity within and across morphospecies. SCIENCE ADVANCES 2023; 9:eadd3783. [PMID: 36638170 PMCID: PMC9839332 DOI: 10.1126/sciadv.add3783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Microcystis, a common harmful algal bloom (HAB) taxon, threatens water supplies and human health, yet species delimitation is contentious in this taxon, leading to challenges in research and management of this threat. Historical and common morphology-based classifications recognize multiple morphospecies, most with variable and diverse ecologies, while DNA sequence-based classifications indicate a single species with multiple ecotypes. To better delimit Microcystis species, we conducted a pangenome analysis of 122 genomes. Core- and non-core gene phylogenetic analyses placed 113 genomes into 23 monophyletic clusters containing at least two genomes. Overall, genome-related indices revealed that Microcystis contains at least 16 putative genospecies. Fifteen genospecies included at least one Microcystis aeruginosa morphospecies, and 10 genospecies included two or more morphospecies. This classification system will enable consistent taxonomic identification of Microcystis and thereby aid in resolving some of the complexities and controversies that have long characterized eco-evolutionary research and management of this important HAB taxon.
Collapse
Affiliation(s)
- Haiyuan Cai
- Plankton Ecology and Limnology Laboratory, Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Christopher J. McLimans
- Plankton Ecology and Limnology Laboratory, Department of Biology, University of Oklahoma, Norman, OK, USA
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Jessica E. Beyer
- Plankton Ecology and Limnology Laboratory, Department of Biology, University of Oklahoma, Norman, OK, USA
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Lee R. Krumholz
- Department of Microbiology and Plant Biology and Institute for Energy and the Environment, University of Oklahoma, Norman, OK, USA
| | - K. David Hambright
- Plankton Ecology and Limnology Laboratory, Department of Biology, University of Oklahoma, Norman, OK, USA
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, USA
- Geographical Ecology, Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
5
|
Yan F, Xia L, Xu L, Deng L, Jin G. A comparative study to determine the association of gut microbiome with schizophrenia in Zhejiang, China. BMC Psychiatry 2022; 22:731. [PMID: 36424595 PMCID: PMC9694861 DOI: 10.1186/s12888-022-04328-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND With the rapid progress of high-throughput sequencing technology, characterization of schizophrenia (SZ) with underlying probing of the gut microbiome can explore pathogenic mechanisms, estimate disease risk, and allow customization of therapeutic and prophylactic modalities. In this study, we compared the differences in gut microbial diversity and composition between 50 SZ subjects and 50 healthy matched subjects in Zhejiang, China via targeted next-generation sequencing (16S rRNA amplicon). RESULTS Accordingly, the alpha diversity indices (observed species index, Shannon index, and Simpson index) of the gut microbiome in the healthy control group were higher than those in the SZ group. Additionally, principal coordinate analysis and non-metric multidimensional scaling of beta diversity revealed that patients with SZ clustered more tightly than healthy controls. At the phylum level, we found that the abundance of Bacteroidetes and Proteobacteria in the SZ group was significantly increased. At the genus level, the relative abundances of Prevotella, Parabacteroides, and Sutterella were significantly higher, whereas the abundances of Faecalibacterium, Blautia, Lachnospira, Clostridium, Ruminococcus, and Coprococcus were lower than those in the healthy control group. Further analyses revealed that Succinivibrio, Megasphaera, and Nesterenkonia may serve as potential biomarkers for distinguishing patients with SZ from those in the control cohort. CONCLUSIONS This study profiled differences in gut microbiome diversity, taxonomic composition, and function between SZ and healthy cohorts, and the insights from this research could be used to develop targeted next-generation sequencing-based diagnoses for SZ.
Collapse
Affiliation(s)
- Fuyang Yan
- The Second People’s Hospital of Lishui, Lishui, 323000 China
| | - Lehong Xia
- The Second People’s Hospital of Lishui, Lishui, 323000 China
| | - Li Xu
- The Second People’s Hospital of Lishui, Lishui, 323000 China
| | - Liyun Deng
- The Second People’s Hospital of Lishui, Lishui, 323000 China
| | - Guolin Jin
- The Second People's Hospital of Lishui, Lishui, 323000, China.
| |
Collapse
|
6
|
Cao H, Xu D, Zhang T, Ren Q, Xiang L, Ning C, Zhang Y, Gao R. Comprehensive and functional analyses reveal the genomic diversity and potential toxicity of Microcystis. HARMFUL ALGAE 2022; 113:102186. [PMID: 35287927 DOI: 10.1016/j.hal.2022.102186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Microcystis is a cyanobacteria that is widely distributed across the world. It has attracted great attention because it produces the hepatotoxin microcystin (MC) that can inhibit eukaryotic protein phosphatases and pose a great risk to animal and human health. Due to the high diversity of morphospecies and genomes, it is still difficult to classify Microcystis species. In this study, we investigated the pangenome of 23 Microcystis strains to detect the genetic diversity and evolutionary dynamics. Microcystis revealed an open pangenome containing 22,009 gene families and exhibited different functional constraints. The core-genome phylogenetic analysis accurately differentiated the toxic and nontoxic strains and could be used as a taxonomic standard at the genetic level. We also investigated the functions of HGT events, of which were mostly conferred from cyanobacteria and closely related species. In order to detect the potential toxicity of Microcystis, we searched and characterized MC biosynthetic gene clusters and other secondary metabolite gene clusters. Our work provides insights into the genetic diversity, evolutionary dynamics, and potential toxicity of Microcystis, which could benefit the species classification and development of new methods for drinking water quality control and management of bloom formation in the future.
Collapse
Affiliation(s)
- Hengchun Cao
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, China
| | - Da Xu
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, China
| | - Tiantian Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, China
| | - Qiufang Ren
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, China
| | - Li Xiang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, China
| | - Chunhui Ning
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, China.
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China.
| |
Collapse
|
7
|
Qiu P, Chen Y, Li C, Huo D, Bi Y, Wang J, Li Y, Li R, Yu G. Using molecular detection for the diversity and occurrence of cyanobacteria and 2-methylisoborneol-producing cyanobacteria in an eutrophicated reservoir in northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117772. [PMID: 34273769 DOI: 10.1016/j.envpol.2021.117772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Aquatic ecosystems and drinking water supply systems worldwide are increasingly affected by taste and odor episodes. In this study, molecular approaches including next-generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR) were used to study the diversity and dynamics of cyanobacteria and 2-methylisoborneol (2-MIB)-producing cyanobacteria in Yuqiao Reservoir, a eutrophicated drinking water reservoir in Tianjin city, northern China. NGS revealed that the entire cyanobacterial community consisted of 16 genera, with Planktothrix (28.8%), Pseudanabaena (18.4%), Cylindrospermosis (7.8%), and Microcystis (7.6%) being the dominant genera, while microscopic examination identified only eight cyanobacterial genera. NGS of the 2-MIB synthesis gene revealed that Pseudanabaena and Planktothricoides were the main 2-MIB producers, with Pseudanabaena being dominant. This finding demonstrated that NGS can identify 2-MIB producers quickly and accurately and it can thus play an important role in the practical monitoring of aquatic ecology. The qPCR test showed 2-MIB synthesis gene with 4.27 × 106 copies/L to 2.24 × 109copies/L occurring at the three sampling sites. The mic gene copy number increased before the 2-MIB concentration increased, indicating that forecasting role in dealing with the 2-MIB concentration by gene copy number. Predicting 2-MIB by qPCR in the field must be verified with additional studies. The combination of NGS and qPCR can be an even more comprehensive method to provide early warning information to managers of reservoirs and water utilities facing taste and odor incidents. This is the first amplicon NGS dataset based on 2-MIB gene to study the diversity and dynamics of 2-MIB-producing cyanobacteria.
Collapse
Affiliation(s)
- Pengfei Qiu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road 7, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road 7, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chenjie Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road 7, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Da Huo
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road 7, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yonghong Bi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road 7, Wuhan, 430072, China
| | - Jianbo Wang
- Tianjin Hydraulic Research Institute, Tianjin, 300061, China
| | - Yunchuang Li
- China Construction First Group Corporation Limited, Tianjin, 300061, China
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road 7, Wuhan, 430072, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325039, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road 7, Wuhan, 430072, China.
| |
Collapse
|
8
|
Huo D, Gan N, Geng R, Cao Q, Song L, Yu G, Li R. Cyanobacterial blooms in China: diversity, distribution, and cyanotoxins. HARMFUL ALGAE 2021; 109:102106. [PMID: 34815019 DOI: 10.1016/j.hal.2021.102106] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial blooms, which refer to the massive growth of harmful cyanobacteria, have altered the global freshwater ecosystems during the past decades. China has the largest population in the world, and it is suffering from the harmful effect of water eutrophication and cyanobacterial blooms along with rapid development of the economy and society. Research on cyanobacterial blooms and cyanotoxins in China have been overwhelmingly enhanced and emphasized during the past decades. In the present review, the research on cyanobacterial blooms in China is generally introduced, including the history of cyanobacterial bloom studies, the diversity of the bloom-forming cyanobacteria species (BFCS), and cyanotoxin studies in China. Most studies have focused on Microcystis, its blooms, and microcystins. Newly emerging blooms with the dominance of non-Microcystis BFCS have been gradually expanding to wide regions in China. Understanding the basic features of these non-Microcystis BFCS and their blooms, including their diversity, occurrence, physio-ecology, and harmful metabolites, will provide direction on future studies of cyanobacterial blooms in China.
Collapse
Affiliation(s)
- Da Huo
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Nanqin Gan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Ruozhen Geng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 400049, PR China
| | - Qi Cao
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Lirong Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325000, PR China.
| |
Collapse
|
9
|
Wood SA, Puddick J, Hawes I, Steiner K, Dietrich DR, Hamilton DP. Variability in microcystin quotas during a Microcystis bloom in a eutrophic lake. PLoS One 2021; 16:e0254967. [PMID: 34288957 PMCID: PMC8294494 DOI: 10.1371/journal.pone.0254967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/08/2021] [Indexed: 11/18/2022] Open
Abstract
Microcystis is a bloom-forming genus of cyanobacteria with some genotypes that produce highly toxic microcystin hepatotoxins. In waterbodies where biological and physical factors are relatively homogenous, toxin quotas (the average amount of toxin per cell), at a single point in time, are expected to be relatively constant. In this study we challenged this assumption by investigating the spatial distribution of microcystin quotas at a single point in time on two separate occasions in a lake with a major Microcystis bloom. Microcystis cell concentrations varied widely across the lake on both sampling occasions (730- and 137-fold) together with microcystin quotas (148- and 362-fold). Cell concentrations and microcystin quotas were strongly positively correlated (R2 = 0.89, P < 0.001, n = 28; R2 = 0.67, P < 0.001, n = 25). Analysis of Microcystis strains using high-throughput sequencing of the 16S-23S rRNA intergenic spacer region showed no relationship between microcystin quota and the relative abundance of specific sequences. Collectively, the results of this study indicate an association between microcystin production and cell density that magnifies the potential for bloom toxicity at elevated cell concentrations.
Collapse
Affiliation(s)
| | | | - Ian Hawes
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | | | | | - David P. Hamilton
- Australian Rivers Institute, Griffith University, Brisbane, Australia
| |
Collapse
|
10
|
Phosphorus Release from Sediments in a Raw Water Reservoir with Reduced Allochthonous Input. WATER 2021. [DOI: 10.3390/w13141983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Following successful abatement of external nutrient sources, one must shift the focus to the role of phosphorus (P) release from sediment. This enables us to better assess the causes for sustained eutrophication in freshwater ecosystem and how to deal with this challenge. In this study, five sediment cores from the shallow YuQiao Reservoir in northern China were investigated. The reservoir serves as the main raw water source for tap water services of Tianjin megacity, with a population of 15.6 million. Sediment characteristics and P fractions were determined in order to assess the role of the sediments as the P source to the water body. The total P content (TP) in sediments was similar to what was found in catchment soils, although the P sorption capacity of sediments was 7–10 times greater than for the catchment soils. Isotherm adsorption experiments documented that when P concentration in overlying water drops below 0.032–0.070 mg L−1, depending on the site, the sediment contributes with a positive flux of P to the overlying water. Adsorbed P at different depths in the sediments is found to be released with a similarly rapid release rate during the first 20 h, though chronic release was observed mainly from the top 30 cm of the sediment core. Dredging the top 30 cm layer of the sediments will decrease the level of soluble reactive phosphate in the water being sustained by the sediment flux of P.
Collapse
|
11
|
Pineda-Mendoza RM, Briones-Roblero CI, Gonzalez-Escobedo R, Rivera-Orduña FN, Martínez-Jerónimo F, Zúñiga G. Seasonal changes in the bacterial community structure of three eutrophicated urban lakes in Mexico city, with emphasis on Microcystis spp. Toxicon 2020; 179:8-20. [PMID: 32142716 DOI: 10.1016/j.toxicon.2020.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/08/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
Artificial urban lakes commonly have physicochemical conditions that contribute to rapid anthropogenic eutrophication and development of cyanobacterial blooms. Microcystis is the dominat genus in most freshwater bodies and is one of the main producter of microcystins. Using 454-pyrosequencing we characterized the bacterial community, with special emphasis on Microcystis, in three recreational urban lakes from Mexico City in both wet and dry seasons. We also evaluated some physicochemical parameters that might influence the presence of Microcystis blooms, and we associated the relative abundance of heterotrophic and autotrophic bacterial communities with their possible metabolic capacities. A total of 14 phyla, 18 classes, 39 orders, 53 families and 48 bacterial genera were identified in both seasons in the three urban lakes. Cyanobacteria had the highest relative abundance followed by Proteobacteria and Actinobacteria. Microcystis was the dominant taxon followed by Arthrospira, Planktothrix and Synechococcus. We also found heterotrophic bacteria associated with the blooms, such as Rhodobacter, Pseudomonas, Sphingomonas and, Porphyrobacter. The highest richness, diversity and dominance were registered in the bacterial community of the Virgilio Uribe Olympic Rowing-Canoeing Track in both seasons, and the lowest values were found in the Chapultepec Lake. The canonical correspondence analysis showed that dissolved oxygen and NO3-N concentrations might explain the presence of Microcystis blooms. The metabolic prediction indicated that these communities are involved in photosynthesis, oxidative phosphorylation, methane metabolism, carbon fixation, and nitrogen and sulfur metabolism. The lakes studied had a high prevalence of Microcystis, but average values of microcystins did not exceed the maximum permissible level established by the United States Environmental Protection Agency for recreational and cultural activities. The presence of cyanobacteria and microcystins at low to moderate concentrations in the three lakes could result in ecosystem disruption and increase animal and human health risks.
Collapse
Affiliation(s)
- Rosa María Pineda-Mendoza
- Departamento de Zoología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico
| | - Carlos Iván Briones-Roblero
- Departamento de Zoología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico
| | - Roman Gonzalez-Escobedo
- Departamento de Zoología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico
| | - Flor N Rivera-Orduña
- Departamento de Microbiología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico
| | - Fernando Martínez-Jerónimo
- Departamento de Zoología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico
| | - Gerardo Zúñiga
- Departamento de Zoología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Ciudad de México, Mexico.
| |
Collapse
|
12
|
Duan Z, Tan X, Parajuli K, Zhang D, Wang Y. Characterization of Microcystis morphotypes: Implications for colony formation and intraspecific variation. HARMFUL ALGAE 2019; 90:101701. [PMID: 31806163 DOI: 10.1016/j.hal.2019.101701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Groundworks on Microcystis colony formation and morphological variation are critical to understanding the whole eco-cycle of Microcystis blooms. In this study, we tested the cell adhesion effect, an important pathway for colony formation, among Microcystis colonies of different morphotypes, and examined the potential linkage between cell properties and morphological plasticity. Results showed that cell adhesion significantly contributed to the aggregation of Microcystis colonies, but such adhesion only occurred in colonies belonging to the same morphotype. This suggests that Microcystis cannot form large colonies through a direct adhesion effect among different morphotypes, possibly due to substantial differences in the chemical structures and compositions of their extracellular polymeric substances (EPS). Cell functional features also varied substantially with morphotypes, implying high intraspecific variation in competitive and defensive strategies of Microcystis. Our results offer new insights into colony formation of Microcystis and substantiate the importance of fundamental chemical characteristics of EPS in determining the morphological plasticity.
Collapse
Affiliation(s)
- Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands.
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Keshab Parajuli
- School of Population and Global Health, Faculty of Medicine, Denistry and Health Sciences, The University of Melbourne, VIC 3010, Australia
| | - Danfeng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|