1
|
Qi Y, Du S, Li W, Qiu X, Zhou F, Bai L, Zhang B, Mi Z, Qian W, Li L, Zhao X, Li Y. Sanye tablet regulates gut microbiota and bile acid metabolism to attenuate hepatic steatosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119514. [PMID: 39971018 DOI: 10.1016/j.jep.2025.119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanye Tablet (SYT), a patent traditional Chinese prescription, is commonly used in treating type 2 diabetes mellitus and hyperlipidemia. Both clinical and animal studies suggest that SYT effectively regulates lipid metabolism. However, its mode of action on hepatic steatosis has yet to be fully elucidated. AIM OF STUDY This study investigates the lipid-regulating effects and underlying mechanism of SYT in high-fat diet (HFD)-induced hepatic steatosis mice. MATERIAL AND METHODS The inhibitory effects of SYT on developing hepatic steatosis were investigated in HFD-fed C57BL/6N mice. Biochemical markers, including total cholesterol (TC) and triglycerides (TG), were measured using specific kits. Hepatic histological alterations were determined by Hematoxylin and Eosin (H&E) and Oil Red O staining. Hepatic, fecal, and systemic bile acids (BAs) profiles were detected by UPLC-MS. mRNA and protein levels of BAs synthesis-related enzymes and critical nodes of farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF15)/fibroblast growth factor receptor 4 (FGFR4) signaling were detected. Fecal microbial composition was analyzed by 16S rRNA gene sequencing and the antimicrobial activity of SYT was further evaluated in vitro. RESULTS SYT alleviated HFD-induced hepatic steatosis by decreasing TG and TC levels, relieving hepatocyte ballooning, and promoting hepatic BAs synthesis. Moreover, SYT significantly increased the levels of taurine-conjugated BAs in the liver and feces, which in turn inhibited the FXR/FGF15/FGFR4 signaling. Consequently, the hepatic BAs synthesis-related enzyme expression was promoted to reduce lipid accumulation. Notably, SYT remodeled the gut microbiota composition of HFD-fed mice, especially inhibiting the growth of bile salt hydrolase (BSH)-producing bacteria, such as Lactobacillus murinus, Lactobacillus johnsonii, and Enterococcus faecalis. CONCLUSION The findings illustrated that SYT prevented hepatic steatosis by improving hepatic lipid accumulation, which is reflected in modulating the gut-liver axis. SYT corrects BAs profile, restores perturbed FXR/FGF15/FGFR4 signaling and promotes hepatic BAs synthesis, which is associated with modulation on certain BSH-producing bacteria.
Collapse
Affiliation(s)
- Yulin Qi
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Siqi Du
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenwen Li
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xianzhe Qiu
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fengjie Zhou
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Liding Bai
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Boli Zhang
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhuoxin Mi
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Weiqiang Qian
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Li
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xin Zhao
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuhong Li
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
2
|
Moroni F, Naya-Català F, Hafez AI, Domingo-Bretón R, Soriano B, Llorens C, Pérez-Sánchez J. Beyond Microbial Variability: Disclosing the Functional Redundancy of the Core Gut Microbiota of Farmed Gilthead Sea Bream from a Bayesian Network Perspective. Microorganisms 2025; 13:198. [PMID: 39858966 PMCID: PMC11767429 DOI: 10.3390/microorganisms13010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The significant microbiota variability represents a key feature that makes the full comprehension of the functional interaction between microbiota and the host an ongoing challenge. To overcome this limitation, in this study, fish intestinal microbiota was analyzed through a meta-analysis, identifying the core microbiota and constructing stochastic Bayesian network (BN) models with SAMBA. We combined three experiments performed with gilthead sea bream juveniles of the same hatchery batch, reared at the same season/location, and fed with diets enriched on processed animal proteins (PAP) and other alternative ingredients (NOPAP-PP, NOPAP-SCP). Microbiota data analysis disclosed a high individual taxonomic variability, a high functional homogeneity within trials and highlighted the importance of the core microbiota, clustering PAP and NOPAP fish microbiota composition. For both NOPAP and PAP BNs, >99% of the microbiota population were modelled, with a significant proportion of bacteria (55-69%) directly connected with the diet variable. Functional enrichment identified 11 relevant pathways expressed by different taxa across the different BNs, confirming the high metabolic plasticity and taxonomic heterogeneity. Altogether, these results reinforce the comprehension of the functional bacteria-host interactions and in the near future, allow the use of microbiota as a species-specific growth and welfare benchmark of livestock animals, and farmed fish in particular.
Collapse
Affiliation(s)
- Federico Moroni
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Spain; (F.N.-C.); (R.D.-B.)
| | - Fernando Naya-Català
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Spain; (F.N.-C.); (R.D.-B.)
| | - Ahmed Ibrahem Hafez
- Biotechvana, Parc Científic Universitat de València, 46980 Paterna, Spain; (A.I.H.); (B.S.); (C.L.)
| | - Ricardo Domingo-Bretón
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Spain; (F.N.-C.); (R.D.-B.)
| | - Beatriz Soriano
- Biotechvana, Parc Científic Universitat de València, 46980 Paterna, Spain; (A.I.H.); (B.S.); (C.L.)
| | - Carlos Llorens
- Biotechvana, Parc Científic Universitat de València, 46980 Paterna, Spain; (A.I.H.); (B.S.); (C.L.)
| | - Jaume Pérez-Sánchez
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Spain; (F.N.-C.); (R.D.-B.)
| |
Collapse
|
3
|
Shijing T, Yinping P, Qiong Y, Deshuai L, Liancai Z, Jun T, Shaoyong L, Bochu W. Synthesis of TUDCA from chicken bile: immobilized dual-enzymatic system for producing artificial bear bile substitute. Microb Cell Fact 2024; 23:326. [PMID: 39623449 PMCID: PMC11613824 DOI: 10.1186/s12934-024-02592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Bear bile, a valuable animal-derived medicinal substance primarily composed of tauroursodeoxycholic acid (TUDCA), is widely distributed in the medicinal market across various countries due to its significant therapeutic potential. Given the extreme cruelty involved in bear bile extraction, researchers are focusing on developing synthetic bear bile powder as a more humane alternative. This review presents an industrially practical and environmentally friendly process for producing an artificial substitute for bear bile powder using inexpensive and readily available chicken bile powder through an immobilized 7α-,7β-HSDH dual-enzymatic syste. Current technology has facilitated the industrial production of TUDCA from Tauodeoxycholic acid (TCDCA) using chicken bile powder. The review begins by examining the chemical composition, structure, and properties of bear bile, followed by an outline of the pharmacological mechanisms and manufacturing methods of TUDCA, covering chemical synthesis and biotransformation methods, and a discussion on their respective advantages and disadvantages. Finally, the process of converting chicken bile powder into bear bile powder using an immobilized 7α-Hydroxysteroid Dehydrogenases(7α-HSDH) with 7β- Hydroxysteroid Dehydrogenases (7β-HSDH) dual-enzyme system is thoroughly explained. The main objective of this review is to propose a comprehensive strategy for the complete synthesis of artificial bear bile from chicken bile within a controlled laboratory setting.
Collapse
Affiliation(s)
- Tang Shijing
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Pan Yinping
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Yang Qiong
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Lou Deshuai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Zhu Liancai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China.
| | - Tan Jun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Liu Shaoyong
- Shanghai Kaibao Pharmaceutical Co., LTD., Shanghai, 200030, People's Republic of China
| | - Wang Bochu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
4
|
Liu H, Wei M, Tan B, Dong X, Xie S. The Supplementation of Berberine in High-Carbohydrate Diets Improves Glucose Metabolism of Tilapia ( Oreochromis niloticus) via Transcriptome, Bile Acid Synthesis Gene Expression and Intestinal Flora. Animals (Basel) 2024; 14:1239. [PMID: 38672387 PMCID: PMC11047455 DOI: 10.3390/ani14081239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Berberine is an alkaloid used to treat diabetes. This experiment aimed to investigate the effects of berberine supplementation in high-carbohydrate diets on the growth performance, glucose metabolism, bile acid synthesis, liver transcriptome, and intestinal flora of Nile tilapia. The six dietary groups were the C group with 29% carbohydrate, the H group with 44% carbohydrate, and the HB1-HB4 groups supplemented with 25, 50, 75, and 100 mg/kg of berberine in group H. The results of the 8-week trial showed that compared to group C, the abundance of Bacteroidetes was increased in group HB2 (p < 0.05). The cholesterol-7α-hydroxylase (CYP7A1) and sterol-27-hydroxylase (CYP27A1) activities were decreased and the expression of FXR was increased in group HB4 (p < 0.05). The pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase (PEPCK) activities was decreased in group HB4 (p < 0.05). The liver transcriptome suggests that berberine affects carbohydrate metabolic pathways and primary bile acid synthesis pathways. In summary, berberine affects the glucose metabolism in tilapia by altering the intestinal flora structure, enriching differentially expressed genes (DEGs) in the bile acid pathway to stimulate bile acid production so that it promotes glycolysis and inhibits gluconeogenesis. Therefore, 100 mg/kg of berberine supplementation in high-carbohydrate diets is beneficial to tilapia.
Collapse
Affiliation(s)
- Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (M.W.); (X.D.); (S.X.)
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Menglin Wei
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (M.W.); (X.D.); (S.X.)
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (M.W.); (X.D.); (S.X.)
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (M.W.); (X.D.); (S.X.)
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (M.W.); (X.D.); (S.X.)
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| |
Collapse
|
5
|
Yin Q, Yu J, Li J, Zhang T, Wang T, Zhu Y, Zhang J, Yao J. Enhancing milk quality and modulating rectal microbiota of dairy goats in starch-rich diet: the role of bile acid supplementation. J Anim Sci Biotechnol 2024; 15:7. [PMID: 38247003 PMCID: PMC10801996 DOI: 10.1186/s40104-023-00957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/29/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Diets rich in starch have been shown to increase a risk of reducing milk fat content in dairy goats. While bile acids (BAs) have been used as a lipid emulsifier in monogastric and aquatic animals, their effect on ruminants is not well understood. This study aimed to investigate the impact of BAs supplementation on various aspects of dairy goat physiology, including milk composition, rumen fermentation, gut microbiota, and BA metabolism. RESULTS We randomly divided eighteen healthy primiparity lactating dairy goats (days in milk = 100 ± 6 d) into two groups and supplemented them with 0 or 4 g/d of BAs undergoing 5 weeks of feeding on a starch-rich diet. The results showed that BAs supplementation positively influenced milk yield and improved the quality of fatty acids in goat milk. BAs supplementation led to a reduction in saturated fatty acids (C16:0) and an increase in monounsaturated fatty acids (cis-9 C18:1), resulting in a healthier milk fatty acid profile. We observed a significant increase in plasma total bile acid concentration while the proportion of rumen short-chain fatty acids was not affected. Furthermore, BAs supplementation induced significant changes in the composition of the gut microbiota, favoring the enrichment of specific bacterial groups and altering the balance of microbial populations. Correlation analysis revealed associations between specific bacterial groups (Bacillus and Christensenellaceae R-7 group) and BA types, suggesting a role for the gut microbiota in BA metabolism. Functional prediction analysis revealed notable changes in pathways associated with lipid metabolism, suggesting that BAs supplementation has the potential to modulate lipid-related processes. CONCLUSION These findings highlight the potential benefits of BAs supplementation in enhancing milk production, improving milk quality, and influencing metabolic pathways in dairy goats. Further research is warranted to elucidate the underlying mechanisms and explore the broader implications of these findings.
Collapse
Affiliation(s)
- Qingyan Yin
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Junjian Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Jiaxiao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Tianci Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Tianyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Yufei Zhu
- DAYU Bioengineering (Xi'an) Industrial Development Research Institute, Xi'an, 710000, Shaanxi, P.R. China
| | - Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China.
| |
Collapse
|
6
|
Zhou L, Zhang CL, Jiang K, Cheng HY, Xiong WW, Zhu JX. Therapeutic Potential of Danyankang Capsule in High-Fat Diet-Induced Cholelithiasis and Its Impact on Liver FXR Signaling and Gut Microbiota. Biol Pharm Bull 2024; 47:680-691. [PMID: 38522942 DOI: 10.1248/bpb.b24-00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cholelithiasis, commonly known as gallstones, represents a prevalent hepatobiliary disorder. This study aimed to elucidate the therapeutic role and mechanism of Danyankang capsulein treating cholelithiasis induced by a high-fat diet in C57BL/6 mice. The therapeutical potential of Danyankang was assessed through biochemical analyses, histopathological examinations, protein detection, and 16S rDNA sequencing. A high-fat diet resulted in cholelithiasis manifestation in mice, with discernable abnormal serum biochemical indices and disrupted biliary cholesterol homeostasis. Danyankang treatment notably ameliorated liver inflammation symptoms and rectified serum and liver biochemical abnormalities. Concurrently, it addressed biliary imbalances. Elevated expressions of toll-like receptor 4 (TLR4), nuclear factor-kappaB (NF-κB)/pNF-κB, HMGCR, CYP7A1, and CYP8B1 observed at the inception of cholelithiasis, were notably reduced upon Danyankang administration. Furthermore, 16S rDNA analysis revealed a decline in species number and diversity of the intestinal flora in cholelithiasis-treated mice, while the decline was reversed with Danyankang treatment. Danyankang capsules reduced the abundance of Verrucomicrobiota and increased the abundance of Actinobacteriota and Proteobacteria. In conclusion, the present study demonstrates that Danyankang exerts potent therapeutic efficacy against high-fat diet-induced cholelithiasis. This beneficial outcome is potentially linked to the inhibition of the TLR4/pNF-κB and SHP/CYP7A1/CYP8B1 signaling pathways, as well as the enhancement of intestinal flora species abundance.
Collapse
Affiliation(s)
- Lin Zhou
- Research Center of Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine
| | - Chu-Ling Zhang
- Research Center of Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine
| | - Kun Jiang
- Guizhou Bailing Enterprise Group Pharmaceutical Co., Ltd
| | - Hong-Yu Cheng
- College of Humanities, Jiangxi University of Chinese Medicine
| | - Wen-Wen Xiong
- Medical Clinic, Jiangxi University of Chinese Medicine
| | - Ji-Xiao Zhu
- Research Center of Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine
| |
Collapse
|
7
|
Tongsri P, Cheng G, Huang Z, Wang Z, Dong F, Wu Z, Kong W, Yu Y, Xu Z. Mucosal immunity and microbiota change in the rainbow trout (Oncorhynchus mykiss) gills after being challenged with infectious hematopoietic necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109166. [PMID: 37844853 DOI: 10.1016/j.fsi.2023.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/19/2023] [Accepted: 10/14/2023] [Indexed: 10/18/2023]
Abstract
Respiratory structures are crucial for vertebrate survival, as they serve not only to perform gas-exchange processes but also as entry points for opportunistic pathogens. Previous studies have demonstrated that fish contain gill mucosal-associated lymphoid tissue, and harbor a large number of commensal bacteria on their surface and contribute to maintaining fish health. However, by far, very limited information is known regarding the effects of viral infection on gill mucosal immunity and microbiota homeostasis. In this study, we conducted an infection model by bath with infectious hematopoietic necrosis virus (IHNV) and revealed a 27 % mortality rate among rainbow trout in the first two weeks after infection. Moreover, we found that diseased fish with the highest IHNV loads in gills exhibiting severe damage, as well as increased goblet cell counts in both primary lamellae (PL) and secondary lamellae (SL). Additionally, RT-qPCR and RNA-seq analyses revealed that IHNV infection induced a strong innate and adaptive antiviral immune responses. Interestingly, an antibacterial immune response was also observed, suggesting that a secondary bacterial infection occurred in trout gills after viral infection. Furthermore, 16S rRNA analysis of trout gills revealed a profound dysbiosis marked by a loss of beneficial taxa and expansion of pathobionts following IHNV infection. Overall, our finding demonstrates that IHNV infection induces significant changes of the microbial community in the fish respiratory surface, thus triggering local antiviral and bacterial mucosal immunity.
Collapse
Affiliation(s)
- Pajongjit Tongsri
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaofeng Cheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zixuan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fen Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhengben Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhen Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
8
|
Delatour T, Theurillat X, Eriksen B, Mujahid C, Mottier P. Inadequate definition of the limit of quantification used for the analysis of perfluoroalkyl substances in food by liquid chromatography-tandem mass spectrometry may compromise the reliability of the data requested by the European regulation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9507. [PMID: 36951453 DOI: 10.1002/rcm.9507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a widespread technology used for the quantitative determination of per- and polyfluoroalkyl substances (PFAS) in foodstuff. Specifically, LC-MS/MS offers an attractive performance by combining the sensitivity and selectivity required by the European Union for testing perfluorooctane sulfonic acid, perfluorooctanoic acid, perfluorononanoic acid, and perfluorohexane sulfonic acid with maximum limits of quantification (LOQ) in the sub-parts-per-billion (μg/kg) or the parts-per-trillion (ng/kg) domains. In this article, we highlight the important diversity in LOQ definitions applied in LC-MS/MS methods described in the literature that raise concerns about the capability of some of those to generate reliable data requested by the European regulation. Here, we point out the risk of false response or misquantification if the criteria for assessing LOQ suffer from a lack of rigor. We emphasize the need to use PFAS-free samples spiked with the analyte(s) of interest and the application of identification criteria according to official documents for a sound measurement of the LOQ.
Collapse
Affiliation(s)
- Thierry Delatour
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | | | - Bjørn Eriksen
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | - Claudia Mujahid
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | - Pascal Mottier
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| |
Collapse
|
9
|
Shi Q, Yuan X, Zeng Y, Wang J, Zhang Y, Xue C, Li L. Crosstalk between Gut Microbiota and Bile Acids in Cholestatic Liver Disease. Nutrients 2023; 15:nu15102411. [PMID: 37242293 DOI: 10.3390/nu15102411] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/13/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Emerging evidence suggests the complex interactions between gut microbiota and bile acids, which are crucial end products of cholesterol metabolism. Cholestatic liver disease is characterized by dysfunction of bile production, secretion, and excretion, as well as excessive accumulation of potentially toxic bile acids. Given the importance of bile acid homeostasis, the complex mechanism of the bile acid-microbial network in cholestatic liver disease requires a thorough understanding. It is urgent to summarize the recent research progress in this field. In this review, we highlight how gut microbiota regulates bile acid metabolism, how bile acid pool shapes the bacterial community, and how their interactions contribute to the pathogenesis of cholestatic liver disease. These advances might provide a novel perspective for the development of potential therapeutic strategies that target the bile acid pathway.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
10
|
He XY, Zhu YX, Jiang XQ, Zhu FR, Luo YJ, Qiu YY, Huang ZR, Liu B, Zeng F. Probiotics-Fermented Grifola frondosa Total Active Components: Better Antioxidation and Microflora Regulation for Alleviating Alcoholic Liver Damage in Mice. Int J Mol Sci 2023; 24:ijms24021406. [PMID: 36674921 PMCID: PMC9862899 DOI: 10.3390/ijms24021406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Alcoholic liver damage is caused by long-term drinking, and it further develops into alcoholic liver diseases. In this study, we prepared a probiotic fermentation product of Grifola frondosa total active components (PFGF) by fermentation with Lactobacillus acidophilus, Lactobacillus rhamnosus, and Pediococcus acidilactici. After fermentation, the total sugar and protein content in the PFGF significantly decreased, while the lactic acid level and antioxidant activity of the PFGF increased. Afterward, we investigated the alleviating effect of PFGF on alcoholic liver injury in alcohol-fed mice. The results showed that the PFGF intervention reduced the necrosis of the liver cells, attenuated the inflammation of the liver and intestines, restored the liver function, increased the antioxidant factors of the liver, and maintained the cecum tissue barrier. Additionally, the results of the 16S rRNA sequencing analysis indicated that the PFGF intervention increased the relative abundance of beneficial bacteria, such as Lactobacillus, Ruminococcaceae, Parabacteroids, Parasutterella, and Alistipes, to attenuate intestinal inflammation. These results demonstrate that PFGF can potentially alleviate alcoholic liver damage by restoring the intestinal barrier and regulating the intestinal microflora.
Collapse
Affiliation(s)
- Xiao-Yu He
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Yu-Xian Zhu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao-Qin Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fu-Rong Zhu
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Yi-Juan Luo
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Yu-Yang Qiu
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Zi-Rui Huang
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Liu
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (B.L.); (F.Z.)
| | - Feng Zeng
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Centre of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (B.L.); (F.Z.)
| |
Collapse
|
11
|
Ruiz A, Andree KB, Furones D, Holhorea PG, Calduch-Giner JÀ, Viñas M, Pérez-Sánchez J, Gisbert E. Modulation of gut microbiota and intestinal immune response in gilthead seabream ( Sparus aurata) by dietary bile salt supplementation. Front Microbiol 2023; 14:1123716. [PMID: 37168118 PMCID: PMC10166234 DOI: 10.3389/fmicb.2023.1123716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Given their role in lipid digestion, feed supplementation with bile salts could be an economic and sustainable solution to alterations in adiposity and intestinal inflammation generated by some strategies currently used in aquaculture. An important part of the metabolism of bile salts takes place in the intestine, where the microbiota transforms them into more toxic forms. Consequently, we aimed to evaluate the gut immune response and microbial populations in gilthead seabream (Sparus aurata) fed a diet supplemented with a blend of bile salts with proven background as a regulator of lipid metabolism and fat content. After the 90-day feeding trial, a differential modulation of the microbiota between the anterior and posterior intestine was observed. While in the anterior intestine the relative abundance of Desulfobacterota doubled, in the posterior intestine, the levels of Firmicutes increased and Proteobacteria, Actinobacteriota, and Campylobacterota were reduced when supplementing the diet with bile salts. Even so, only in the anterior intestine, there was a decrease in estimated richness (Chao1 and ACE indices) in presence of dietary bile salts. No significant differences were displayed in alpha (Shannon and Simpson indices) nor beta-diversity, showing that bile sales did not have a great impact on the intestinal microbiota. Regarding the gene expression profile in 2 h postprandial-fish, several changes were observed in the analyzed biomarkers of epithelial integrity, nutrient transport, mucus production, interleukins, cell markers, immunoglobulin production and pathogen recognition receptors. These results may indicate the development of an intestinal immune-protective status to tackle future threats. This work also suggests that this immune response is not only regulated by the presence of the dietary bile salts in the intestine, but also by the microbial populations that are in turn modulated by bile salts. After a fasting period of 2 days, the overall gene expression profile was stabilized with respect to fish fed the unsupplemented diet, indicating that the effect of bile salts was transient after short periods of fasting. On the balance, bile salts can be used as a dietary supplement to enhance S. aurata farming and production without compromising their intestinal health.
Collapse
Affiliation(s)
- Alberto Ruiz
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
- Ph.D. Program in Aquaculture, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Alberto Ruiz,
| | - Karl B. Andree
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| | - Dolors Furones
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| | - Paul G. Holhorea
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Castellón, Spain
| | - Josep À. Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Castellón, Spain
| | - Marc Viñas
- Sustainability in Biosystems, Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Torre Marimon, Barcelona, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Castellón, Spain
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| |
Collapse
|
12
|
Ringø E, Harikrishnan R, Soltani M, Ghosh K. The Effect of Gut Microbiota and Probiotics on Metabolism in Fish and Shrimp. Animals (Basel) 2022; 12:3016. [PMID: 36359140 PMCID: PMC9655696 DOI: 10.3390/ani12213016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
The present paper presents an overview of the effects of gut microbiota and probiotics on lipid-, carbohydrate-, protein- and amino acid metabolism in fish and shrimp. In probiotic fish studies, the zebrafish (Danio rerio) model is the most frequently used, and probiotic administration reveals the effect on glucose homeostasis, anti-lipidemic effects and increasing short-chain fatty acids, and increased expressions of genes related to carbohydrate metabolism and innate immunity, along with down-regulation of oxidative stress-related genes. Further, improved length of the intestinal villi and expression of nutrient transporters in fish owing to probiotics exposure have been documented. The present review will present an appraisal of the effect of intestinal microbiota and probiotic administration on the metabolism of nutrients and metabolites related to stress and immunity in diverse fish- and shrimp species. Furthermore, to give the reader satisfactory information on the topics discussed, some information from endothermic animals is also presented.
Collapse
Affiliation(s)
- Einar Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, 9019 Tromsø, Norway
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa’s College for Men, University of Madras, Kanchipuram 631 501, Tamil Nadu, India
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Koushik Ghosh
- Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713 104, West Bengal, India
| |
Collapse
|
13
|
Yang B, Huang S, Zhao G, Ma Q. Dietary supplementation of porcine bile acids improves laying performance, serum lipid metabolism and cecal microbiota in late-phase laying hens. ANIMAL NUTRITION 2022; 11:283-292. [PMID: 36263401 PMCID: PMC9576542 DOI: 10.1016/j.aninu.2022.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/23/2022]
Abstract
Due to the exceptional laying performance of hens, the demand on lipid metabolism and oxidation in vivo is vigorous, resulting in excessive lipid accumulation in late-phase hens, which lowers the production performance. Bile acids regulate lipid metabolism and gut microbiota in humans and animals. However, the effect of porcine bile acids on lipid metabolism and cecal microbiota in laying hens in the late phase is still unclear. A total of 360 healthy 45-week-old laying hens were chosen for a 24-week feeding trial, where 0, 30, 60 and 90 mg/kg porcine bile acids were added to a basal diet, respectively. The results showed that dietary supplementation of 60 mg/kg bile acids increased egg production and feed conversion (P < 0.05). Also, 60 and 90 mg/kg porcine bile acids reduced abdominal fat percentage and body weight (P < 0.05). The levels of serum total cholesterol, triglyceride, and low-density lipoprotein cholesterol of hens decreased (P < 0.05) in bile acids supplement groups. As for cecal microbiota, bile acids supplementation did not affect the alpha diversity of cecal microbiota at the genus level. Moreover, dietary supplementation of 90 mg/kg bile acids resulted in an increase in the abundance of beneficial bacteria in the cecum, such as Lactobacillus, Bifidobacterium and Turicibacter. The changes in the cecal microbiota caused by bile acids supplementation correlated with serum lipid indexes. According to KEGG pathway analysis, dietary supplementation of 60 and 90 mg/kg bile acids promoted structural transformation of the cecal microbiota to down-regulate steroid biosynthesis, up-regulate fatty acid degradation and up-regulate unsaturated fatty acid biosynthesis. Meanwhile, bile acids bio-isomerization function of cecal microbiota was enhanced in 60 and 90 mg/kg bile acids treatment, and the short-chain fatty acid metabolism was also affected. In conclusion, the present study revealed dietary supplementation of porcine bile acids enriched probiotics in the gut and improved serum lipid metabolism of laying hens. These findings demonstrate that porcine bile acids can be a potential gut beneficial promoter for late-phase laying hens.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoxian Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Corresponding author.
| |
Collapse
|
14
|
Ocansey DKW, Zhang Z, Xu X, Liu L, Amoah S, Chen X, Wang B, Zhang X, Mao F. Mesenchymal stem cell-derived exosome mitigates colitis via the modulation of the gut metagenomics-metabolomics-farnesoid X receptor axis. Biomater Sci 2022; 10:4822-4836. [PMID: 35858469 DOI: 10.1039/d2bm00559j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammatory bowel disease (IBD) is associated with chronic gut immune dysregulation and altered microbiome and metabolite composition. Bile acids and their receptors such as the farnesoid X receptor (FXR) form a crucial component of the chemical communications between the intestinal microbiota and the host immune system; thus, alterations in the bile acid pool affect intestinal homeostasis and exacerbate IBD. Considering the promising therapeutic effect of mesenchymal stem cell-derived exosomes (MSC-Ex) on IBD, this study assessed the regulatory effect of MSC-Ex on the gut bacteria composition and diversity, metabolites, and their related functions and pathways, as well as key inflammatory and anti-inflammatory cytokines during the mitigation of IBD. The dextran sulfate sodium (DSS)-induced IBD model of BABL/C mice was established, consisting of three groups: control, DSS, and MSC-Ex groups. Post administration of MSC-Ex, the effect was evaluated via hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), qRT-PCR, and western blotting. Mice fecal samples were obtained for metagenomics and metabolomics analysis via 16S rRNA gene sequencing and UHPLC/Q-TOF-MS respectively. Results showed that MSC-Ex mitigated colitis by significantly relieving the macroscopic and microscopic features of inflammation, modulating the gut metagenomics and metabolomics profile, and increasing colonic FXR. MSC-Ex improved the gut microbiota composition by significantly restoring the structure of OTUs and colitis-induced reduction in α-diversity, increasing the abundance of 'healthy' bacteria, decreasing disease-associated bacteria, decreasing detrimental functions, and enhancing other vital cellular functions. For the first time, we demonstrate that MSC-Ex mitigates colitis in mice by modulating the gut metagenomics-metabolomics-FXR axis, thus providing potential therapeutic targets.
Collapse
Affiliation(s)
- Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China. .,Directorate of University Health Services, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Zhiyu Zhang
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, Jiangsu, P.R. China
| | - Xinwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China.
| | - Lianqin Liu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China.
| | - Samuel Amoah
- Directorate of University Health Services, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Xiang Chen
- Zhenjiang Institute for Drug and Food Control, Zhenjiang 212001, Jiangsu, P.R. China
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China.
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China.
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China.
| |
Collapse
|
15
|
Romano N, Fischer H, Rubio-Benito MM, Overtuf K, Sinha AK, Kumar V. Different dietary combinations of high/low starch and fat with or without bile acid supplementation on growth, liver histopathology, gene expression and fatty acid composition of largemouth bass, Micropterus salmoides. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111157. [PMID: 35093523 DOI: 10.1016/j.cbpa.2022.111157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/15/2023]
Abstract
High dietary levels of fat and/or starch can lower the growth and cause extensive liver inflammation that is linked to mortalities in largemouth bass, Micropterus salmoides. However, bile acids (BA) may mitigate these adverse effects. In a 2 × 2 × 2 factorial feeding trial, M. salmoides juveniles were fed different combinations of dietary high (HF), low fat (LF), high (HS) or low starch (LS) levels with or without BA supplementations at 1% for 8 weeks. A total of 8 isonitrogenous diets were formulated to include, HF/LS, HF/HS, LF/HS, LF/LS, HF/LS-BA, HF/HS-BA, LF/HS-BA and LF/LS-BA. Survival, growth performance, feeding efficiency, whole-body proximate composition, muscle/liver fatty acid composition, hepatic expression of growth regulator (GH/IGF1 axis), lipid metabolism (fatty acid synthase 'FASN' and cholesterol 7 alpha-hydroxylase 'CYP7A1') and antioxidant capacity (superoxide dismutase 'SOD') genes as well as liver histopathology were assessed. Results showed that among diets without BA, there was no significant effect on growth or feeding efficiency, but when BA was included this led to more variable effects including significantly higher weight gain in the LF/HS-BA group compared to all others fed BA. The HF, HS or their combination led to extensive hepatic inflammation, but BA appeared to partially mitigate this in the LF/HS group (i.e. LF/HS-BA). No abnormal liver histopathology was observed in the LF/LS and LF/LS-BA treatments. Muscle 22:6n-3 was significantly higher in the HF/LS and HF/HS-BA groups compared to those fed the HF/HS or LF/LS diets. Dietary fat had a significant effect on the moisture, crude lipid, and caloric content of M. salmoides. Hepatic expression of IGF-I and CYP7A1 were differentially modulated under different treatments. Overall, these results show that BA can alleviate some liver inflammation caused by high dietary starch; however the LF/LS diets led to a better balance between growth performance and liver health.
Collapse
Affiliation(s)
- Nicholas Romano
- Aquaculture/Fisheries Center, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA.
| | - Hayden Fischer
- Aquaculture/Fisheries Center, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA
| | - Marina M Rubio-Benito
- Department of Animal, Veterinary and Food Sciences, College of Agricultural and Life Sciences University of Idaho, Moscow, ID 83843, USA
| | - Ken Overtuf
- ARS-USDA, Hagerman Fish Culture Experiment Station, Hagerman, ID 83332, USA
| | - Amit Kumar Sinha
- Aquaculture/Fisheries Center, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA
| | - Vikas Kumar
- Department of Animal, Veterinary and Food Sciences, College of Agricultural and Life Sciences University of Idaho, Moscow, ID 83843, USA; Hagerman Fish Culture Experiment Station, University of Idaho, Hagerman, ID 83332, USA
| |
Collapse
|
16
|
Zhang Y, Feng H, Liang XF, He S, Lan J, Li L. Dietary bile acids reduce liver lipid deposition via activating farnesoid X receptor, and improve gut health by regulating gut microbiota in Chinese perch (Siniperca chuatsi). FISH & SHELLFISH IMMUNOLOGY 2022; 121:265-275. [PMID: 35026410 DOI: 10.1016/j.fsi.2022.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/17/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study is to explore the effects of dietary bile acids (BAs) supplementation on lipid metabolism and gut health of Chinese perch (Siniperca chuatsi), and its possible mechanisms. Two isonitrogenous and isolipidic diets were formulated to supplement different levels of BAs (0 and 900 mg BAs kg-1 diet, respectively). All fish (Initial mean body weight: 171.29 ± 0.77g) were randomly divided into 2 groups (triplicate, 54 fish/group) and were fed with different experimental diets for 56 days, respectively. Dietary exogenous BAs supplementation at the concentration of 900 mg kg-1 significantly increased weight gain and survival rate, and decreased feed conversion ratio. BAs could inhibit lipid synthesis and promote lipid oxidation to reduce lipid deposition by activating farnesoid X receptor (FXR). Dietary BAs supplementation increased the abundance of Lactobacilli in Firmicutes, and the increase of Lactobacillus caused the increase of lactic acid level and the decrease of pH, which might be the reason for the gut villus length and gut wall high in this study. Dietary BAs supplementation increased the levels of catalase and superoxide dismutase and decreased the level of malondialdehyde in the gut and plasma, which might be contributed to the regulating the antioxidant stress phenotype of gut microbiota by the increased abundance of Firmicutes. Then it caused the increase of the globulin level in the plasma, meaning the enhancement of immune state. The increased immunity might also be thought to be responsible for increased survival rate. These results suggest dietary BAs reduce liver lipid deposition via activating FXR, and improve gut health by regulating gut microbiota in Chinese perch.
Collapse
Affiliation(s)
- Yanpeng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Hexiong Feng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jie Lan
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Ling Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
17
|
Tang Q, Li S, Fang C, Yu H. Evaluating the reparative effects and the mechanism of action of docosahexaenoic acid on azithromycin-induced lipid metabolism dysfunction. Food Chem Toxicol 2021; 159:112699. [PMID: 34838675 DOI: 10.1016/j.fct.2021.112699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023]
Abstract
To explore the reparative effects of DHA on the gut microbiome disturbance and dysfunctional lipid metabolism caused by long-term antibiotic therapy, it was tested on an azithromycin (AZI) mouse antibiotic model. Thirty specific-pathogen-free BALB/c mice (SPF grade, half male and half female) were randomly separated into three groups (n = 10, 5 male and 5 female): control group (CK), azithromycin natural recovery group (AZI) and DHA group (DHA). High-throughput sequencing and bioinformatics methods were used to analyze the gut microbiome. ELASE kits were used to measure blood lipid, lipids in the liver, and bile salt hydrolase (BSH) levels in feces. Gas chromatography and UPLC-MS/MS were employed to detect DHA and bile acids contents in liver, respectively. Real-time polymerase chain reaction (RT-PCR) was used to measure the expression of key enzymes involved in lipid metabolism. Long-term AZI treatment led to dyslipidemia, gut microbiome disturbance and anxious behaviors in the mouse model. DHA was found to significantly improve the dyslipidemia and anxiety-like behaviors induced by AZI. DHA had no effect on the structure of gut microbiome and bile acids contents but increased the content of the metabolic enzyme BSH in gut microbiota and normalized the expression of enzymes involved in lipid metabolism.
Collapse
Affiliation(s)
- Qian Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, China
| | - Shuangqing Li
- Department of General Practice, West China Hospital, Sichuan University, China
| | - Chengjie Fang
- College of Pharmaceutical Science, Zhejiang University of Technology, China
| | - Haining Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, China.
| |
Collapse
|
18
|
Li Y, Wang S, Hu Y, Cheng J, Cheng X, Cheng P, Cui Z. Dietary bile acid supplementation reveals beneficial effects on intestinal healthy status of tongue sole (Cynoglossus semiliaevis). FISH & SHELLFISH IMMUNOLOGY 2021; 116:52-60. [PMID: 34216786 DOI: 10.1016/j.fsi.2021.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/27/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to investigate the effects of dietary bile acids (BAs) on intestinal healthy status of tongue sole in terms of immunity, antioxidant status, digestive ability, mucosal barrier-related genes expression and microbiota. Three experimental diets were prepared with BA levels at 0 mg/kg (CT), 300 mg/kg (BA1) and 900 mg/kg (BA2) in a commercial basal diet. Each diet was fed to three replicates with 120 fish (10.87 ± 0.32 g) in each tank. After an 8-week feeding trial, growth parameters were significantly enhanced in both BAs supplementary groups (P < 0.05), and compared with CT group, survival rate in BA2 group was significantly improved (P < 0.05). Intestinal lysozyme activity and contents of immunoglobulin M and complement 3 were significantly increased in both BAs supplementary groups (P < 0.05), suggesting an enhancement effect on the non-specific immune response. BAs inclusion also significantly improved intestinal antioxidant capabilities by increasing antioxidase activities and decreasing malondialdehyde levels. In addition, compared with CT group, intestinal digestive ability was substantially enhanced as indicated by the significantly increased lipase activity in BA2 group (P < 0.05) and significantly increased amylase activity in BA1 and BA2 groups (P < 0.05). Coincidentally, BAs inclusion significantly upregulated the relative expression of intestinal mucosal barrier-related genes (P < 0.05). Further, dietary BAs distinctly remodeled intestinal microbiota by decreased the abundance of some potential pathogenic bacteria. In conclusion, dietary BAs supplementation is an effective way to improve the intestinal healthy status of tongue sole.
Collapse
Affiliation(s)
- Yangzhen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Shengpeng Wang
- Dezhou Key Laboratory for Applied Bile Acid Research, Shandong Longchang Animal Health Product CO., Ltd., Dezhou 251100, China.
| | - Yuanri Hu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jiayu Cheng
- Engineering and Technology Center for Flatfish Aquaculture of Tangshan, Tangshan Weizhuo Aquaculture Co., Ltd., Tangshan 063202, China
| | - Xiangming Cheng
- Engineering and Technology Center for Flatfish Aquaculture of Tangshan, Tangshan Weizhuo Aquaculture Co., Ltd., Tangshan 063202, China
| | - Peng Cheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhongkai Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
19
|
Wan J, Wu Y, Pham Q, Li RW, Yu L, Chen MH, Boue SM, Yokoyama W, Li B, Wang TTY. Effects of Differences in Resistant Starch Content of Rice on Intestinal Microbial Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8017-8027. [PMID: 34236836 DOI: 10.1021/acs.jafc.0c07887] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to evaluate the effects of resistant starch (RS) and fat levels on the gut microbiome in C57BL/6 mice. Three levels of RS from three varieties of rice were the major source of carbohydrates and fat levels were low (10%) and high (39%). We confirmed that RS decreased the Firmicutes to Bacteroidetes ratio, increased SCFA production by higher Bacteroidaceae and S24-7 abundance, and enriched predicted gene families of glycosidases and functional pathways associated with carbohydrate and glycan metabolism. We also found correlations between microbial taxa and tissue gene expression related to carbohydrate and lipid metabolism. Moreover, increasing RS levels resulted in a molecular ecological network with enhanced modularity and interspecific synergy, which is less sensitive to high fat intervention. Overall, RS as low as 0.44% from cooked rice can modulate gut microbiome in mice, which correlated to a protective effect against deleterious effects of an obesogenic diet.
Collapse
Affiliation(s)
- Jiawei Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Diet Genomics and Immunology Laboratory, BHNRC, ARS, USDA, Beltsville, Maryland 20705, United States
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanbei Wu
- Diet Genomics and Immunology Laboratory, BHNRC, ARS, USDA, Beltsville, Maryland 20705, United States
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology &Business University, Beijing 100084, PR China
| | - Quynhchi Pham
- Diet Genomics and Immunology Laboratory, BHNRC, ARS, USDA, Beltsville, Maryland 20705, United States
| | - Robert W Li
- Animal Parasitic Diseases Laboratory, ARS, USDA, Beltsville, Maryland 20705, United States
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Ming-Hsuan Chen
- Dale Bumpers National Rice Research Center, ARS, USDA, Stuttgart, Arkansas 72160, United States
| | - Stephen M Boue
- Southern Regional Research Center, ARS, USDA, New Orleans, Louisiana 70124, United States
| | - Wallace Yokoyama
- Healthy Processed Foods Research Unit, WRRC, ARS, USDA, Albany, California 94710, United States
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Thomas T Y Wang
- Diet Genomics and Immunology Laboratory, BHNRC, ARS, USDA, Beltsville, Maryland 20705, United States
| |
Collapse
|
20
|
Zhou H, Zhou SY, Gillilland M, Li JY, Lee A, Gao J, Zhang G, Xu X, Owyang C. Bile acid toxicity in Paneth cells contributes to gut dysbiosis induced by high-fat feeding. JCI Insight 2020; 5:138881. [PMID: 33055426 PMCID: PMC7605541 DOI: 10.1172/jci.insight.138881] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
High-fat feeding (HFF) leads to gut dysbiosis through unclear mechanisms. We hypothesize that bile acids secreted in response to high-fat diets (HFDs) may act on intestinal Paneth cells, leading to gut dysbiosis. We found that HFF resulted in widespread taxonomic shifts in the bacteria of the ileal mucosa, characterized by depletion of Lactobacillus and enrichment of Akkermansia muciniphila, Clostridium XIVa, Ruminococcaceae, and Lachnospiraceae, which were prevented by the bile acid binder cholestyramine. Immunohistochemistry and in situ hybridization studies showed that G protein-coupled bile acid receptor (TGR5) expressed in Paneth cells was upregulated in the rats fed HFD or normal chow supplemented with cholic acid. This was accompanied by decreased lysozyme+ Paneth cells and α-defensin 5 and 6 and increased expression of XBP-1. Pretreatment with ER stress inhibitor 4PBA or with cholestyramine prevented these changes. Ileal explants incubated with deoxycholic acid or cholic acid caused a decrease in α-defensin 5 and 6 and an increase in XBP-1, which was prevented by TGR5 antibody or 4PBA. In conclusion, this is the first demonstration to our knowledge that TGR5 is expressed in Paneth cells. HFF resulted in increased bile acid secretion and upregulation of TGR5 expression in Paneth cells. Bile acid toxicity in Paneth cells contributes to gut dysbiosis induced by HFF.
Collapse
Affiliation(s)
- Hui Zhou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.,Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Yi Zhou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Merritt Gillilland
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | | | - Allen Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Jun Gao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Guanpo Zhang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.,Department of Gastroenterology, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Xianjun Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chung Owyang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Puffer Fish Gut Microbiota Studies Revealed Unique Bacterial Co-Occurrence Patterns and New Insights on Tetrodotoxin Producers. Mar Drugs 2020; 18:md18050278. [PMID: 32466241 PMCID: PMC7281374 DOI: 10.3390/md18050278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/30/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin isolated mainly from toxic puffer fish. To date, the TTX biosynthetic mechanism inside its hosts remains unresolved. Here, we hypothesize the TTX synthesis relies on the host gut microbiota, including the neglected non-culturable bacteria. In these studies, we collected the gut contents from 5 puffer fish species of the genus Takifugu including one suspected hybrid species for gut microbiota study by 16S rRNA amplicon metagenomics approach. Their gut samples were divided into toxic and non-toxic groups based on the TTX concentrations in the livers detected by LC-MS/MS. Bacterial diversity studies showed that gut microbiota structures were significantly different between toxic and non-toxic species. Vibrio and Cyanobacteria centered at the gut bacterial co-occurrence network, suggesting their importance in TTX biosynthesis. The results of PICRUSt2 metagenomic prediction and gene set enrichment analysis provided new support of arginine-precursor required in TTX biosynthesis. This is the first study to profile the gut microbiota in toxic and non-toxic puffer fish species by 16S rRNA amplicon metagenomic approach, defining significant microbial co-occurrence patterns in their gut environment. Our data supported the proposed biosynthesis of TTX inside the hosts by their gut bacterial symbionts using arginine as a precursor.
Collapse
|
22
|
Song M, Yang Q, Zhang F, Chen L, Su H, Yang X, He H, Liu F, Zheng J, Ling M, Lai X, Zhu X, Wang L, Gao P, Shu G, Jiang Q, Wang S. Hyodeoxycholic acid (HDCA) suppresses intestinal epithelial cell proliferation through FXR-PI3K/AKT pathway, accompanied by alteration of bile acids metabolism profiles induced by gut bacteria. FASEB J 2020; 34:7103-7117. [PMID: 32246800 DOI: 10.1096/fj.201903244r] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Bile acids (BAs) have been implicated in regulation of intestinal epithelial signaling and function. This study aimed to investigate the effects of hyodeoxycholic acid (HDCA) on intestinal epithelial cell proliferation and explore the underlying mechanisms. IPEC-J2 cells and weaned piglets were treated with HDCA and the contributions of cellular signaling pathways, BAs metabolism profiles and gut bacteria were assessed. In vitro, HDCA suppressed IPEC-J2 proliferation via the BAs receptor FXR but not TGR5. In addition, HDCA inhibited the PI3K/AKT pathway, while knockdown of FXR or constitutive activation of AKT eliminated the inhibitory effects of HDCA, suggesting that FXR-dependent inhibition of PI3K/AKT pathway was involved in HDCA-suppressed IPEC-J2 proliferation. In vivo, dietary HDCA inhibited intestinal expression of proliferative markers and PI3K/AKT pathway in weaned piglets. Meanwhile, HDCA altered the BAs metabolism profiles, with decrease in primary BA and increase in total and secondary BAs in feces, and reduction of conjugated BAs in serum. Furthermore, HDCA increased abundance of the gut bacteria associated with BAs metabolism, and thereby induced BAs profiles alternation, which might indirectly contribute to HDCA-suppressed cell proliferation. Together, HDCA suppressed intestinal epithelial cell proliferation through FXR-PI3K/AKT signaling pathway, accompanied by alteration of BAs metabolism profiles induced by gut bacteria.
Collapse
Affiliation(s)
- Min Song
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Qiang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Fenglin Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Lin Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Han Su
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Xiaohua Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Haiwen He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Fangfang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Jisong Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Mingfa Ling
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Xumin Lai
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Xiaotong Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Lina Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Ping Gao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Gang Shu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Qingyan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| | - Songbo Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
23
|
Yao J, Chen P, Ringø E, Zhang G, Huang Z, Hua X. Effect of Diet Supplemented With Rapeseed Meal or Hydrolysable Tannins on the Growth, Nutrition, and Intestinal Microbiota in Grass Carp ( Ctenopharyngodon idellus). Front Nutr 2019; 6:154. [PMID: 31608284 PMCID: PMC6773801 DOI: 10.3389/fnut.2019.00154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Grass carp (Ctenopharyngodon idellus; n = 320) were received four different diets for 56 days. The experimental diets were: fishmeal (FM) containing 10% fishmeal (without rapeseed meal), and rapeseed meal (RM) containing 50% rapeseed meal (without fishmeal), and two semi-purified diets either without (T0) or with 1.25% (T1) supplemental hydrolysable tannin. The approximate content of tannin in the RM diet was 1.31%, which was close to that of T1, while the tannin content of FM was close to that of T0. The weight gain rate of grass carp of the RM group was significantly lower than that of the FM group, while the feeding conversion ratio and the feeding rate were significantly higher in the T1 group than in T0. The muscle lipid content was significantly lower in RM than in FM, while T1 was lower than T0. Intestinal activities of trypsin and α-amylase were significantly higher in T1 and RM groups compared with the other treatments. The hepatic activities of aspartate aminotransferase and alanine aminotransferase were lower in T1 and RM groups compared with the other treatments, while hepatic glycogen, and malonaldehyde were significantly higher in T1 and RM groups. In serum, the total protein and globulin contents were significantly higher in T1 and RM groups, while albumin was significantly lower in the RM group compared to the FM group. High-throughput sequencing showed that Proteobacteria, Firmicutes, and Actinobacteria were the dominant bacterial phyla among groups. The intestinal microbial diversity was higher in T1 and RM. Redundancy analysis showed that tannin, rapeseed meal, and intestinal trypsin activity were positively or negatively correlated with the relative abundance of several different intestinal microbiota at phylum and/or genus levels. The results indicated that 1.25% tannin could not be the main reason for the poor growth of grass carp of the RM group; however, the protein metabolism was disturbed, the absorption of carbohydrate was improved, and the accumulation of lipid had decreased. Furthermore, tannin and rapeseed meal supplementations modulated the intestinal microbiota, and may sequentially regulate the intestinal function by fermenting dietary nutrition, producing digestive enzymes, and modulating probiotics.
Collapse
Affiliation(s)
- Jingting Yao
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Peng Chen
- Editorial Office of Journal of Shanghai Ocean University, Shanghai, China
| | - Einar Ringø
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Gaigai Zhang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhongyuan Huang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xueming Hua
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|