1
|
Castillo-Novales D, Vega-Celedón P, Larach A, Seeger M, Besoain X. Native Bacteria Are Effective Biocontrol Agents at a Wide Range of Temperatures of Neofusicoccum parvum, Associated with Botryosphaeria Dieback on Grapevine. PLANTS (BASEL, SWITZERLAND) 2025; 14:1043. [PMID: 40219111 PMCID: PMC11990564 DOI: 10.3390/plants14071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Botryosphaeria dieback, a significant grapevine trunk disease (GTD) caused by various pathogens, represents a serious threat to viticulture. Biocontrol emerges as a promising sustainable alternative to chemical control, aligning toward environmentally friendly viticultural practices. This study evaluated the in vitro, in vivo, and in situ biocontrol potential of Chilean native bacteria isolated from wild flora and endophytic communities of grapevine against Neofusicoccum parvum. In vitro biocontrol assays screened 15 bacterial strains at 10, 22, and 30 °C, identifying four Pseudomonas strains with >30% mycelial growth inhibition. In diffusible agar and double plate assays, plant growth-promoting bacteria AMCR2b and GcR15a, which were isolated from native flora, achieved significant inhibition of N. parvum growth, with reductions of up to ~50% (diffusible agar) and up to ~46% (double plate). In vivo experiments on grapevine cuttings revealed that strains AMCR2b and GcR15a inhibited mycelial growth (17-90%); younger grapevines (1-5 years) were more susceptible to N. parvum. In situ trials using Vitis vinifera L. cv. Cabernet Sauvignon and Sauvignon Blanc demonstrated higher fungal susceptibility in Sauvignon Blanc. These results highlight the potential of Pseudomonas sp. AMCR2b and GcR15a to be effective biocontrol agents against GTDs at a wide range of temperatures, contributing to sustainable viticulture.
Collapse
Affiliation(s)
- Diyanira Castillo-Novales
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Alejandra Larach
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Ximena Besoain
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| |
Collapse
|
2
|
Liu R, Han Q, Lin G, Mu S, Liu S, Yao S, Zhai L. Analysis of the Alkaline Resistance Mechanism of Halomonas alkalicola CICC 11012 s by Proteomics and Metabolomics. Curr Microbiol 2025; 82:135. [PMID: 39945829 DOI: 10.1007/s00284-024-04056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/25/2024] [Indexed: 03/20/2025]
Abstract
In recent years, as excellent industrial microorganisms, Halomonas has become a potential chassis cell of the next generation of industrial biotechnology because of its advantages of low complexity, antipollution ability, and rapid fermentation. Therefore, there is an urgent need to study the genome information, synthetic biology, multiomics, and other technologies of Halomonas, and it is also highly important to study its tolerance to extreme environments. Halomonas alkalicola CICC 11012 s is the most alkaliphilic bacterium in the genus Halomonas and is an excellent alkali-resistant bacterium that was independently isolated in our laboratory; this bacterium plays a certain role in industrial pollution control and the application of synthetic biology chassis cells. The H. alkalicola mutant was designed and constructed via CRISPR technology in the early stage of this experiment, which verified that the tonb gene plays an important role in the alkali resistance mechanism of this strain. Therefore, the molecular mechanism of the response of H. alkalicola CICC 11012 s to alkaline stress was explored through combined proteomic and metabolomic analysis. The experimental results revealed that the wild-type and mutant strains evolved multilevel adaptive strategies to regulate pH homeostasis in response to alkaline stress, including increasing their membrane transport activities and synthesizing carbohydrates and amino acids. In summary, the experimental results provide a deep understanding of the alkaline response mechanism of alkalophilic bacteria, thereby further promoting their application in different environments.
Collapse
Affiliation(s)
- Ruina Liu
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Qi Han
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Geer Lin
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Shuaicheng Mu
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Shuang Liu
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Su Yao
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China.
| | - Lei Zhai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China.
| |
Collapse
|
3
|
Arriagada-Escamilla C, Alvarado R, Ortiz J, Campos-Vargas R, Cornejo P. Alginate-Bentonite Encapsulation of Extremophillic Bacterial Consortia Enhances Chenopodium quinoa Tolerance to Metal Stress. Microorganisms 2024; 12:2066. [PMID: 39458375 PMCID: PMC11509983 DOI: 10.3390/microorganisms12102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study explores the encapsulation in alginate/bentonite beads of two metal(loid)-resistant bacterial consortia (consortium A: Pseudomonas sp. and Bacillus sp.; consortium B: Pseudomonas sp. and Bacillus sp.) from the Atacama Desert (northern Chile) and Antarctica, and their influence on physiological traits of Chenopodium quinoa growing in metal(loid)-contaminated soils. The metal(loid) sorption capacity of the consortia was determined. Bacteria were encapsulated using ionic gelation and were inoculated in soil of C. quinoa. The morphological variables, photosynthetic pigments, and lipid peroxidation in plants were evaluated. Consortium A showed a significantly higher biosorption capacity than consortium B, especially for As and Cu. The highest viability of consortia was achieved with matrices A1 (3% alginate and 2% bentonite) and A3 (3% alginate, 2% bentonite and 2.5% LB medium) at a drying temperature of 25 °C and storage at 4 °C. After 12 months, the highest viability was detected using matrix A1 with a concentration of 106 CFU g-1. Further, a greenhouse experiment using these consortia in C. quinoa plants showed that, 90 days after inoculation, the morphological traits of both consortia improved. Chemical analysis of metal(loid) contents in the leaves indicated that consortium B reduced the absorption of Cu to 32.1 mg kg-1 and that of Mn to 171.9 mg kg-1. Encapsulation resulted in a significant increase in bacterial survival. This highlights the benefits of using encapsulated microbial consortia from extreme environments, stimulating the growth of C. quinoa, especially in soils with metal(loid) levels that can be a serious constraint for plant growth.
Collapse
Affiliation(s)
- Cesar Arriagada-Escamilla
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (R.A.); (J.O.)
| | - Roxana Alvarado
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (R.A.); (J.O.)
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javier Ortiz
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (R.A.); (J.O.)
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Reinaldo Campos-Vargas
- Center for Postharvest Studies, Faculty of Agricultural Sciences, Universidad de Chile, Santiago 8820808, Chile;
| | - Pablo Cornejo
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, Pontificia Universidad Católica de Valparaíso, La Palma, Quillota 2260000, Chile;
| |
Collapse
|
4
|
Pardo-Esté C, Cortés J, Castro-Severyn J, Pérez V, Henriquez-Aedo K, Cuadros F, Yañez C, Cuadros-Orellana S, Dorador C, Molina V, Eissler Y, Paquis P, Jeffrey WH, Pozo P, Pérez PA, Hengst MB. Secondary metabolites with antimicrobial activity produced by thermophilic bacteria from a high-altitude hydrothermal system. Front Microbiol 2024; 15:1477458. [PMID: 39411441 PMCID: PMC11474921 DOI: 10.3389/fmicb.2024.1477458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Thermophilic microorganisms possess several adaptations to thrive in high temperature, which is reflected as biosynthesis of proteins and thermostable molecules, isolation and culture represent a great methodological challenge, therefore High throughput sequencing enables screening of the whole bacterial genome for functional potential, providing rapid and cost-effective information to guide targeted cultures for the identification and characterization of novel natural products. In this study, we isolated two thermophilic bacterial strains corresponding to Bacillus LB7 and Streptomyces LB8, from the microbial mats in the Atacama Desert. By combining genome mining, targeted cultures and biochemical characterization, we aimed to identify their capacity to synthesize bioactive compounds with antimicrobial properties. Additionally, we determined the capability to produce bioactive compounds under controlled in vitro assays and detected by determining their masses by Thin-Layer Chromatography/Mass Spectrometry (TLC/MS). Overall, both isolates can produce antimicrobial (e.g., Myxalamide C by-product) and antioxidants (e.g. Dihydroxymandelic Acid, Amide biotine and Flavone by-products) compounds. Bacillus LB7 strain possesses a more diverse repertoire with 51.95% of total metabolites unmatched, while Streptomyces LB8 favors mainly antioxidants, but has over 70% of unclassified compounds, highlighting the necessity to study and elucidate the structure of novel compounds. Based on these results, we postulate that the uncultured or rare cultured thermophiles inhabiting high-altitude hydrothermal ecosystems in the Atacama Desert offer a promising opportunity to the study of novel microbial bioactive compounds.
Collapse
Affiliation(s)
- Coral Pardo-Esté
- Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Johanna Cortés
- Microbial Ecology of the Rhizosphere Group, Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
| | - Vilma Pérez
- Australian Centre for Ancient DNA (ACAD), University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA, Australia
| | - Karem Henriquez-Aedo
- Laboratorio de Biotecnología y Genética de los Alimentos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío Bío, Chillán, Chile
| | - Fabian Cuadros
- Microbial Ecology of the Rhizosphere Group, Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Carolina Yañez
- Microbial Ecology of the Rhizosphere Group, Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Sara Cuadros-Orellana
- Laboratorio de Genómica, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Cristina Dorador
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Veronica Molina
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas y HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
- Centro COPAS Coastal, Universidad de Concepción, Concepción, Chile
| | - Yoanna Eissler
- Laboratorio de Virología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Paquis
- Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Wade H. Jeffrey
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, FL, United States
| | - Patricia Pozo
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Catolica Del Norte, Antofagasta, Chile
| | - Pablo A. Pérez
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Catolica Del Norte, Antofagasta, Chile
| | - Martha B. Hengst
- Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| |
Collapse
|
5
|
Wadhawan G, Kalra A, Gupta A. Potential of halophiles and alkaliphiles in bioremediation of azo dyes-laden textile wastewater: a review. 3 Biotech 2024; 14:194. [PMID: 39131176 PMCID: PMC11306850 DOI: 10.1007/s13205-024-04036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Azo dye-laden textile wastewater must be treated before release due to various health and environmental concerns. Bioremediation of textile wastewater, however, is a challenge owing to its alkaline and saline nature as mesophilic microbes, in general, are either not able to thrive or show less efficiency under such hostile environment. Thus, pre-treatment for neutralization or salinity removal becomes a prerequisite before applying microbes for treatment, causing extra economical and technical burden. Extremophilic bacteria can be the promising bioremediating tool because of their inherent ability to survive and show toxicants removal capability under such extreme conditions without need of pre-treatment. Among extremophiles, halophilic and alkaliphilic bacteria which are naturally adapted to high salt and pH are of special interest for the decolorization of saline-alkaline-rich textile wastewater. The current review article is an attempt to provide an overview of the bioremediation of azo dyes and azo dye-laden textile wastewater using these two classes of extremophilic bacteria. The harmful effects of azo dyes on human health and environment have been discussed herein. Halo-alkaliphilic bacteria circumvent the extreme conditions by various adaptations, e.g., production of certain enzymes, adjustment at the protein level, pH homeostasis, and other structural adaptations that have been highlighted in this review. The unique properties of alkaliphiles and halophiles, to not only sustain but also harboring high dye removal competence at high pH and salt concentration, make them a good candidate for designing future bioremediation strategies for the management of alkaline, salt, and azo dye-laden industrial wastewaters.
Collapse
Affiliation(s)
- Gunisha Wadhawan
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078 India
| | - Anuja Kalra
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078 India
| | - Anshu Gupta
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078 India
| |
Collapse
|
6
|
Bonnaud E, Oger PM, Ohayon A, Louis Y. Haloarchaea as Promising Chassis to Green Chemistry. Microorganisms 2024; 12:1738. [PMID: 39203580 PMCID: PMC11357113 DOI: 10.3390/microorganisms12081738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Climate change and the scarcity of primary resources are driving the development of new, more renewable and environmentally friendly industrial processes. As part of this green chemistry approach, extremozymes (extreme microbial enzymes) can be used to replace all or part of the chemical synthesis stages of traditional industrial processes. At present, the production of these enzymes is limited by the cellular chassis available. The production of a large number of extremozymes requires extremophilic cellular chassis, which are not available. This is particularly true of halophilic extremozymes. The aim of this review is to present the current potential and challenges associated with the development of a haloarchaea-based cellular chassis. By overcoming the major obstacle of the limited number of genetic tools, it will be possible to propose a robust cellular chassis for the production of functional halophilic enzymes that can participate in the industrial transition of many sectors.
Collapse
Affiliation(s)
- Emma Bonnaud
- SEGULA Technologies, 13 Bis Avenue Albert Einstein, 69100 Villeurbanne, France; (E.B.)
- INSA de Lyon, UMR5240 CNRS, Université Claude Bernard Lyon 1, 11, Avenue Jean Capelle, 69621 Villeurbanne, France
| | - Philippe M. Oger
- INSA de Lyon, UMR5240 CNRS, Université Claude Bernard Lyon 1, 11, Avenue Jean Capelle, 69621 Villeurbanne, France
| | - Avigaël Ohayon
- SEGULA Technologies, 13 Bis Avenue Albert Einstein, 69100 Villeurbanne, France; (E.B.)
| | - Yoann Louis
- INSA de Lyon, UMR5240 CNRS, Université Claude Bernard Lyon 1, 11, Avenue Jean Capelle, 69621 Villeurbanne, France
| |
Collapse
|
7
|
Gallo G, Imbimbo P, Aulitto M. The Undeniable Potential of Thermophiles in Industrial Processes. Int J Mol Sci 2024; 25:7685. [PMID: 39062928 PMCID: PMC11276739 DOI: 10.3390/ijms25147685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Extremophilic microorganisms play a key role in understanding how life on Earth originated and evolved over centuries. Their ability to thrive in harsh environments relies on a plethora of mechanisms developed to survive at extreme temperatures, pressures, salinity, and pH values. From a biotechnological point of view, thermophiles are considered a robust tool for synthetic biology as well as a reliable starting material for the development of sustainable bioprocesses. This review discusses the current progress in the biomanufacturing of high-added bioproducts from thermophilic microorganisms and their industrial applications.
Collapse
Affiliation(s)
- Giovanni Gallo
- Division of Microbiology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany;
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy
| | - Martina Aulitto
- Department of Biology, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy
| |
Collapse
|
8
|
Wang Q, Long H, Wang H, Lau Vetter MCY. Characterize the Growth and Metabolism of Acidithiobacillus ferrooxidans under Electroautotrophic and Chemoautotrophic Conditions. Microorganisms 2024; 12:590. [PMID: 38543641 PMCID: PMC10974421 DOI: 10.3390/microorganisms12030590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 11/12/2024] Open
Abstract
Acidophiles are capable of surviving in extreme environments with low pH. Acidithiobacillus ferrooxidans is a typical acidophilic bacterium that has been extensively studied when grown chemoautotrophically, i.e., when it derives energy from oxidation of Fe2+ or reduced inorganic sulfur compounds (RISCs). Although it is also known to grow with electrons supplied by solid electrodes serving as the sole source of energy, the understanding of its electroautotrophic growth is still limited. This study aimed to compare the growth characteristics of A. ferrooxidans under electroautotrophic (ea) and chemoautotrophic (ca) conditions, with an attempt to elucidate the possible mechanism(s) of extracellular electron flow into the cells. Jarosite was identified by Raman spectroscopy, and it accumulated when A. ferrooxidans used Fe2+ as the electron donor, but negligible mineral deposition occurred during electroautotrophic growth. Scanning electron microscopy (SEM) showed that A. ferrooxidans possesses more pili and extracellular polymeric substances (EPSs) under electroautotrophic conditions. A total of 493 differentially expressed genes (DEGs) were identified, with 297 genes being down-regulated and 196 genes being up-regulated in ea versus ca conditions. The genes known to be essential for chemoautotrophic growth showed a decreased expression in the electroautotrophic condition; meanwhile, there was an increased expression of genes related to direct electron transfer across the cell's outer/inner membranes and transmembrane proteins such as pilin and porin. Joint analysis of DEGs and differentially expressed metabolites (DEMs) showed that galactose metabolism is enhanced during electroautotrophic growth, inducing A. ferrooxidans to produce more EPSs, which aids the cells in adhering to the solid electrode during their growth. These results suggested that electroautotrophy and chemoautotrophy of A. ferrooxidans have different extracellular electron uptake (EEU) pathways, and a model of EEU during electroautotrophic growth is proposed. The use of extracellular electrons as the sole energy source triggers A. ferrooxidans to adopt metabolic and subsequently phenotypic modifications.
Collapse
Affiliation(s)
- Quansheng Wang
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.W.); (H.L.); (H.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haijun Long
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.W.); (H.L.); (H.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Huiqi Wang
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.W.); (H.L.); (H.W.)
| | - Maggie C. Y. Lau Vetter
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.W.); (H.L.); (H.W.)
| |
Collapse
|
9
|
Balcha ES, Macey MC, Gemeda MT, Cavalazzi B, Woldesemayat AA. Mining the microbiome of Lake Afdera to gain insights into microbial diversity and biosynthetic potential. FEMS MICROBES 2024; 5:xtae008. [PMID: 38560625 PMCID: PMC10979467 DOI: 10.1093/femsmc/xtae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Microorganisms inhabiting hypersaline environments have received significant attention due to their ability to thrive under poly-extreme conditions, including high salinity, elevated temperatures and heavy metal stress. They are believed to possess biosynthetic gene clusters (BGCs) that encode secondary metabolites as survival strategy and offer potential biotechnological applications. In this study, we mined BGCs in shotgun metagenomic sequences generated from Lake Afdera, a hypersaline lake in the Afar Depression, Ethiopia. The microbiome of Lake Afdera is predominantly bacterial, with Acinetobacter (18.6%) and Pseudomonas (11.8%) being ubiquitously detected. A total of 94 distinct BGCs were identified in the metagenomic data. These BGCs are found to encode secondary metabolites with two main categories of functions: (i) potential pharmaceutical applications (nonribosomal peptide synthase NRPs, polyketide synthase, others) and (ii) miscellaneous roles conferring adaptation to extreme environment (bacteriocins, ectoine, others). Notably, NRPs (20.6%) and bacteriocins (10.6%) were the most abundant. Furthermore, our metagenomic analysis predicted gene clusters that enable microbes to defend against a wide range of toxic metals, oxidative stress and osmotic stress. These findings suggest that Lake Afdera is a rich biological reservoir, with the predicted BGCs playing critical role in the survival and adaptation of extremophiles.
Collapse
Affiliation(s)
- Ermias Sissay Balcha
- School of Medical Laboratory Science, College of Health Sciences, Hawassa University, 16417, Hawassa, Ethiopia
- Biotechnology and Bioprocess Center of Excellence, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Michael C Macey
- Astrobiology OU, School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Mesfin Tafesse Gemeda
- Biotechnology and Bioprocess Center of Excellence, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Barbara Cavalazzi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Adugna Abdi Woldesemayat
- Biotechnology and Bioprocess Center of Excellence, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| |
Collapse
|
10
|
Reverdy A, Hathaway D, Jha J, Michaels G, Sullivan J, McAdoo DD, Riquelme C, Chai Y, Godoy-Carter V. Insights into the diversity and survival strategies of soil bacterial isolates from the Atacama Desert. Front Microbiol 2024; 15:1335989. [PMID: 38516016 PMCID: PMC10955380 DOI: 10.3389/fmicb.2024.1335989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
The Atacama Desert, the driest, with the highest radiation, and one of the most ancient deserts in the world, is a hostile environment for life. We have a collection of 74 unique bacterial isolates after cultivation and confirmation by 16S rRNA gene sequencing. Pigmentation, biofilm formation, antimicrobial production against Escherichia coli MG1655 and Staphylococcus aureus HG003, and antibiotic resistance were assessed on these isolates. We found that approximately a third of the colonies produced pigments, 80% of isolates formed biofilms, many isolates produce growth inhibiting activities against E. coli and/or S. aureus, and many were resistant to antibiotics. The functional characterization of these isolates gives us insight into the adaptive bacterial strategies in harsh environments and enables us to learn about their possible use in agriculture, healthcare, or biotechnology.
Collapse
Affiliation(s)
| | | | - Jessica Jha
- Northeastern University, Boston, MA, United States
| | | | | | - Daniela Diaz McAdoo
- Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Carlos Riquelme
- Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Yunrong Chai
- Northeastern University, Boston, MA, United States
| | | |
Collapse
|
11
|
Thweatt JL, Harman CE, Araújo MN, Marlow JJ, Oliver GC, Sabuda MC, Sevgen S, Wilpiszeki RL. Chapter 6: The Breadth and Limits of Life on Earth. ASTROBIOLOGY 2024; 24:S124-S142. [PMID: 38498824 DOI: 10.1089/ast.2021.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Scientific ideas about the potential existence of life elsewhere in the universe are predominantly informed by knowledge about life on Earth. Over the past ∼4 billion years, life on Earth has evolved into millions of unique species. Life now inhabits nearly every environmental niche on Earth that has been explored. Despite the wide variety of species and diverse biochemistry of modern life, many features, such as energy production mechanisms and nutrient requirements, are conserved across the Tree of Life. Such conserved features help define the operational parameters required by life and therefore help direct the exploration and evaluation of habitability in extraterrestrial environments. As new diversity in the Tree of Life continues to expand, so do the known limits of life on Earth and the range of environments considered habitable elsewhere. The metabolic processes used by organisms living on the edge of habitability provide insights into the types of environments that would be most suitable to hosting extraterrestrial life, crucial for planning and developing future astrobiology missions. This chapter will introduce readers to the breadth and limits of life on Earth and show how the study of life at the extremes can inform the broader field of astrobiology.
Collapse
Affiliation(s)
- Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA. (Former)
| | - C E Harman
- Planetary Systems Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Serhat Sevgen
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | |
Collapse
|
12
|
Runzheimer K, Lozano C, Boy D, Boy J, Godoy R, Matus FJ, Engel D, Pavletic B, Leuko S, Armengaud J, Moeller R. Exploring Andean High-Altitude Lake Extremophiles through Advanced Proteotyping. J Proteome Res 2024; 23:891-904. [PMID: 38377575 PMCID: PMC10913102 DOI: 10.1021/acs.jproteome.3c00538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Quickly identifying and characterizing isolates from extreme environments is currently challenging while very important to explore the Earth's biodiversity. As these isolates may, in principle, be distantly related to known species, techniques are needed to reliably identify the branch of life to which they belong. Proteotyping these environmental isolates by tandem mass spectrometry offers a rapid and cost-effective option for their identification using their peptide profiles. In this study, we document the first high-throughput proteotyping approach for environmental extremophilic and halophilic isolates. Microorganisms were isolated from samples originating from high-altitude Andean lakes (3700-4300 m a.s.l.) in the Chilean Altiplano, which represent environments on Earth that resemble conditions on other planets. A total of 66 microorganisms were cultivated and identified by proteotyping and 16S rRNA gene amplicon sequencing. Both the approaches revealed the same genus identification for all isolates except for three isolates possibly representing not yet taxonomically characterized organisms based on their peptidomes. Proteotyping was able to indicate the presence of two potentially new genera from the families of Paracoccaceae and Chromatiaceae/Alteromonadaceae, which have been overlooked by 16S rRNA amplicon sequencing approach only. The paper highlights that proteotyping has the potential to discover undescribed microorganisms from extreme environments.
Collapse
Affiliation(s)
- Katharina Runzheimer
- Department
of Radiation Biology, Institute of Aerospace
Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Clément Lozano
- Département
Médicaments et Technologies pour la Santé (DMTS), CEA,
INRAE, SPI, Université, Paris-Saclay, F-30200 Bagnols-sur-Cèze, France
| | - Diana Boy
- Institute
of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany
| | - Jens Boy
- Institute
of Soil Science, Leibniz University Hannover, 30419 Hannover, Germany
| | - Roberto Godoy
- Instituto
de Ciencias Ambientales y Evolutivas, Universidad
Austral de Chile, 509000 Valdivia, Chile
| | - Francisco J. Matus
- Laboratory
of Conservation and Dynamics of Volcanic Soils, Department of Chemical
Sciences and Natural Resources, Universidad
de La Frontera, 4811230 Temuco, Chile
- Network
for Extreme Environmental Research (NEXER), Universidad de La Frontera, 4811230 Temuco, Chile
| | - Denise Engel
- Department
of Radiation Biology, Institute of Aerospace
Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Bruno Pavletic
- Department
of Radiation Biology, Institute of Aerospace
Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Stefan Leuko
- Department
of Radiation Biology, Institute of Aerospace
Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Jean Armengaud
- Département
Médicaments et Technologies pour la Santé (DMTS), CEA,
INRAE, SPI, Université, Paris-Saclay, F-30200 Bagnols-sur-Cèze, France
| | - Ralf Moeller
- Department
of Radiation Biology, Institute of Aerospace
Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| |
Collapse
|
13
|
Banerjee S, Cabrera-Barjas G, Tapia J, Fabi JP, Delattre C, Banerjee A. Characterization of Chilean hot spring-origin Staphylococcus sp. BSP3 produced exopolysaccharide as biological additive. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:15. [PMID: 38310179 PMCID: PMC10838260 DOI: 10.1007/s13659-024-00436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
A type of high molecular weight bioactive polymers called exopolysaccharides (EPS) are produced by thermophiles, the extremophilic microbes that thrive in acidic environmental conditions of hot springs with excessively warm temperatures. Over time, EPS became important as natural biotechnological additives because of their noncytotoxic, emulsifying, antioxidant, or immunostimulant activities. In this article, we unravelled a new EPS produced by Staphylococcus sp. BSP3 from an acidic (pH 6.03) San Pedro hot spring (38.1 °C) located in the central Andean mountains in Chile. Several physicochemical techniques were performed to characterize the EPS structure including Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Atomic Force Microscopy (AFM), High-Performance Liquid Chromatography (HPLC), Gel permeation chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), 1D Nuclear Magnetic Resonance (NMR), and Thermogravimetric analysis (TGA). It was confirmed that the amorphous surface of the BSP3 EPS, composed of rough pillar-like nanostructures, is evenly distributed. The main EPS monosaccharide constituents were mannose (72%), glucose (24%) and galactose (4%). Also, it is a medium molecular weight (43.7 kDa) heteropolysaccharide. NMR spectroscopy demonstrated the presence of a [→ 6)-⍺-D-Manp-(1 → 6)-⍺-D-Manp-(1 →] backbone 2-O substituted with 1-⍺-D-Manp. A high thermal stability of EPS (287 °C) was confirmed by TGA analysis. Emulsification, antioxidant, flocculation, water-holding (WHC), and oil-holding (OHC) capacities are also studied for biotechnological industry applications. The results demonstrated that BSP3 EPS could be used as a biodegradable material for different purposes, like flocculation and natural additives in product formulation.
Collapse
Affiliation(s)
- Srijan Banerjee
- Instituto de Química de Recursos Naturales, Universidad de Talca, CP 3460000, Talca, Chile
| | - Gustavo Cabrera-Barjas
- Universidad San Sebastián Campus Las Tres Pascualas, Facultad de Ciencias Para el Cuidado de la Salud, Lientur 1457, CP 4080871, Concepción, Chile
| | - Jaime Tapia
- Instituto de Química de Recursos Naturales, Universidad de Talca, CP 3460000, Talca, Chile
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CePID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| | - Cedric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| | - Aparna Banerjee
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, CP 3467987, Talca, Chile.
| |
Collapse
|
14
|
Álvarez-Hubert I, Durán RE, Vega-Celedón P, Vásconez IN, Macaya CC, Seeger M. Draft genome sequences of halotolerant Halomonas spp. SpR1 and SpR8, potential plant growth-promoting bacteria associated with Salicornia rhizosphere in a hydrothermal lagoon ecosystem of the Altiplano, Northern Chile. Microbiol Resour Announc 2024; 13:e0082223. [PMID: 38047652 DOI: 10.1128/mra.00822-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Halotolerant Halomonas spp. SpR1 and SpR8 are potential plant growth-promoting bacteria (PGPB) isolated from Salicornia rhizosphere in a Chilean Altiplano hydrothermal lagoon. We report draft genomes of Halomonas sp. SpR1 (5.17Mb) and Halomonas sp. SpR8 (4.47 Mb). Both represent potentially novel independent species closely related to Halomonas boliviensis DSM 15516T.
Collapse
Affiliation(s)
- Inaudis Álvarez-Hubert
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María , Valparaíso, Chile
| | - Roberto E Durán
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María , Valparaíso, Chile
| | - Paulina Vega-Celedón
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María , Valparaíso, Chile
| | - Ingrid-Nicole Vásconez
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María , Valparaíso, Chile
| | - Constanza C Macaya
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María , Valparaíso, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María , Valparaíso, Chile
| |
Collapse
|
15
|
Lou D, Cao Y, Duan H, Tan J, Li B, Zhou Y, Wang D. Characterization of a Novel Thermostable 7α-Hydroxysteroid Dehydrogenase. Protein Pept Lett 2024; 31:153-160. [PMID: 38288819 DOI: 10.2174/0109298665279004231229100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 05/30/2024]
Abstract
BACKGROUND 7α-Hydroxysteroid dehydrogenase (7α-HSDH) plays a pivotal role in vivo in the biotransformation of secondary bile acids and has great potential in industrial biosynthesis due to its broad substrate specificity. In this study, we expressed and characterized a novel thermostable 7α-HSDH (named Sa 7α-HSDH). METHODS The DNA sequence was derived from the black bear gut microbiome metagenomic sequencing data, and the coding sequence of Sa 7α-HSDH was chemically synthesized. The heterologous expression of the enzyme was carried out using the pGEX-6p-1 vector. Subsequently, the activity of the purified enzyme was studied by measuring the absorbance change at 340 nm. Finally, the three-dimensional structure was predicted with AlphaFold2. RESULTS Coenzyme screening results confirmed it to be NAD(H) dependent. Substrate specificity test revealed that Sa 7α-HSDH could catalyze taurochenodeoxycholic acid (TCDCA) with catalytic efficiency (kcat/Km) 3.81 S-1 mM-1. The optimum temperature of Sa 7α-HSDH was measured to be 75°C, confirming that it belongs to thermophilic enzymes. Additionally, its thermostability was assessed using an accelerated stability test over 32 hours. The catalytic activity of Sa 7α-HSDH remained largely unchanged for the first 24 hours and retained over 90% of its functionality after 32 hours at 50°C. Sa 7α-HSDH exhibited maximal activity at pH 10. The effect of metal ions-K+, Na+, Mg2+ and Cu2+-on the enzymatic activity of Sa 7α-HSDH was investigated. Only Mg2+ was observed to enhance the enzyme's activity by 27% at a concentration of 300 mM. Neither K+ nor Na+ had a significant influence on activity. Only Cu2+ was found to reduce enzyme activity. CONCLUSION We characterized the thermostable 7α-HSDH, which provides a promising biocatalyst for bioconversion of steroids at high reaction temperatures.
Collapse
Affiliation(s)
- Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Yangyang Cao
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Hongtao Duan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Binyan Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Yuanjun Zhou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Dong Wang
- School of Information Science and Engineering, University of Jinan, Jinan, 250022, China
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Jinan, 250022, China
| |
Collapse
|
16
|
Koşarsoy Ağçeli G. Similarities and differences of nano-sized levan synthesized by Bacillus haynesii at low and high temperatures: Characterization and bioactivity. Int J Biol Macromol 2023; 253:126804. [PMID: 37709216 DOI: 10.1016/j.ijbiomac.2023.126804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/01/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Levan is a biopolymer with many different uses. Temperature is an important parameter in biopolymer synthesis. Herein, levan production was carried out from Bacillus haynesii, a thermophilic microorganism, in the temperature range of 4 °C-95 °C. The highest levan production was measured as 10.9 g/L at 37 °C. The synthesized samples were characterized by FTIR and NMR analysis. The particle size of the levan samples varied between 153 and 824.4 nm at different temperatures. In levan samples produced at high temperatures, the water absorption capacity is higher in accordance with the particle size. Irregularities were observed in the surface pores at temperatures of 60 °C and above. The highest emulsion capacity of 83.4 % was measured in the sample synthesized at 4 °C. The antioxidant activity of all levan samples synthesized at different temperatures was measured as 84 % on average. All synthesized levan samples showed antibacterial effect on pathogenic bacteria. In addition, levan synthesized at 45 °C showed the highest antimicrobial effect on E. coli ATCC 35218 with an inhibition zone of 21.3 ± 1.82 mm. Antimicrobial activity against yeast sample C. albicans, was measured only in levan samples synthesized at 80 °C, 90 °C, 95 °C temperatures. Levan synthesized from Bacillus haynesii at low and high temperatures showed differences in characterization and bioactivity.
Collapse
Affiliation(s)
- Gözde Koşarsoy Ağçeli
- Hacettepe University, Faculty of Science, Department of Biology, Beytepe Campus, 06800 Ankara, Turkey.
| |
Collapse
|
17
|
Goh KM, González-Siso MI, Sani RK. Genomics of extreme environments: unveiling the secrets of survival. Sci Rep 2023; 13:21441. [PMID: 38052842 PMCID: PMC10698157 DOI: 10.1038/s41598-023-48470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Affiliation(s)
- Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor, Malaysia.
| | - María-Isabel González-Siso
- Facultade de Ciencias, CICA-Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, 15071, A Coruña, Spain
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| |
Collapse
|
18
|
Valdez S, de la Vega FV, Pairazaman O, Castellanos R, Esparza M. Hyperthermophile diversity microbes in the Calientes geothermal field, Tacna, Peru. Braz J Microbiol 2023; 54:2927-2937. [PMID: 37801222 PMCID: PMC10689642 DOI: 10.1007/s42770-023-01117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/23/2023] [Indexed: 10/07/2023] Open
Abstract
Hyperthermophile microorganisms have been discovered worldwide, and several studies regarding biodiversity and the potential biotechnological applications have been reported. In this work, we describe for the first time the diversity of hyperthermophile communities in the Calientes Geothermal Field (CGF) located 4400 m above sea level in Tacna Region, Perú. Three hot springs were monitored and showed a temperature around 84 to 88 °C, for the microbiome analyzed was taken by sampling of sediment and water (pH 7.3-7.6). The hyperthermophile diversity was determined by PCR, DGGE, and DNA sequencing. The sediments analyzed showed a greater diversity than water samples. Sediments showed a more abundant population of bacteria than archaea, with the presence of at least 9 and 5 phylotypes, respectively. Most interestingly, in some taxa of bacteria (Bacillus) and archaea (Haloarcula and Halalkalicoccus), any of operational taxonomic units (OTUs) have not been observed before in hyperthermophile environments. Our results provide insight in the hyperthermophile diversity and reveal the possibility to develop new biotechnological applications based on the kind of environments.
Collapse
Affiliation(s)
- Silvia Valdez
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú
| | - Fabián Veliz de la Vega
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaiso-Chile Av. Brasil 2085, Valparaíso, Chile.
| | - Omar Pairazaman
- Laboratorio Regional de Salud Pública (Diresa), Cajamarca, Perú
| | - Roberto Castellanos
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú
| | - Mario Esparza
- Universidad Privada Antenor Orrego, Facultad de Medicina Humana, Laboratorio de Genética, Reproducción y Biología Molecular, Trujillo, Perú
| |
Collapse
|
19
|
Rekadwad BN, Li WJ, Gonzalez JM, Punchappady Devasya R, Ananthapadmanabha Bhagwath A, Urana R, Parwez K. Extremophiles: the species that evolve and survive under hostile conditions. 3 Biotech 2023; 13:316. [PMID: 37637002 PMCID: PMC10457277 DOI: 10.1007/s13205-023-03733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Extremophiles possess unique cellular and molecular mechanisms to assist, tolerate, and sustain their lives in extreme habitats. These habitats are dominated by one or more extreme physical or chemical parameters that shape existing microbial communities and their cellular and genomic features. The diversity of extremophiles reflects a long list of adaptations over millions of years. Growing research on extremophiles has considerably uncovered and increased our understanding of life and its limits on our planet. Many extremophiles have been greatly explored for their application in various industrial processes. In this review, we focused on the characteristics that microorganisms have acquired to optimally thrive in extreme environments. We have discussed cellular and molecular mechanisms involved in stability at respective extreme conditions like thermophiles, psychrophiles, acidophiles, barophiles, etc., which highlight evolutionary aspects and the significance of extremophiles for the benefit of mankind.
Collapse
Affiliation(s)
- Bhagwan Narayan Rekadwad
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
- National Centre for Microbial Resource (NCMR), DBT-National Centre for Cell Science (DBT-NCCS), Savitribai Phule Pune University Campus, Ganeshkhind Road, Pune, 411007 Maharashtra India
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Ganeshkhind Road, Pune, 411007 Maharashtra India
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Juan M. Gonzalez
- Microbial Diversity and Microbiology of Extreme Environments Research Group, Agencia Estatal Consejo Superior De Investigaciones Científicas, IRNAS-CSIC, Avda. Reina Mercedes, 10, 41012 Seville, Spain
| | - Rekha Punchappady Devasya
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
| | - Arun Ananthapadmanabha Bhagwath
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
- Yenepoya Institute of Arts, Science, Commerce and Management, A Constituent Unit of Yenepoya (Deemed to be University), Yenepoya Complex, Balmatta, Mangalore, 575002 Karnataka India
| | - Ruchi Urana
- Department of Environmental Science and Engineering, Faculty of Environmental and Bio Sciences and Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001 India
| | - Khalid Parwez
- Department of Microbiology, Shree Narayan Medical Institute and Hospital, Saharsa, Bihar 852201 India
| |
Collapse
|
20
|
Cai Z, Li M, Zhu Z, Wang X, Huang Y, Li T, Gong H, Yan M. Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors. Microorganisms 2023; 11:1661. [PMID: 37512834 PMCID: PMC10386651 DOI: 10.3390/microorganisms11071661] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
Plastic and microplastic pollution has caused a great deal of ecological problems because of its persistence and potential adverse effects on human health. The degradation of plastics through biological processes is of great significance for ecological health, therefore, the feasibility of plastic degradation by microorganisms has attracted a lot of attention. This study comprises a preliminary discussion on the biodegradation mechanism and the advantages and roles of different bacterial enzymes, such as PET hydrolase and PCL-cutinase, in the degradation of different polymers, such as PET and PCL, respectively. With a particular focus on their modes of action and potential enzymatic mechanisms, this review sums up studies on the biological degradation of plastics and microplastics related to mechanisms and influencing factors, along with their enzymes in enhancing the degradation of synthetic plastics in the process. In addition, biodegradation of plastic is also affected by plastic additives and plasticizers. Plasticizers and additives in the composition of plastics can cause harmful impacts. To further improve the degradation efficiency of polymers, various pretreatments to improve the efficiency of biodegradation, which can cause a significant reduction in toxic plastic pollution, were also preliminarily discussed here. The existing research and data show a large number of microorganisms involved in plastic biodegradation, though their specific mechanisms have not been thoroughly explored yet. Therefore, there is a significant potential for employing various bacterial strains for efficient degradation of plastics to improve human health and safety.
Collapse
Affiliation(s)
- Zeming Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Minqian Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Ziying Zhu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Xiaocui Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Yuanyin Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Tianmu Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
21
|
Egas C, Galbán-Malagón C, Castro-Nallar E, Molina-Montenegro MA. Role of Microbes in the degradation of organic semivolatile compounds in polar ecosystems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163046. [PMID: 36965736 DOI: 10.1016/j.scitotenv.2023.163046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
The Arctic and the Antarctic Continent correspond to two eco-regions with extreme climatic conditions. These regions are exposed to the presence of contaminants resulting from human activity (local and global), which, in turn, represent a challenge for life forms in these environments. Anthropogenic pollution by semi-volatile organic compounds (SVOCs) in polar ecosystems has been documented since the 1960s. Currently, various studies have shown the presence of SVOCs and their bioaccumulation and biomagnification in the polar regions with negative effects on biodiversity and the ecosystem. Although the production and use of these compounds has been regulated, their persistence continues to threaten biodiversity and the ecosystem. Here, we summarize the current literature regarding microbes and SVOCs in polar regions and pose that bioremediation by native microorganisms is a feasible strategy to mitigate the presence of SVOCs. Our systematic review revealed that microbial communities in polar environments represent a wide reservoir of biodiversity adapted to extreme conditions, found both in terrestrial and aquatic environments, freely or in association with vegetation. Microorganisms adapted to these environments have the potential for biodegradation of SVOCs through a variety of genes encoding enzymes with the capacity to metabolize SVOCs. We suggest that a comprehensive approach at the molecular and ecological level is required to mitigate SVOCs presence in these regions. This is especially patent when considering that SVOCs degrade at slow rates and possess the ability to accumulate in polar ecosystems. The implications of SVOC degradation are relevant for the preservation of polar ecosystems with consequences at a global level.
Collapse
Affiliation(s)
- Claudia Egas
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile
| | - Cristóbal Galbán-Malagón
- Centro de Genómica, Ecología y Medio Ambiente (GEMA), Universidad Mayor, Campus Huechuraba, Santiago, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA
| | - Eduardo Castro-Nallar
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Marco A Molina-Montenegro
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile; Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
22
|
González F, Santander C, Ruiz A, Pérez R, Moreira J, Vidal G, Aroca R, Santos C, Cornejo P. Inoculation with Actinobacteria spp. Isolated from a Hyper-Arid Environment Enhances Tolerance to Salinity in Lettuce Plants ( Lactuca sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2018. [PMID: 37653935 PMCID: PMC10222102 DOI: 10.3390/plants12102018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 08/31/2023]
Abstract
Irrigated agriculture is responsible for a third of global agricultural production, but the overuse of water resources and intensification of farming practices threaten its sustainability. The use of saline water in irrigation has become an alternative in areas subjected to frequent drought, but this practice affects plant growth due to osmotic impact and excess of ions. Plant-growth-promoting rhizobacteria (PGPR) can mitigate the negative impacts of salinity and other abiotic factors on crop yields. Actinobacteria from the hyper-arid Atacama Desert could increase the plant tolerance to salinity, allowing their use as biofertilizers for lettuce crops using waters with high salt contents. In this work, rhizosphere samples of halophytic Metharme lanata were obtained from Atacama Desert, and actinobacteria were isolated and identified by 16S gene sequencing. The PGPR activities of phosphate solubilization, nitrogen fixation, and the production of siderophore and auxin were assessed at increasing concentrations of NaCl, as well as the enhancement of salt tolerance in lettuce plants irrigated with 100 mM of NaCl. Photosynthesis activity and chlorophyll content, proline content, lipid peroxidation, cation and P concentration, and the identification and quantification of phenolic compounds were assessed. The strains S. niveoruber ATMLC132021 and S. lienomycini ATMLC122021 were positive for nitrogen fixation and P solubilization activities and produced auxin up to 200 mM NaCl. In lettuce plants, both strains were able to improve salt stress tolerance by increasing proline contents, carotenoids, chlorophyll, water use efficiency (WUE), stomatal conductance (gs), and net photosynthesis (A), concomitantly with the overproduction of the phenolic compound dicaffeoylquinic acid. All these traits were positively correlated with the biomass production under saltwater irrigation, suggesting its possible use as bioinoculants for the agriculture in areas where the water resources are scarce and usually with high salt concentrations.
Collapse
Affiliation(s)
- Felipe González
- Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile;
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
| | - Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
- Grupo de Ingeniería Ambiental y Biotecnología, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción 4070411, Chile;
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
| | - Rodrigo Pérez
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
| | - Jorge Moreira
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
| | - Gladys Vidal
- Grupo de Ingeniería Ambiental y Biotecnología, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción 4070411, Chile;
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain;
| | - Cledir Santos
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (A.R.); (R.P.); (J.M.); (C.S.)
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| |
Collapse
|
23
|
Torres-Rojas F, Hernández P, Vargas IT, Nancucheo I. Electrotrophic perchlorate reduction by a psychrotolerant acidophile isolated from an acid rock drainage in Antarctica. Bioelectrochemistry 2023; 152:108458. [PMID: 37178525 DOI: 10.1016/j.bioelechem.2023.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
A new extremophilic isolate (USS-CCA7) was obtained from an acidic environment (pH ∼ 3.2) in Antarctica phylogenetically related to Acidithiobacillus ferrivorans; its electrotrophic capacities were evaluated in a three-electrode electrochemical cell. Cyclic voltammetry showed cathodic peaks of -428 mV, -536 mV, and -634 mV (vs. Ag/AgCl; pH = 1.7; 3 M KCl) for nitrate, oxygen, and perchlorate, respectively. The catalytic role of this microorganism was also observed by a decrease in the charge transfer resistance registered via electrochemical impedance spectroscopy. Five-day chronoamperometry of culture at pH = 1.7, USS-CCA7 showed a perchlorate removal rate of 19.106 ± 1.689 mgL-1 day-1 and a cathodic efficiency of 112 ± 5.2 %. Growth on electrodes was observed by epifluorescence and scanning electron microscopy. Interestingly, the results showed that toward higher pH, the cathodic peak of perchlorate is reduced in the voltammetric profiles. This study highlights the use of this psychrotolerant acidophile for the bioremediation of harsh perchlorate-pressured terrestrial under acidic conditions.
Collapse
Affiliation(s)
- Felipe Torres-Rojas
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Pedro Hernández
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile
| | - Ivan Nancucheo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile.
| |
Collapse
|
24
|
Gajardo HA, Gómez-Espinoza O, Boscariol Ferreira P, Carrer H, Bravo LA. The Potential of CRISPR/Cas Technology to Enhance Crop Performance on Adverse Soil Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091892. [PMID: 37176948 PMCID: PMC10181257 DOI: 10.3390/plants12091892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Worldwide food security is under threat in the actual scenery of global climate change because the major staple food crops are not adapted to hostile climatic and soil conditions. Significant efforts have been performed to maintain the actual yield of crops, using traditional breeding and innovative molecular techniques to assist them. However, additional strategies are necessary to achieve the future food demand. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) technology, as well as its variants, have emerged as alternatives to transgenic plant breeding. This novelty has helped to accelerate the necessary modifications in major crops to confront the impact of abiotic stress on agriculture systems. This review summarizes the current advances in CRISPR/Cas applications in crops to deal with the main hostile soil conditions, such as drought, flooding and waterlogging, salinity, heavy metals, and nutrient deficiencies. In addition, the potential of extremophytes as a reservoir of new molecular mechanisms for abiotic stress tolerance, as well as their orthologue identification and edition in crops, is shown. Moreover, the future challenges and prospects related to CRISPR/Cas technology issues, legal regulations, and customer acceptance will be discussed.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| | - Olman Gómez-Espinoza
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Pedro Boscariol Ferreira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| |
Collapse
|
25
|
Rahman Z, Thomas L, Chetri SPK, Bodhankar S, Kumar V, Naidu R. A comprehensive review on chromium (Cr) contamination and Cr(VI)-resistant extremophiles in diverse extreme environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59163-59193. [PMID: 37046169 DOI: 10.1007/s11356-023-26624-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
Chromium (Cr) compounds are usually toxins and exist abundantly in two different forms, Cr(VI) and Cr(III), in nature. Their contamination in any environment is a major problem. Many extreme environments including cold climate, warm climate, acidic environment, basic/alkaline environment, hypersaline environment, radiation, drought, high pressure, and anaerobic conditions have accumulated elevated Cr contamination. These harsh physicochemical conditions associated with Cr(VI) contamination damage biological systems in various ways. However, several unique microorganisms belonging to phylogenetically distant taxa (bacteria, fungi, and microalgae) owing to different and very distinct physiological characteristics can withstand extremities of Cr(VI) in different physicochemical environments. These challenging situations offer great potential and extended proficiencies in extremophiles for environmental and biotechnological applications. On these issues, the present review draws attention to Cr(VI) contamination from diverse extreme environmental regions. The study gives a detailed account on the ecology and biogeography of Cr(VI)-resistant microorganisms in inhospitable environments, and their use for detoxifying Cr(VI) and other applications. The study also focuses on physiological, multi-omics, and genetic engineering approaches of Cr(VI)-resistant extremophiles.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, India.
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Siva P K Chetri
- Department of Botany, Dimoria College, Gauhati University, Guwahati, Assam, India
| | - Shrey Bodhankar
- Department of Agriculture Microbiology, School of Agriculture Sciences, Anurag University, Hyderabad, Telangana, India
| | - Vikas Kumar
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Newcastle, Australia
| |
Collapse
|
26
|
Hespeels B, Fontaneto D, Cornet V, Penninckx S, Berthe J, Bruneau L, Larrick JW, Rapport E, Bailly J, Debortoli N, Iakovenko N, Janko K, Heuskin AC, Lucas S, Hallet B, Van Doninck K. Back to the roots, desiccation and radiation resistances are ancestral characters in bdelloid rotifers. BMC Biol 2023; 21:72. [PMID: 37024917 PMCID: PMC10080820 DOI: 10.1186/s12915-023-01554-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Bdelloid rotifers are micro-invertebrates distributed worldwide, from temperate latitudes to the most extreme areas of the planet like Antarctica or the Atacama Desert. They have colonized any habitat where liquid water is temporarily available, including terrestrial environments such as soils, mosses, and lichens, tolerating desiccation and other types of stress such as high doses of ionizing radiation (IR). It was hypothesized that bdelloid desiccation and radiation resistance may be attributed to their potential ability to repair DNA double-strand breaks (DSBs). Here, these properties are investigated and compared among nine bdelloid species collected from both mild and harsh habitats, addressing the correlation between the ability of bdelloid rotifers to survive desiccation and their capacity to repair massive DNA breakage in a phylogenetically explicit context. Our research includes both specimens isolated from habitats that experience frequent desiccation (at least 1 time per generation), and individuals sampled from habitats that rarely or never experienced desiccation. RESULTS Our analysis reveals that DNA repair prevails in somatic cells of both desiccation-tolerant and desiccation-sensitive bdelloid species after exposure to X-ray radiation. Species belonging to both categories are able to withstand high doses of ionizing radiation, up to 1000 Gy, without experiencing any negative effects on their survival. However, the fertility of two desiccation-sensitive species, Rotaria macrura and Rotaria rotatoria, was more severely impacted by low doses of radiation than that of desiccation-resistant species. Surprisingly, the radioresistance of desiccation-resistant species is not related to features of their original habitat. Indeed, bdelloids isolated from Atacama Desert or Antarctica were not characterized by a higher radioresistance than species found in more temperate environments. CONCLUSIONS Tolerance to desiccation and radiation are supported as ancestral features of bdelloid rotifers, with a group of species of the genus Rotaria having lost this trait after colonizing permanent water habitats. Together, our results provide a comprehensive overview of the evolution of desiccation and radiation resistance among bdelloid rotifers.
Collapse
Affiliation(s)
- Boris Hespeels
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium.
| | - Diego Fontaneto
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), Verbania Pallanza, Italy
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics AS CR, Rumburská 89, Liběchov, 277 21, Czech Republic
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jérémy Berthe
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
- Research Unit in Molecular Biology and Evolution, DBO, Université libre de Bruxelles (ULB), 1050, Brussels, Belgium
| | - Lucie Bruneau
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - James W Larrick
- Panorama Research Institute, Sunnyvale, CA, USA
- SETI Institute, Mountain View, CA, USA
| | - Eloïse Rapport
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Jérémie Bailly
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Nicolas Debortoli
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Nataliia Iakovenko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics AS CR, Rumburská 89, Liběchov, 277 21, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ - 165 21 Praha 6, Suchdol, Czech Republic
- Faculty of Science, University of Ostrava, Chittussiho 10, 71000, Ostrava, Czech Republic
| | - Karel Janko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics AS CR, Rumburská 89, Liběchov, 277 21, Czech Republic
- Faculty of Science, University of Ostrava, Chittussiho 10, 71000, Ostrava, Czech Republic
| | - Anne-Catherine Heuskin
- Laboratory of Analysis by Nuclear Reactions (LARN), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Stéphane Lucas
- Laboratory of Analysis by Nuclear Reactions (LARN), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Bernard Hallet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, B-1348, Louvain-la-Neuve, Belgium
| | - Karine Van Doninck
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium.
- Research Unit in Molecular Biology and Evolution, DBO, Université libre de Bruxelles (ULB), 1050, Brussels, Belgium.
| |
Collapse
|
27
|
Naykodi A, Patankar SC, Thorat BN. Alkaliphiles for comprehensive utilization of red mud (bauxite residue)-an alkaline waste from the alumina refinery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9350-9368. [PMID: 36480139 DOI: 10.1007/s11356-022-24190-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The mining industry has powered the human endeavor to make life more innovative, flexible, and comfortable. However, it has also led to concerns due to the increasing amount of mining and associated industrial waste. Special attention is highly desired for its proper management and safe disposal in the environment. The problem has only augmented with the increase in the mining costs because of the investments needed for ecological remediation after the mining operation. It is pertinent that the targeted technologies need to be developed to utilize mining and associated industrial waste as a secondary resource to ensure sustainable mining operations. Every perceived waste is a valuable resource that is needed to be utilized to create additional value. In this review, the case of alkaline bauxite residue (red mud)-alumina refinery waste has been discussed at length. The highlight of the proposed work is to understand the importance of alkaliphile-assisted biomining-a sustainable alternative to conventional metal recovery processes. Along with the recovery of metals, pH reduction of red mud is possible through biomining, which ultimately paves the way for its complete utilization. The unique adaptation strategies of alkaliphiles make them more suitable for biomining of red mud through bioleaching, biosorption, and bioaccumulation, which have been discussed here. Furthermore, we have focused on the potential of the indigenous microflora of red mud for metal recovery in addition to its neutralization. The study of indigenous alkaliphiles from red mud, including its isolation and propagation, is crucial for the industrial-scale application of alkaliphile-based technology and has been emphasized.
Collapse
Affiliation(s)
- Ankita Naykodi
- Department of Biotechnology, Institute of Chemical Technology-IndianOil Odisha Campus, Bhubaneswar, 751013, Odisha, India
| | - Saurabh C Patankar
- Department of Chemical Engineering, Institute of Chemical Technology-IndianOil Odisha Campus, Bhubaneswar, 751013, Odisha, India
| | - Bhaskar N Thorat
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
28
|
Rolli E, Marasco R, Fusi M, Scaglia B, Schubotz F, Mapelli F, Ciccazzo S, Brusetti L, Trombino L, Tambone F, Adani F, Borin S, Daffonchio D. Environmental micro-niche filtering shapes bacterial pioneer communities during primary colonization of a Himalayas' glacier forefield. Environ Microbiol 2022; 24:5998-6016. [PMID: 36325730 PMCID: PMC10099744 DOI: 10.1111/1462-2920.16268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The pedogenesis from the mineral substrate released upon glacier melting has been explained with the succession of consortia of pioneer microorganisms, whose structure and functionality are determined by the environmental conditions developing in the moraine. However, the microbiome variability that can be expected in the environmentally heterogeneous niches occurring in a moraine at a given successional stage is poorly investigated. In a 50 m2 area in the forefield of the Lobuche glacier (Himalayas, 5050 m above sea level), we studied six sites of primary colonization presenting different topographical features (orientation, elevation and slope) and harbouring greyish/dark biological soil crusts (BSCs). The spatial vicinity of the sites opposed to their topographical differences, allowed us to examine the effect of environmental conditions independently from the time of deglaciation. The bacterial microbiome diversity and their co-occurrence network, the bacterial metabolisms predicted from 16S rRNA gene high-throughput sequencing, and the microbiome intact polar lipids were investigated in the BSCs and the underlying sediment deep layers (DLs). Different bacterial microbiomes inhabited the BSCs and the DLs, and their composition varied among sites, indicating a niche-specific role of the micro-environmental conditions in the bacterial communities' assembly. In the heterogeneous sediments of glacier moraines, physico-chemical and micro-climatic variations at the site-spatial scale are crucial in shaping the microbiome microvariability and structuring the pioneer bacterial communities during pedogenesis.
Collapse
Affiliation(s)
- Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Centre for Conservation and Restoration Science, Edinburgh Napier University, Edinburgh, UK
| | - Barbara Scaglia
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Gruppo Ricicla Lab, University of Milan, Milan, Italy
| | - Florence Schubotz
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Sonia Ciccazzo
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Luca Trombino
- Department of Earth Sciences 'Ardito Desio', University of Milan, Milan, Italy
| | - Fulvia Tambone
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Gruppo Ricicla Lab, University of Milan, Milan, Italy
| | - Fabrizio Adani
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Gruppo Ricicla Lab, University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
29
|
Castro D, Concha C, Jamett F, Ibáñez C, Hurry V. Soil Microbiome Influences on Seedling Establishment and Growth of Prosopis chilensis and Prosopis tamarugo from Northern Chile. PLANTS (BASEL, SWITZERLAND) 2022; 11:2717. [PMID: 36297741 PMCID: PMC9610084 DOI: 10.3390/plants11202717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Prosopis chilensis and Prosopis tamarugo, two woody legumes adapted to the arid regions of Chile, have a declining distribution due to the lack of new seedling establishment. This study investigated the potential of both species to establish in soil collected from four locations in Chile, within and outside the species distribution, and to assess the role of the root-colonizing microbiome in seedling establishment and growth. Seedling survival, height, and water potential were measured to assess establishment success and growth. 16S and ITS2 amplicon sequencing was used to characterize the composition of microbial communities from the different soils and to assess the ability of both Prosopis species to recruit bacteria and fungi from the different soils. Both species were established on three of the four soils. P. tamarugo seedlings showed significantly higher survival in foreign soils and maintained significantly higher water potential in Mediterranean soils. Amplicon sequencing showed that the four soils harbored distinct microbial communities. Root-associated microbial composition indicated that P. chilensis preferentially recruited mycorrhizal fungal partners while P. tamarugo recruited abundant bacteria with known salt-protective functions. Our results suggest that a combination of edaphic properties and microbial soil legacy are potential factors mediating the Prosopis establishment success in different soils.
Collapse
Affiliation(s)
- David Castro
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90736 Umeå, Sweden
| | - Christopher Concha
- Laboratorio de Silvogenómica y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena 1720236, Chile
| | - Fabiola Jamett
- Laboratorio de Fitoquímica y Productos Naturales, Departamento de Química, Facultad de Ciencias, Universidad de La Serena, La Serena 1720236, Chile
| | - Cristian Ibáñez
- Laboratorio de Silvogenómica y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena 1720236, Chile
| | - Vaughan Hurry
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90736 Umeå, Sweden
| |
Collapse
|
30
|
Hernández-Fernández G, Galán B, Carmona M, Castro L, García JL. Transcriptional response of the xerotolerant Arthrobacter sp. Helios strain to PEG-induced drought stress. Front Microbiol 2022; 13:1009068. [PMID: 36312951 PMCID: PMC9608346 DOI: 10.3389/fmicb.2022.1009068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
A new bacterial strain has been isolated from the microbiome of solar panels and classified as Arthrobacter sp. Helios according to its 16S rDNA, positioning it in the “Arthrobacter citreus group.” The isolated strain is highly tolerant to desiccation, UV radiation and to the presence of metals and metalloids, while it is motile and capable of growing in a variety of carbon sources. These characteristics, together with observation that Arthrobacter sp. Helios seems to be permanently prepared to handle the desiccation stress, make it very versatile and give it a great potential to use it as a biotechnological chassis. The new strain genome has been sequenced and its analysis revealed that it is extremely well poised to respond to environmental stresses. We have analyzed the transcriptional response of this strain to PEG6000-mediated arid stress to investigate the desiccation resistance mechanism. Most of the induced genes participate in cellular homeostasis such as ion and osmolyte transport and iron scavenging. Moreover, the greatest induction has been found in a gene cluster responsible for biogenic amine catabolism, suggesting their involvement in the desiccation resistance mechanism in this bacterium.
Collapse
Affiliation(s)
- Gabriel Hernández-Fernández
- Department of Microbial and Plant Biotechnology, Margarita Salas Centre for Biological Research-CSIC, Madrid, Spain
| | - Beatriz Galán
- Department of Microbial and Plant Biotechnology, Margarita Salas Centre for Biological Research-CSIC, Madrid, Spain
| | - Manuel Carmona
- Department of Microbial and Plant Biotechnology, Margarita Salas Centre for Biological Research-CSIC, Madrid, Spain
| | - Laura Castro
- Department of Chemical and Materials Engineering, Complutense University of Madrid, Madrid, Spain
| | - José Luis García
- Department of Microbial and Plant Biotechnology, Margarita Salas Centre for Biological Research-CSIC, Madrid, Spain
- *Correspondence: José Luis García,
| |
Collapse
|
31
|
Seeger M, Turner RJ, González M. An exploration of microbial response to stressors with Prof. Claudio C. Vásquez Guzmán. Biol Res 2022; 55:25. [PMID: 35933462 PMCID: PMC9356404 DOI: 10.1186/s40659-022-00393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaiso, Chile.
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| |
Collapse
|
32
|
Kumar A, Singh AK, Bilal M, Chandra R. Extremophilic Ligninolytic Enzymes: Versatile Biocatalytic Tools with Impressive Biotechnological Potential. Catal Letters 2022. [DOI: 10.1007/s10562-021-03800-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Aragaw TA, Bogale FM, Gessesse A. Adaptive Response of Thermophiles to Redox Stress and Their Role in the Process of dye Degradation From Textile Industry Wastewater. Front Physiol 2022; 13:908370. [PMID: 35795652 PMCID: PMC9251311 DOI: 10.3389/fphys.2022.908370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 01/28/2023] Open
Abstract
Release of dye-containing textile wastewater into the environment causes severe pollution with serious consequences on aquatic life. Bioremediation of dyes using thermophilic microorganisms has recently attracted attention over conventional treatment techniques. Thermophiles have the natural ability to survive under extreme environmental conditions, including high dye concentration, because they possess stress response adaptation and regulation mechanisms. Therefore, dye detoxification by thermophiles could offer enormous opportunities for bioremediation at elevated temperatures. In addition, the processes of degradation generate reactive oxygen species (ROS) and subject cells to oxidative stress. However, thermophiles exhibit better adaptation to resist the effects of oxidative stress. Some of the major adaptation mechanisms of thermophiles include macromolecule repair system; enzymes such as superoxide dismutase, catalase, and glutathione peroxidase; and non-enzymatic antioxidants like extracellular polymeric substance (EPSs), polyhydroxyalkanoates (PHAs), etc. In addition, different bacteria also possess enzymes that are directly involved in dye degradation such as azoreductase, laccase, and peroxidase. Therefore, through these processes, dyes are first degraded into smaller intermediate products finally releasing products that are non-toxic or of low toxicity. In this review, we discuss the sources of oxidative stress in thermophiles, the adaptive response of thermophiles to redox stress and their roles in dye removal, and the regulation and crosstalk between responses to oxidative stress.
Collapse
Affiliation(s)
- Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- *Correspondence: Tadele Assefa Aragaw,
| | - Fekadu Mazengiaw Bogale
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Amare Gessesse
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
34
|
Banerjee A, Mohammed Breig SJ, Gómez A, Sánchez-Arévalo I, González-Faune P, Sarkar S, Bandopadhyay R, Vuree S, Cornejo J, Tapia J, Bravo G, Cabrera-Barjas G. Optimization and Characterization of a Novel Exopolysaccharide from Bacillus haynesii CamB6 for Food Applications. Biomolecules 2022; 12:834. [PMID: 35740959 PMCID: PMC9221024 DOI: 10.3390/biom12060834] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/13/2022] Open
Abstract
Extremophilic microorganisms often produce novel bioactive compounds to survive under harsh environmental conditions. Exopolysaccharides (EPSs), a constitutive part of bacterial biofilm, are functional biopolymers that act as a protecting sheath to the extremophilic bacteria and are of high industrial value. In this study, we elucidate a new EPS produced by thermophilic Bacillus haynesii CamB6 from a slightly acidic (pH 5.82) Campanario hot spring (56.4 °C) located in the Central Andean Mountains of Chile. Physicochemical properties of the EPS were characterized by different techniques: Scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS), Atomic Force Microscopy (AFM), High-Performance Liquid Chromatography (HPLC), Gel permeation chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), 1D and 2D Nuclear Magnetic Resonance (NMR), and Thermogravimetric analysis (TGA). The EPS demonstrated amorphous surface roughness composed of evenly distributed macromolecular lumps. GPC and HPLC analysis showed that the EPS is a low molecular weight heteropolymer composed of mannose (66%), glucose (20%), and galactose (14%). FTIR analysis demonstrated the polysaccharide nature (-OH groups, Acetyl groups, and pyranosic ring structure) and the presence of different glycosidic linkages among sugar residues, which was further confirmed by NMR spectroscopic analyses. Moreover, D-mannose α-(1→2) and α-(1→4) linkages prevail in the CamB6 EPS structure. TGA revealed the high thermal stability (240 °C) of the polysaccharide. The functional properties of the EPS were evaluated for food industry applications, specifically as an antioxidant and for its emulsification, water-holding (WHC), oil-holding (OHC), and flocculation capacities. The results suggest that the study EPS can be a useful additive for the food-processing industry.
Collapse
Affiliation(s)
- Aparna Banerjee
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca 3466706, Chile;
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3466706, Chile;
| | - Sura Jasem Mohammed Breig
- Department of Biochemical Engineering, Al-khawarizmi Collage of Engineering, University of Baghdad, Baghdad 10011, Iraq;
| | - Aleydis Gómez
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3466706, Chile;
| | - Ignacio Sánchez-Arévalo
- Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3466706, Chile; (I.S.-A.); (P.G.-F.)
| | - Patricio González-Faune
- Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3466706, Chile; (I.S.-A.); (P.G.-F.)
| | - Shrabana Sarkar
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca 3466706, Chile;
- UGC Center of Advanced Study, Department of Botany, The University of Burdwan, Burdwan 713104, India;
| | - Rajib Bandopadhyay
- UGC Center of Advanced Study, Department of Botany, The University of Burdwan, Burdwan 713104, India;
| | - Sugunakar Vuree
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Jorge Cornejo
- Institute of Chemistry and Natural Resources, Universidad de Talca, Talca 3460000, Chile; (J.C.); (J.T.)
| | - Jaime Tapia
- Institute of Chemistry and Natural Resources, Universidad de Talca, Talca 3460000, Chile; (J.C.); (J.T.)
| | - Gaston Bravo
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, Coronel 3349001, Chile;
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, Coronel 3349001, Chile;
| |
Collapse
|
35
|
Shirsalimian MS, Mazidi SM, Amoozegar MA. The Lut Desert and Its Microbial Diversity: Recent Studies and Future Research. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Kochhar N, I․K K, Shrivastava S, Ghosh A, Rawat VS, Sodhi KK, Kumar M. Perspectives on the microorganism of extreme environments and their applications. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100134. [PMID: 35909612 PMCID: PMC9325743 DOI: 10.1016/j.crmicr.2022.100134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Extremophiles are organisms that can survive and thrive in conditions termed as "extreme" by human beings. Conventional methods cannot be applied under extreme conditions like temperature and pH fluctuations, high salinity, etc. for a variety of reasons. Extremophiles can function and are adapted to thrive in these environments and are sustainable, cheaper, and efficient, therefore, they serve as better alternatives to the traditional methods. They adapt to these environments with biochemical and physiological changes and produce products like extremolytes, extremozymes, biosurfactants, etc., which are found to be useful in a wide range of industries like sustainable agriculture, food, cosmetics, and pharmaceuticals. These products also play a crucial role in bioremediation, production of biofuels, biorefinery, and astrobiology. This review paper comprehensively lists out the current applications of extremophiles and their products in various industries and explores the prospects of the same. They help us understand the underlying basis of biological mechanisms exploring the boundaries of life and thus help us understand the origin and evolution of life on Earth. This helps us in the research for extra-terrestrial life and space exploration. The structure and biochemical properties of extremophiles along with any possible long-term effects of their applications need to be investigated further.
Collapse
Affiliation(s)
- Nikita Kochhar
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
| | - Kavya I․K
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
| | | | - Anshika Ghosh
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
| | | | - Kushneet Kaur Sodhi
- Department of Zoology, Hansraj College, University of Delhi, Delhi-110007, India
- Department of Zoology, University of Delhi, Delhi-110007, India
| | - Mohit Kumar
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
- Department of Zoology, University of Delhi, Delhi-110007, India
| |
Collapse
|
37
|
Zannier F, Portero LR, Douki T, Gärtner W, Farías ME, Albarracín VH. Proteomic Signatures of Microbial Adaptation to the Highest Ultraviolet-Irradiation on Earth: Lessons From a Soil Actinobacterium. Front Microbiol 2022; 13:791714. [PMID: 35369494 PMCID: PMC8965627 DOI: 10.3389/fmicb.2022.791714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
In the Central Andean region in South America, high-altitude ecosystems (3500-6000 masl) are distributed across Argentina, Chile, Bolivia, and Peru, in which poly-extremophilic microbes thrive under extreme environmental conditions. In particular, in the Puna region, total solar irradiation and UV incidence are the highest on Earth, thus, restraining the physiology of individual microorganisms and the composition of microbial communities. UV-resistance of microbial strains thriving in High-Altitude Andean Lakes was demonstrated and their mechanisms were partially characterized by genomic analysis, biochemical and physiological assays. Then, the existence of a network of physiological and molecular mechanisms triggered by ultraviolet light exposure was hypothesized and called "UV-resistome". It includes some or all of the following subsystems: (i) UV sensing and effective response regulators, (ii) UV-avoidance and shielding strategies, (iii) damage tolerance and oxidative stress response, (iv) energy management and metabolic resetting, and (v) DNA damage repair. Genes involved in the described UV-resistome were recently described in the genome of Nesterenkonia sp. Act20, an actinobacterium which showed survival to high UV-B doses as well as efficient photorepairing capability. The aim of this work was to use a proteomic approach together with photoproduct measurements to help dissecting the molecular events involved in the adaptive response of a model High-Altitude Andean Lakes (HAAL) extremophilic actinobacterium, Nesterenkonia sp. Act20, under artificial UV-B radiation. Our results demonstrate that UV-B exposure induced over-abundance of a well-defined set of proteins while recovery treatments restored the proteomic profiles present before the UV-challenge. The proteins involved in this complex molecular network were categorized within the UV-resistome subsystems: damage tolerance and oxidative stress response, energy management and metabolic resetting, and DNA damage repair.
Collapse
Affiliation(s)
- Federico Zannier
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Luciano R. Portero
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Thierry Douki
- Université Grenoble Alpes, Commissariat a l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Institut de Recherche Interdisciplinaire de Grenoble–Systèmes Moléculaires et nanoMatériaux p our l’Énergie et la Santé, Grenoble, France
| | - Wolfgang Gärtner
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - María E. Farías
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Virginia H. Albarracín
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
38
|
Chaudhary S, Yadav S, Singh R, Sadhotra C, Patil SA. Extremophilic electroactive microorganisms: Promising biocatalysts for bioprocessing applications. BIORESOURCE TECHNOLOGY 2022; 347:126663. [PMID: 35017088 DOI: 10.1016/j.biortech.2021.126663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Electroactive microorganisms (EAMs) use extracellular electron transfer (EET) processes to access insoluble electron donors or acceptors in cellular respiration. These are used in developing microbial electrochemical technologies (METs) for biosensing and bioelectronics applications and the valorization of liquid and gaseous wastes. EAMs from extreme environments can be useful to overcome the existing limitations of METs operated with non-extreme microorganisms. Studying extreme EAMs is also necessary to improve understanding of respiratory processes involving EET. This article first discusses the advantages of using extreme EAMs in METs and summarizes the diversity of EAMs from different extreme environments. It is followed by a detailed discussion on their use as biocatalysts in various bioprocessing applications via bioelectrochemical systems. Finally, the challenges associated with operating METs under extreme conditions and promising research opportunities on fundamental and applied aspects of extreme EAMs are presented.
Collapse
Affiliation(s)
- Srishti Chaudhary
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Sukrampal Yadav
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Ramandeep Singh
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Chetan Sadhotra
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Sunil A Patil
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India.
| |
Collapse
|
39
|
Stress Dependent Biofilm Formation and Bioactive Melanin Pigment Production by a Thermophilic Bacillus Species from Chilean Hot Spring. Polymers (Basel) 2022; 14:polym14040680. [PMID: 35215592 PMCID: PMC8880475 DOI: 10.3390/polym14040680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Thermophilic bacteria able to survive extreme temperature stress are of great biotechnological interest due to their extracellular production of bioactive molecules as a part of a survival strategy, or by intracellular modifications. In the present study, thermophilic Bacillus haynesii CamB6, isolated from a Chilean hot spring, was studied for the formation of different stress response molecules. The polymeric pigment produced by the bacterial strain was characterized by different physicochemical techniques. On exposure to ranges of temperature (50–60 °C), pH (5.0–7.0), and sources of nitrogen and carbon (1–5 g·L−1), the bacteria responded with a biofilm network formation in a hydrophobic polystyrene surface. Biofilm formation under fed-batch conditions was also statistically validated. The bacteria showed a planktonic pellicle network formation in the presence of induced hypoxia and salinity stress (19.45 g·L−1) under static conditions. Salinity stress also resulted in the intracellular response of brown pigment production. The pigment was structurally and functionally characterized by UV-Vis absorbance and the presence of different characteristic peaks via FTIR analysis (bacterial pyomelanin fingerprints) were assessed. A high thermal stability and TGA profile indicated the brown pigment was a probable pyomelanin candidate. Micropyrolysis (Py-GC/MS) showed that isoprene, pyrrole, benzene, pyridine, and their derivatives were the major components detected. In addition, acetic acid, indole, phenol, and its derivatives were observed. The absence of sulfocompounds in the pyrolyzed products agreed with those reported in the literature for pyomelanin. The pigment surface morphology was analyzed via SEM, and the elemental composition via EDS also demonstrated the similarity of the brown pigment to that of the melanin family. The pyomelanin pigment was observed to be bioactive with promising antioxidant capacity (H2O2, Fe2+) compared to the standard antioxidant molecules. In conclusion, B. haynesii CamB6 demonstrated the formation of several biomolecules as a stress response mechanism that is bioactive, showing its probable biotechnological applications in future.
Collapse
|
40
|
Manni A, Filali-Maltouf A. Diversity and bioprospecting for industrial hydrolytic enzymes of microbial communities isolated from deserted areas of south-east Morocco. AIMS Microbiol 2022; 8:5-25. [PMID: 35496990 PMCID: PMC8995190 DOI: 10.3934/microbiol.2022002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
The current study aimed to analyze bacterial communities' diversity and abundance in three different deserted areas (Merzouga, Mhamid Elghizlane, and Erg lihoud) located in Moroccan Sahara, as well as to investigate osmotolerant microorganisms producing hydrolytic enzymes. The isolates were taxonomically affiliated using 16S rRNA gene sequencing. Four different hydrolase activities (amylase, lipase, cellulase, and protease) and osmotic stress tolerance were evaluated. The phylogenetic analysis of 364 screened isolates belonged to three phyla (Firmicutes 73%, Proteobacteria 26% and Actinobacteria 1%) and 18 different genera, from Bacillus, Ornithinibacillus, Paenibacillus, Geobacillus, Pseudomonas, Acinetobacter, Agrobacterium, Arthrobacter, Paenarthrobacter, Enterobacter, Staphylococcus, Erwinia, Herbasprillum, Ocuria, Massilia, Planomicrobium, Hodococcus, and Stenotrophomonas. The results detected a high proportion of osmotolerant and enzymes producing bacteria, many isolates can tolerate up to 55 °C (40%, 28%, and 30% in Merzouga, Mhamid Elghizlane, and Erg lihoudi, respectively). Meanwhile, the salinity tolerance reached 12% in some isolates with different proportions in each site, 29% in Merzouga, 24% in Mhamid Elghizlane, and 9% in Erg lihoudi. Furthermore, the enzymatic tests showed the presence of an amylolytic, lipolytic, cellulolytic, proteolytic activities in 20%, 31%, 63% and 72% of total strains, respectively. As a result, the present study is thus a preliminary yet critical step towards identifying the best bacterial candidates for further biotechnological applications.
Collapse
Affiliation(s)
| | - Abdelkarim Filali-Maltouf
- Department of Biology, Mohammed V University, Laboratory of microbiology and molecular biology, Mohammed V university, Rabat, Av Ibn Batouta BP 1014, Morocco
| |
Collapse
|
41
|
Wani AK, Akhtar N, Sher F, Navarrete AA, Américo-Pinheiro JHP. Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems. Arch Microbiol 2022; 204:144. [PMID: 35044532 DOI: 10.1007/s00203-022-02757-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Microorganisms are ubiquitous on Earth and can inhabit almost every environment. In a complex heterogeneous environment or in face of ecological disturbance, the microbes adjust to fluctuating environmental conditions through a cascade of cellular and molecular systems. Their habitats differ from cold microcosms of Antarctica to the geothermal volcanic areas, terrestrial to marine, highly alkaline zones to the extremely acidic areas and freshwater to brackish water sources. The diverse ecological microbial niches are attributed to the versatile, adaptable nature under fluctuating temperature, nutrient availability and pH of the microorganisms. These organisms have developed a series of mechanisms to face the environmental changes and thereby keep their role in mediate important ecosystem functions. The underlying mechanisms of adaptable microbial nature are thoroughly investigated at the cellular, genetic and molecular levels. The adaptation is mediated by a spectrum of processes like natural selection, genetic recombination, horizontal gene transfer, DNA damage repair and pleiotropy-like events. This review paper provides the fundamentals insight into the microbial adaptability besides highlighting the molecular network of microbial adaptation under different environmental conditions.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nahid Akhtar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | | | | |
Collapse
|
42
|
Galvez G, Ortega J, Fredericksen F, Aliaga-Tobar V, Parra V, Reyes-Jara A, Pizarro L, Latorre M. Co-occurrence Interaction Networks of Extremophile Species Living in a Copper Mining Tailing. Front Microbiol 2022; 12:791127. [PMID: 35069487 PMCID: PMC8773694 DOI: 10.3389/fmicb.2021.791127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Copper mining tailings are characterized by high concentrations of heavy metals and an acidic pH, conditions that require an extreme adaptation for any organism. Currently, several bacterial species have been isolated and characterized from mining environments; however, very little is known about the structure of microbial communities and how their members interact with each other under the extreme conditions where they live. This work generates a co-occurrence network, representing the bacterial soil community from the Cauquenes copper tailing, which is the largest copper waste deposit worldwide. A representative sampling of six zones from the Cauquenes tailing was carried out to determine pH, heavy metal concentration, total DNA extraction, and subsequent assignment of Operational Taxonomic Units (OTUs). According to the elemental concentrations and pH, the six zones could be grouped into two sectors: (1) the "new tailing," characterized by neutral pH and low concentration of elements, and (2) the "old tailing," having extremely low pH (~3.5) and a high concentration of heavy metals (mainly copper). Even though the abundance and diversity of species were low in both sectors, the Pseudomonadaceae and Flavobacteriaceae families were over-represented. Additionally, the OTU identifications allowed us to identify a series of bacterial species with diverse biotechnological potentials, such as copper bioleaching and drought stress alleviation in plants. Using the OTU information as a template, we generated co-occurrence networks for the old and new tailings. The resulting models revealed a rearrangement between the interactions of members living in the old and new tailings, and highlighted conserved bacterial drivers as key nodes, with positive interactions in the network of the old tailings, compared to the new tailings. These results provide insights into the structure of the soil bacterial communities growing under extreme environmental conditions in mines.
Collapse
Affiliation(s)
- Gabriel Galvez
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
| | - Jaime Ortega
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
| | - Fernanda Fredericksen
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
| | - Victor Aliaga-Tobar
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, INTA, Universidad de Chile, Santiago, Chile
| | - Lorena Pizarro
- Laboratorio de Inmunidad Vegetal, Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, Rancagua, Chile
| | - Mauricio Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| |
Collapse
|
43
|
FARIAS GABRIELES, SANTOS JULIANAA, GIOVANELLA PATRICIA, SETTE LARAD. Antarctic-derived yeasts: taxonomic identification and resistance to adverse conditions. AN ACAD BRAS CIENC 2022; 94:e20210592. [DOI: 10.1590/0001-3765202220210592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - JULIANA A. SANTOS
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| | - PATRICIA GIOVANELLA
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil; Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| | - LARA D. SETTE
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil; Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| |
Collapse
|
44
|
Chavan S, Yadav B, Tyagi RD, Drogui P. A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks. BIORESOURCE TECHNOLOGY 2021; 341:125900. [PMID: 34523565 DOI: 10.1016/j.biortech.2021.125900] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 05/26/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are produced by numerous microbes as a subcellular energy source. Despite of their diverse applications, exorbitant production cost limits their commercial synthesis. Apart from various cost determining factors such as cost-effective feedstocks or economic recovery methods, the use of appropriate bacteria holds the key to reduce the fermentation economics. Extremophiles, especially thermophilic PHA producers, could make the bioprocess economically viable by reducing the production cost in several aspects. Using variety of waste feedstocks as carbon substrates could open the way for the valorisation of industrial waste streams and cost-effective PHA production. Therefore, the article critically reviews the current knowledge of the synthesis of PHA polyesters in thermophilic conditions. Additionally, it summarises several studies on thermophilic PHA producing bacteria grown on various waste substrates. To conclude, the paper focuses on screening and recovery methods as well as technical challenges in thermophilic PHA production.
Collapse
Affiliation(s)
- Shraddha Chavan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- School of Technology, Huzhou University, China; BOSK-Bioproducts, 100-399 rue Jacquard, Québec (QC) G1N 4J6, Canada.
| | - Patrick Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
45
|
Borthakur D, Rani M, Das K, Shah MP, Sharma BK, Kumar A. Bioremediation: an alternative approach for detoxification of polymers from the contaminated environment. Lett Appl Microbiol 2021; 75:744-758. [PMID: 34825392 DOI: 10.1111/lam.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
The industries and metropolitan wastes produced by anthropogenic activities are of great concern for nature as it causes soil contamination and deteriorate the environment. Plastic utilization is rapidly enhancing globally with passing days that last for a more extended period in the environment due to slow decomposition and natural degradation. Excessive use of polymer has risked the life of both marine, freshwater and terrestrial organisms. Lack of proper waste management and inappropriate disposal leads to environmental threats. Bioremediation processes involve microbes such as fungi, bacteria, etc. which contribute a crucial role in the breakdown of plastics. Extremophiles secrete extremozymes that are functionally active in extreme conditions and are highly crucial for polymer disaggregation in those conditions.
Collapse
Affiliation(s)
- D Borthakur
- Department of Microbiology, Tripura University (A Central University), Agartala, Tripura, India.,Department of Life Sciences, Assam Don Bosco University, Tepesia, Assam, India
| | - M Rani
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - K Das
- Department of Microbiology, Tripura University (A Central University), Agartala, Tripura, India
| | - M P Shah
- Enviro Technology Ltd., Ankleshwar, Gujarat, India
| | - B K Sharma
- Department of Microbiology, Tripura University (A Central University), Agartala, Tripura, India
| | - A Kumar
- Department of Microbiology, Tripura University (A Central University), Agartala, Tripura, India
| |
Collapse
|
46
|
Nayak T, Sengupta I, Dhal PK. A new era of radiation resistance bacteria in bioremediation and production of bioactive compounds with therapeutic potential and other aspects: An in-perspective review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 237:106696. [PMID: 34265519 DOI: 10.1016/j.jenvrad.2021.106696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms that survive in extreme environmental conditions are known as 'extremophiles'. Recently, extremophiles draw an impression in biotechnology/pharmaceutical researches/industries because of their novel molecules, known as 'extremolytes'. The intriguing phenomenon of microbial radiation resistance probably arose independently throughout their evolution of selective pressures (e.g. UV, X-ray, Gamma radiation etc.). Radiation produces multiple types of damage/oxidation to nucleic acids, proteins and other crucial cellular components. Most of the literature on microbial radiation resistance is based on acute γ-irradiation experiments performed in the laboratory, typically involving pure cultures isolation and their application on bioremediation/therapeutic field. There is much less information other than bioremediation and therapeutic application of such promising microbes we called as 'new era'. Here we discus origin and diversity of radiation resistance bacteria as well as selective mechanisms by which microorganisms can sustain in radiation rich environment. Potential uses of these radiations resistant microbes in the field of bioremediation, bioactive compounds and therapeutic industry. Last but not the least, which is the new aspect of radiation resistance microbes. Our review suggest that resistance to chronic radiation is not limited to rare specialized strains from extreme environments, but can occur among common microbial taxa, perhaps due to overlap molecular mechanisms of resistance to radiation and other stressors. These stress tolerance potential make them potential for radionuclides remediation, their extremolytes can be useful as anti-oxidant and anti-proliferative agents. In current scenario they can be useful in various fields from natural dye synthesis to nanoparticles production and anti-cancer treatment.
Collapse
Affiliation(s)
- Tilak Nayak
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| | - Indraneel Sengupta
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| | - Paltu Kumar Dhal
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
47
|
Luo Y, Wan G, Zhou X, Wang Q, Zhang Y, Bao J, Cong Y, Zhao Y, Li D. Architecture of Dispatched, a Transmembrane Protein Responsible for Hedgehog Release. Front Mol Biosci 2021; 8:701826. [PMID: 34557519 PMCID: PMC8453165 DOI: 10.3389/fmolb.2021.701826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/11/2021] [Indexed: 11/30/2022] Open
Abstract
The evolutionarily conserved Hedgehog (Hh) signaling pathway is crucial for programmed cell differentiation and proliferation. Dispatched (Disp) is a 12-transmembrane protein that plays a critical role in the Hedgehog (Hh) signaling pathway by releasing the dually lipidated ligand HhN from the membrane, a prerequisite step to the downstream signaling cascade. In this study, we focus on the Disp from water bear, a primitive animal known as the most indestructible on Earth. Using a zebrafish model, we show that the water bear homolog possesses the function of Disp. We have solved its structure to a 6.5-Å resolution using single-particle cryogenic electron microscopy. Consistent with the evolutional conservation of the pathway, the water bear Disp structure is overall similar to the previously reported structures of the fruit fly and human homologs. Although not revealing much detail at this resolution, the water bear Disp shows a different conformation compared to published structures, suggesting that they represent different functional snapshots.
Collapse
Affiliation(s)
- Yitian Luo
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guoyue Wan
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuan Zhou
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuwen Wang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunbin Zhang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan Bao
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yao Cong
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yun Zhao
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
48
|
Hymenobacter taeanensis sp. nov., radiation resistant bacterium isolated from coastal sand dune. Antonie Van Leeuwenhoek 2021; 114:1585-1593. [PMID: 34292424 DOI: 10.1007/s10482-021-01624-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
An aerobic, Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, and light pink-colored bacterial strain, designated TS19T, was isolated from a sand sample obtained from a coastal sand dune after exposure to 3 kGy of gamma radiation. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the isolate was a member of the genus Hymenobacter and was most closely related to H. wooponensis WM78T (98.3% similarity). Strain TS19T and H. wooponensis showed resistance to gamma radiation with D10 values (i.e., the dose required to reduce the bacterial population by tenfold) of 7.3 kGy and 3.5 kGy, respectively. The genome of strain TS19T consists of one contig with 4,879,662 bp and has a G + C content of 56.2%. The genome contains 3,955 protein coding sequences, 44 tRNAs, and 12 rRNAs. The predominant fatty acids of strain TS19T were iso-C15:0, summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B), summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), and C16:1 ω5c. The major polar lipids were phosphatidylethanolamine, and one unidentified aminophospholipid. The main respiratory quinone was menaquinone-7. Based on the phylogenetic, physiological, and chemotaxonomic characteristics, strain TS19T represents a novel species, for which the name Hymenobacter taeanensis sp. nov. is proposed. The type strain is TS19T (= KCTC 72897T = JCM 34023T).
Collapse
|
49
|
Ebrahim W, Ebada SS. Antimicrobial Metabolites from Extremophilic Fungus Botryotrichum piluliferum Strain WESH19. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03443-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
|