1
|
Lin TH, Wang CY, Wu CC, Lin CT. Impacts of Pta-AckA pathway on CPS biosynthesis and type 3 fimbriae expression in Klebsiella pneumoniae. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:48-55. [PMID: 39472242 DOI: 10.1016/j.jmii.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 02/08/2025]
Abstract
BACKGROUND Klebsiella pneumoniae is a Gram-negative bacterium that can cause infections, especially in individuals with diabetes. Recently, more hypervirulent strains have emerged, posing a threat even to healthy individuals. Understanding how K. pneumoniae regulates its virulence factors is crucial. Acetyl-phosphate (AcP) is essential for bacterial metabolism and can affect virulence factor expression. However, the role of the Pta-AckA pathway, which regulates AcP levels, in K. pneumoniae pathogenesis remains unclear. METHODS Deletion mutants lacking the pta and ackA, involved in AcP production and hydrolysis, were generated in K. pneumoniae CG43S3. Their effects on AcP levels, the patterns of global acetylated protein, capsular polysaccharide (CPS) amount, serum resistance, type 3 fimbriae expression, biofilm formation, and virulence in G. mellonella larva were assessed. RESULTS Deletion of ackA in K. pneumoniae CG43S3 led to AcP accumulation, while pta deletion abolished AcP synthesis when grown in TB7+1 % glucose. This pathway influenced global protein acetylation, with pta deletion decreasing acetylation and ackA deletion increasing it. Additionally, pta deletion decreased the CPS amount, serum resistance, and type 3 fimbriae expression, while ackA deletion increased these factors. Furthermore, deleting pta and ackA attenuated the infected larva's virulence and death rate. CONCLUSION Our findings highlight the critical role of the Pta-AckA pathway in K. pneumoniae pathogenesis. This pathway regulates AcP levels, global protein acetylation, CPS production, serum resistance, and type 3 fimbriae expression, ultimately impacting virulence. The information provides insights into potential therapeutic targets for combating K. pneumoniae infection.
Collapse
Affiliation(s)
- Tien-Huang Lin
- Department of Urology, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Chen-Yu Wang
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| | - Chien-Chen Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ching-Ting Lin
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Hamed SM, Mohamed HO, Ashour HM, Fahmy LI. Comparative genomic analysis of strong biofilm-forming Klebsiella pneumoniae isolates uncovers novel IS Ecp1-mediated chromosomal integration of a full plasmid-like sequence. Infect Dis (Lond) 2024; 56:91-109. [PMID: 37897710 DOI: 10.1080/23744235.2023.2272624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The goal of the current study was to elucidate the genomic background of biofilm formation in Klebsiella pneumoniae. METHODS Clinical isolates were screened for biofilm formation using the crystal violet assay. Antimicrobial resistance (AMR) profiles were assessed by disk diffusion and broth microdilution tests. Biofilm formation was correlated to virulence and resistance genes screened by PCR. Draft genomes of three isolates that form strong biofilm were generated by Illumina sequencing. RESULTS Only the siderophore-coding gene iutA was significantly associated with more pronounced biofilm formation. ST1399-KL43-O1/O2v1 and ST11-KL15-O4 were assigned to the multidrug-resistant strain K21 and the extensively drug-resistant strain K237, respectively. ST1999-KL38-O12 was assigned to K57. Correlated with CRISPR/Cas distribution, more plasmid replicons and prophage sequences were identified in K21 and K237 compared to K57. The acquired AMR genes (blaOXA-48, rmtF, aac(6')-Ib and qnrB) and (blaNDM-1, blaCTX-M, aph(3')-VI, qnrS, and aac(6')-Ib-cr) were found in K237 and K21, respectively. The latter showed a novel ISEcp1-mediated chromosomal integration of replicon type IncM1 plasmid-like structure harboring blaCTX-M-14 and aph(3')-VI that uniquely interrupted rcsC. The plasmid-mediated heavy metal resistance genes merACDEPRT and arsABCDR were spotted in K21, which also exclusively carried the acquired virulence genes mrkABCDF and the hypervirulence-associated genes iucABCD-iutA, and rmpA/A2. Pangenome analysis revealed NTUH-K2044 accessory genes most frequently shared with K21. CONCLUSIONS While less virulent to Galleria mellonella than ST1999 (K57), the strong biofilm former, multidrug-resistant, NDM-producer K. pneumoniae K21 (ST1399-KL43-O1/O2v1) carries a novel chromosomally integrated plasmid-like structure and hypervirulence-associated genes and represents a serious threat to countries in the area.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Hend O Mohamed
- Department of Biological Control Research, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
3
|
Janssen AB, de Bakker V, Aprianto R, Trebosc V, Kemmer C, Pieren M, Veening JW. Klebsiella pneumoniae OmpR facilitates lung infection through transcriptional regulation of key virulence factors. Microbiol Spectr 2024; 12:e0396623. [PMID: 38099618 PMCID: PMC10783089 DOI: 10.1128/spectrum.03966-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Bacteria use two-component regulatory systems (TCSs) to adapt to changes in their environment by changing their gene expression. In this study, we show that the EnvZ/OmpR TCS of the clinically relevant opportunistic pathogen Klebsiella pneumoniae plays an important role in successfully establishing lung infection and virulence. In addition, we elucidate the K. pneumoniae OmpR regulon within the host. This work suggests that K. pneumoniae OmpR might be a promising target for innovative anti-infectives.
Collapse
Affiliation(s)
- Axel B. Janssen
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vincent de Bakker
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rieza Aprianto
- Molecular Genetics Group, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, Groningen, the Netherlands
| | | | | | | | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Liu W, Li M, Cao S, Ishaq HM, Zhao H, Yang F, Liu L. The Biological and Regulatory Role of Type VI Secretion System of Klebsiella pneumoniae. Infect Drug Resist 2023; 16:6911-6922. [PMID: 37928603 PMCID: PMC10624183 DOI: 10.2147/idr.s426657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Bacteria communicate with their surroundings through diverse secretory systems, and the recently discovered Type VI Secretion System (T6SS) has gained significant attention. Klebsiella pneumoniae (K. pneumoniae), an opportunistic pathogen known for causing severe infections in both hospital and animal settings, possesses this intriguing T6SS. This system equips K. pneumoniae with a formidable armory of protein-based weaponry, enabling the delivery of toxins into neighboring cells, thus granting a substantial competitive advantage. Remarkably, the T6SS has also been associated with K. pneumoniae's ability to form biofilms and acquire resistance against antibiotics. However, the precise effects of the T6SS on K. pneumoniae's functions remain inadequately studied, despite research efforts to understand the intricacies of these mechanisms. This comprehensive review aims to provide an overview of the current knowledge regarding the biological functions and regulatory mechanisms of the T6SS in K. pneumoniae.
Collapse
Affiliation(s)
- Wenke Liu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Min Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Shiwen Cao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Huajie Zhao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Fan Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Liang Liu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| |
Collapse
|
5
|
Li Y, Ni M. Regulation of biofilm formation in Klebsiella pneumoniae. Front Microbiol 2023; 14:1238482. [PMID: 37744914 PMCID: PMC10513181 DOI: 10.3389/fmicb.2023.1238482] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Klebsiella pneumoniae is an important Gram-negative opportunistic pathogen that is responsible for a variety of nosocomial and community-acquired infections. Klebsiella pneumoniae has become a major public health issue owing to the rapid global spread of extensively-drug resistant (XDR) and hypervirulent strains. Biofilm formation is an important virulence trait of K. pneumoniae. A biofilm is an aggregate of microorganisms attached to an inert or living surface by a self-produced exo-polymeric matrix that includes proteins, polysaccharides and extracellular DNA. Bacteria within the biofilm are shielded from antibiotics treatments and host immune responses, making it more difficult to eradicate K. pneumoniae-induced infection. However, the detailed mechanisms of biofilm formation in K. pneumoniae are still not clear. Here, we review the factors involved in the biofilm formation of K. pneumoniae, which might provide new clues to address this clinical challenge.
Collapse
Affiliation(s)
| | - Ming Ni
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Gannesen AV, Ziganshin RH, Ovcharova MA, Nevolina ED, Klimko AI, Martyanov SV, Plakunov VK. Epinephrine Affects Ribosomes, Cell Division, and Catabolic Processes in Micrococcus luteus Skin Strain C01: Revelation of the Conditionally Extensive Hormone Effect Using Orbitrap Mass Spectrometry and Proteomic Analysis. Microorganisms 2023; 11:2181. [PMID: 37764026 PMCID: PMC10535722 DOI: 10.3390/microorganisms11092181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
In the current study, extensive Orbitrap mass spectrometry analysis was conducted for skin strain Micrococcus luteus C01 planktonic cultures and biofilms after 24 h and 72 h of incubation either in the presence of epinephrine or without any implementations. The investigation revealed the complex and conditionally extensive effect of epinephrine at concentrations closer to normal blood plasma concentrations on both planktonic cultures and biofilms of skin strain M. luteus C01. The concentrations of hundreds of proteins changed during the shift from planktonic growth mode to biofilm and hundreds of proteins were downregulated or upregulated in the presence of epinephrine. Ribosomal, TCA, and cell division proteins appear to be the most altered in their amounts in the presence of the hormone. Potentially, the regulatory mechanism of this process is connected with c-di-GMP and histidine kinases, which were affected by epinephrine in different samples. The phenomenon of epinephrine-based biofilm regulation in M. luteus C01 has wide implications for microbial endocrinology and other research areas.
Collapse
Affiliation(s)
- Andrei V. Gannesen
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (M.A.O.); (E.D.N.); (A.I.K.); (S.V.M.); (V.K.P.)
| | - Rustam H. Ziganshin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Maria A. Ovcharova
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (M.A.O.); (E.D.N.); (A.I.K.); (S.V.M.); (V.K.P.)
| | - Ekaterina D. Nevolina
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (M.A.O.); (E.D.N.); (A.I.K.); (S.V.M.); (V.K.P.)
| | - Alena I. Klimko
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (M.A.O.); (E.D.N.); (A.I.K.); (S.V.M.); (V.K.P.)
| | - Sergey V. Martyanov
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (M.A.O.); (E.D.N.); (A.I.K.); (S.V.M.); (V.K.P.)
| | - Vladimir K. Plakunov
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (M.A.O.); (E.D.N.); (A.I.K.); (S.V.M.); (V.K.P.)
| |
Collapse
|
7
|
Li L, Ma J, Cheng P, Li M, Yu Z, Song X, Yu Z, Sun H, Zhang W, Wang Z. Roles of two-component regulatory systems in Klebsiella pneumoniae: Regulation of virulence, antibiotic resistance, and stress responses. Microbiol Res 2023; 272:127374. [PMID: 37031567 DOI: 10.1016/j.micres.2023.127374] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen belonging to the Enterobacteriaceae family, which is the leading cause of nosocomial infections. The emergence of hypervirulent and multi-drug resistant K. pneumoniae is a serious health threat. In the process of infection, K. pneumoniae needs to adapt to different environmental conditions, and the two-component regulatory system (TCS) composed of a sensor histidine kinase and response regulator is an important bacterial regulatory system in response to external stimuli. Understanding how K. pneumoniae perceives and responds to complex environmental stimuli provides insights into TCS regulation mechanisms and new targets for drug design. In this review, we analyzed the TCS composition and summarized the regulation mechanisms of TCSs, focusing on the regulation of genes involved in virulence, antibiotic resistance, and stress response. Collectively, these studies demonstrated that several TCSs play important roles in the regulation of virulence, antibiotic resistance and stress responses of K. pneumoniae. A single two-component regulatory system can participate in the regulation of several stress responses, and one stress response process may include several TCSs, forming a complex regulatory network. However, the function and regulation mechanism of some TCSs require further study. Hence, future research endeavors are required to enhance the understanding of TCS regulatory mechanisms and networks in K. pneumoniae, which is essential for the design of novel drugs targeting TCSs.
Collapse
|
8
|
Hasan MK, Scott NE, Hays MP, Hardwidge PR, El Qaidi S. Salmonella T3SS effector SseK1 arginine-glycosylates the two-component response regulator OmpR to alter bile salt resistance. Sci Rep 2023; 13:9018. [PMID: 37270573 DOI: 10.1038/s41598-023-36057-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
Type III secretion system (T3SS) effector proteins are primarily recognized for binding host proteins to subvert host immune response during infection. Besides their known host target proteins, several T3SS effectors also interact with endogenous bacterial proteins. Here we demonstrate that the Salmonella T3SS effector glycosyltransferase SseK1 glycosylates the bacterial two-component response regulator OmpR on two arginine residues, R15 and R122. Arg-glycosylation of OmpR results in reduced expression of ompF, a major outer membrane porin gene. Glycosylated OmpR has reduced affinity to the ompF promoter region, as compared to the unglycosylated form of OmpR. Additionally, the Salmonella ΔsseK1 mutant strain had higher bile salt resistance and increased capacity to form biofilms, as compared to WT Salmonella, thus linking OmpR glycosylation to several important aspects of bacterial physiology.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne Within the Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Australia
| | - Michael P Hays
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
9
|
Wang YD, Gong JS, Guan YC, Zhao ZL, Cai YN, Shan XF. OmpR (TCS response regulator) of Aeromonas veronii plays a major role in drug resistance, stress resistance and virulence by regulating biofilm formation. Microb Pathog 2023; 181:106176. [PMID: 37244492 DOI: 10.1016/j.micpath.2023.106176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Aeromonas veronii (A. veronii), a highly pathogenic bacteria with a wide range of hosts, widely exists in the environment of humans, animals and aquatic animals, and can cause a variety of diseases. In this study, the receptor regulator ompR in the envZ/ompR of two-component system was selected to construct a mutant strain (Δ ompR) and a complement strain (C-ompR) to explore the regulatory effect of ompR on the biological characteristics and virulence of TH0426. The results showed that the ability of biofilm formation and osmotic stress of TH0426 were significantly reduced (P < 0.001), the resistance to ceftriaxone and neomycin were slightly down-regulate when the ompR gene was deleted. At the same time, animal pathogenicity experiments showed that the virulence of TH0426 was significantly down-regulated (P < 0.001). These results indicated that ompR gene regulates the biofilm formation of TH0426, and regulates some biological characteristics of TH0426, including drug sensitivity, resistance to osmotic stress, and also affects its virulence.
Collapse
Affiliation(s)
- Ying-da Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Jin-Shuo Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Yong-Chao Guan
- Institute of Comparative Medicine College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ze-Lin Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Ya-Nan Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China.
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China.
| |
Collapse
|
10
|
Bina XR, Bina JE. Vibrio cholerae RND efflux systems: mediators of stress responses, colonization and pathogenesis. Front Cell Infect Microbiol 2023; 13:1203487. [PMID: 37256112 PMCID: PMC10225521 DOI: 10.3389/fcimb.2023.1203487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Resistance Nodulation Division (RND) efflux systems are ubiquitous transporters in gram-negative bacteria that provide protection against antimicrobial agents and thereby enhance survival in virtually all environments these prokaryotes inhabit. Vibrio cholerae is a dual lifestyle enteric pathogen that spends much of its existence in aquatic environments. An unwitting encounter with a human host can lead to V. cholerae intestinal colonization by strains that encode cholera toxin and toxin co-regulated pilus virulence factors leading to potentially fatal cholera diarrhea and dissemination in the environment. Adaptive response mechanisms to host factors encountered by these pathogens are therefore critical both to engage survival mechanisms such as RND-mediated transporters and to induce timely expression of virulence factors. Sensing of cues encountered in the host may therefore activate more than protective responses such as efflux systems, but also be coordinated to initiate expression of virulence factors. This review summarizes recent advances that contribute towards the understanding of RND efflux physiological functions and how the transport systems interface with the regulation of virulence factor production in V. cholerae.
Collapse
Affiliation(s)
| | - James E. Bina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Ma W, Wang X, Zhang W, Hu X, Yang JL, Liang X. Two-Component System Response Regulator ompR Regulates Mussel Settlement through Exopolysaccharides. Int J Mol Sci 2023; 24:ijms24087474. [PMID: 37108636 PMCID: PMC10139040 DOI: 10.3390/ijms24087474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The outer membrane protein (OMP) is a kind of biofilm matrix component that widely exists in Gram-negative bacteria. However, the mechanism of OMP involved in the settlement of molluscs is still unclear. In this study, the mussel Mytilus coruscus was selected as a model to explore the function of ompR, a two-component system response regulator, on Pseudoalteromonas marina biofilm-forming capacity and the mussel settlement. The motility of the ΔompR strain was increased, the biofilm-forming capacity was decreased, and the inducing activity of the ΔompR biofilms in plantigrades decreased significantly (p < 0.05). The extracellular α-polysaccharide and β-polysaccharide of the ΔompR strain decreased by 57.27% and 62.63%, respectively. The inactivation of the ompR gene decreased the ompW gene expression and had no impact on envZ expression or c-di-GMP levels. Adding recombinant OmpW protein caused the recovery of biofilm-inducing activities, accompanied by the upregulation of exopolysaccharides. The findings deepen the understanding of the regulatory mechanism of bacterial two-component systems and the settlement of benthic animals.
Collapse
Affiliation(s)
- Wei Ma
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| | - Xiaoyu Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| | - Wen Zhang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| | - Xiaomeng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| |
Collapse
|
12
|
Horng YT, Dewi Panjaitan NS, Chang HJ, Wei YH, Chien CC, Yang HC, Chang HY, Soo PC. A protein containing the DUF1471 domain regulates biofilm formation and capsule production in Klebsiella pneumoniae. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:1246-1254. [PMID: 34924339 DOI: 10.1016/j.jmii.2021.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND/PURPOSE Biofilms formed by Klebsiella pneumoniae on medical devices increase infection risk. Fimbriae and capsule polysaccharides (CPSs) are important factors involved in biofilm formation. KP1_4563 in K. pneumoniae NTUH-K2044, a small protein containing the DUF1471 domain, was reported to inhibit type 3 fimbriae function. In this study, we aimed to determine whether the KP1_4563 homolog is conserved in each K. pneumoniae isolate and what role it has in Klebsiella biofilms. METHODS The genomes of K. pneumoniae NTUH-K2044, CG43, MGH78578, KPPR1 and STU1 were compared. The KP1_4563 homolog in K. pneumoniae STU1 was named orfX. Biofilms of wild-type and orfX mutant strains from K. pneumoniae STU1 and one clinical isolate, 83535, were quantified. Transcription levels of the type 3 fimbrial genes, mrkA and mrkH, were investigated by RT-qPCR. MrkA of the wild-type and orfX mutant were observed by Western blotting. The morphology of bacterial cells was observed by transmission electron microscopy (TEM). Bacterial CPSs were quantified. RESULTS The gene and upstream region of orfX were conserved among the five K. pneumoniae isolates. Deletion of orfX enhanced Klebsiella biofilm formation. However, the amount of mRNA from mrkA and mrkH and the level of MrkA protein were not different between the wild type and orfX mutant. In contrast, the amount of CPS in orfX mutants was increased, compared to their parental strains, STU1 and 83535. CONCLUSION The role of orfX is speculated to be conserved in most K. pneumoniae isolates. OrfX negatively controlled biofilm formation by reducing CPS, not type 3 fimbriae, production.
Collapse
Affiliation(s)
- Yu-Tze Horng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Novaria Sari Dewi Panjaitan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Hui-Ju Chang
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Yu-Hong Wei
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan, R.O.C
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan, R.O.C
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan, R.O.C
| | - Heng-Yuan Chang
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Po-Chi Soo
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C.
| |
Collapse
|
13
|
Ma J, Song X, Li M, Yu Z, Cheng W, Yu Z, Zhang W, Zhang Y, Shen A, Sun H, Li L. Global Spread of Carbapenem-Resistant Enterobacteriaceae: Epidemiological Features, Resistance Mechanisms, Detection and Therapy. Microbiol Res 2022; 266:127249. [DOI: 10.1016/j.micres.2022.127249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
14
|
The OmpR-like Transcription Factor as a Negative Regulator of hrpR/S in Pseudomonas syringae pv. actinidiae. Int J Mol Sci 2022; 23:ijms232012306. [PMID: 36293158 PMCID: PMC9602974 DOI: 10.3390/ijms232012306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Bacterial canker of kiwifruit is a devastating disease caused by Pseudomonas syringae pv. actinidiae (Psa). The type III secretion system (T3SS), which translocates effectors into plant cells to subvert plant immunity and promote extracellular bacterial growth, is required for Psa virulence. Despite that the “HrpR/S-HrpL” cascade that sophisticatedly regulates the expression of T3SS and effectors has been well documented, the transcriptional regulators of hrpR/S remain to be determined. In this study, the OmpR-like transcription factor, previously identified by DNA pull-down assay, was found to be involved in the regulation of hrpR/S genes, and its regulatory mechanisms and other functions in Psa were explored through techniques including gene knockout and overexpression, ChIP-seq, and RNA-seq. The OmpR-like transcription factor had binding sites in the promoter region of the hrpR/S, and the transcriptional level of the hrpR/S increased after the deletion of OmpR-like and decreased upon its overexpression in an OmpR-like deletion background. Additionally, OmpR-like overexpression reduced the strain’s capacity to form biofilms and lipopolysaccharides, led to its slow growth in King’s B medium, and reduced its swimming ability, although there was no significant effect on its pathogenicity against kiwifruit hosts. Our results indicated that OmpR-like directly and negatively regulates the transcription of hrpR/S and may be involved in the regulation of multiple biological processes in Psa. Our results provide a basis for further understanding the transcriptional regulation mechanism of hrpR/S in Psa.
Collapse
|
15
|
Xiao G, Zheng X, Li J, Yang Y, Yang J, Xiao N, Liu J, Sun Z. Contribution of the EnvZ/OmpR two-component system to growth, virulence and stress tolerance of colistin-resistant Aeromonas hydrophila. Front Microbiol 2022; 13:1032969. [PMID: 36312957 PMCID: PMC9597241 DOI: 10.3389/fmicb.2022.1032969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2024] Open
Abstract
Aeromonas hydrophila is an important zoonotic pathogen responsible for septicemia, diarrhea and gastroenteritis, and has attracted considerable attention. The EnvZ/OmpR two-component system (TCS) mediates environmental stress responses in gram-negative bacteria. We investigated the role of the TCS in A. hydrophila by comparing the characteristics of the parental (23-C-23), EnvZ/OmpR knockout (23-C-23:ΔEnvZ/OmpR), and complemented strains (23-C-23:CΔEnvZ/OmpR). Under non-stress conditions, the 23-C-23:ΔEnvZ/OmpR strain showed a significant decrease in growth rate compared to that of 23-C-23. Transcriptome and metabonomic analysis indicated that many metabolic pathways were remarkably affected in the ΔEnvZ/OmpR strain, including the TCA cycle and arginine biosynthesis. In addition, the virulence of the ΔEnvZ/OmpR strain was attenuated in a Kunming mouse model. The ΔEnvZ/OmpR strain exhibited notably reduced tolerance to environmental stresses, including high temperature, different pH conditions, oxidative stress, and high osmotic stress. The downregulated expression of genes related to cell metabolism, motility, and virulence in the ΔEnvZ/OmpR mutant strain was further validated by real-time quantitative PCR. Consequently, our data suggest that the EnvZ/OmpR TCS is required for growth, motility, virulence, and stress response in A. hydrophila, which has significant implications in the development of novel antibacterial and vaccine therapies targeting EnvZ/OmpR against A. hydrophila.
Collapse
Affiliation(s)
- Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Xiaofeng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Jiyun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jie Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Ning Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Junqi Liu
- Veterinary Drug Laboratory, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
16
|
Conserved FimK Truncation Coincides with Increased Expression of Type 3 Fimbriae and Cultured Bladder Epithelial Cell Association in Klebsiella quasipneumoniae. J Bacteriol 2022; 204:e0017222. [PMID: 36005809 PMCID: PMC9487511 DOI: 10.1128/jb.00172-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella spp. commonly cause both uncomplicated urinary tract infection (UTI) and recurrent UTI (rUTI). Klebsiella quasipneumoniae, a relatively newly defined species of Klebsiella, has been shown to be metabolically distinct from Klebsiella pneumoniae, but its type 1 and type 3 fimbriae have not been studied. K. pneumoniae uses both type 1 and type 3 fimbriae to attach to host epithelial cells. The type 1 fimbrial operon is well conserved between Escherichia coli and K. pneumoniae apart from fimK, which is unique to Klebsiella spp. FimK contains an N-terminal DNA binding domain and a C-terminal phosphodiesterase (PDE) domain that has been hypothesized to cross-regulate type 3 fimbriae expression via modulation of cellular levels of cyclic di-GMP. Here, we find that a conserved premature stop codon in K. quasipneumoniae fimK results in truncation of the C-terminal PDE domain and that K quasipneumoniae strain KqPF9 cultured bladder epithelial cell association and invasion are dependent on type 3 but not type 1 fimbriae. Further, we show that basal expression of both type 1 and type 3 fimbrial operons as well as cultured bladder epithelial cell association is elevated in KqPF9 relative to uropathogenic K. pneumoniae TOP52. Finally, we show that complementation of KqPF9ΔfimK with the TOP52 fimK allele reduced type 3 fimbrial expression and cultured bladder epithelial cell attachment. Taken together these data suggest that the C-terminal PDE of FimK can modulate type 3 fimbrial expression in K. pneumoniae and its absence in K. quasipneumoniae may lead to a loss of type 3 fimbrial cross-regulation. IMPORTANCE K. quasipneumoniae is often indicated as the cause of opportunistic infections, including urinary tract infection, which affects >50% of women worldwide. However, the virulence factors of K. quasipneumoniae remain uninvestigated. Prior to this work, K. quasipneumoniae and K. pneumoniae had only been distinguished phenotypically by metabolic differences. This work contributes to the understanding of K. quasipneumoniae by evaluating the contribution of type 1 and type 3 fimbriae, which are critical colonization factors encoded by all Klebsiella spp., to K. quasipneumoniae bladder epithelial cell attachment in vitro. We observe clear differences in bladder epithelial cell attachment and regulation of type 3 fimbriae between uropathogenic K. pneumoniae and K. quasipneumoniae that coincide with a structural difference in the fimbrial regulatory gene fimK.
Collapse
|
17
|
Insights into mucoid Acinetobacter baumannii: A review of microbiological characteristics, virulence, and pathogenic mechanisms in a threatening nosocomial pathogen. Microbiol Res 2022; 261:127057. [DOI: 10.1016/j.micres.2022.127057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023]
|
18
|
In-Human Multiyear Evolution of Carbapenem-Resistant Klebsiella pneumoniae Causing Chronic Colonization and Intermittent Urinary Tract Infections: A Case Study. mSphere 2022; 7:e0019022. [PMID: 35531657 PMCID: PMC9241548 DOI: 10.1128/msphere.00190-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a frequent pathogen of the urinary tract, but how CRKP adapts in vivo over time is unclear. We examined 10 CRKP strains from a patient who experienced chronic colonization and recurrent urinary tract infections over a period of 4.5 years. We performed whole-genome sequencing and phenotypic assays to compare isolates that had evolved relative to the first isolate collected and to correlate genetic and phenotypic changes over time with the meropenem-containing regimen received. Phylogenetic analysis indicated that all 10 strains originated from the same sequence type 258 (ST258) clone and that three sublineages (SL) evolved over time; strains from two dominant sublineages were selected for detailed analysis. Up to 60 new mutations were acquired progressively in genes related to antibiotic resistance, cell metabolism, and biofilm production over time. Doubling of meropenem MICs, increases in biofilm production and blaKPC expression, and altered carbon metabolism occurred in the latter strains from the last sublineage compared to the initial strain. Subinhibitory meropenem exposure in vitro significantly induced or maintained high levels of biofilm production in colonizing isolates, but isolates causing infection were unaffected. Despite acquiring different mutations that affect carbon metabolism, overall carbon utilization was maintained across different strains. Together, these data showed that isolated urinary CRKP evolved through multiple adaptations affecting carbon metabolism, carbapenem resistance, and biofilm production to support chronic colonization and intermittent urinary tract infections. Our findings highlight the pliability of CRKP in adapting to repeated antibiotic exposure and should be considered when developing novel therapeutic and stewardship strategies. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKP) can cause a variety of infections such as recurrent urinary tract infections (rUTI) with the ability to change with the host environment over time. However, it is unclear how CRKP adapts to the urinary tract during chronic infections and colonization. Here, we studied the evolution of CRKP strains from a patient who experienced chronic colonization and recurrent UTIs over a period of 4.5 years despite multiple treatment courses with meropenem-containing regimens. Our findings show the flexibility of CRKP strains in developing changes in carbapenem resistance, biofilm production, and carbon metabolism over time, which could facilitate their persistence in the human body for long periods of time in spite of repeated antibiotic therapy.
Collapse
|
19
|
Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. Pathogens 2021; 10:pathogens10020148. [PMID: 33540588 PMCID: PMC7912840 DOI: 10.3390/pathogens10020148] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections.
Collapse
|
20
|
Gomes AÉI, Pacheco T, Dos Santos CDS, Pereira JA, Ribeiro ML, Darrieux M, Ferraz LFC. Functional Insights From KpfR, a New Transcriptional Regulator of Fimbrial Expression That Is Crucial for Klebsiella pneumoniae Pathogenicity. Front Microbiol 2021; 11:601921. [PMID: 33552015 PMCID: PMC7861041 DOI: 10.3389/fmicb.2020.601921] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Although originally known as an opportunistic pathogen, Klebsiella pneumoniae has been considered a worldwide health threat nowadays due to the emergence of hypervirulent and antibiotic-resistant strains capable of causing severe infections not only on immunocompromised patients but also on healthy individuals. Fimbriae is an essential virulence factor for K. pneumoniae, especially in urinary tract infections (UTIs), because it allows the pathogen to adhere and invade urothelial cells and to form biofilms on biotic and abiotic surfaces. The importance of fimbriae for K. pneumoniae pathogenicity is highlighted by the large number of fimbrial gene clusters on the bacterium genome, which requires a coordinated and finely adjusted system to control the synthesis of these structures. In this work, we describe KpfR as a new transcriptional repressor of fimbrial expression in K. pneumoniae and discuss its role in the bacterium pathogenicity. K. pneumoniae with disrupted kpfR gene exhibited a hyperfimbriated phenotype with enhanced biofilm formation and greater adhesion to and replication within epithelial host cells. Nonetheless, the mutant strain was attenuated for colonization of the bladder in a murine model of urinary tract infection. These results indicate that KpfR is an important transcriptional repressor that, by negatively controlling the expression of fimbriae, prevents K. pneumoniae from having a hyperfimbriated phenotype and from being recognized and eliminated by the host immune system.
Collapse
Affiliation(s)
- Ana Érika Inácio Gomes
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thaisy Pacheco
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | | | - José Aires Pereira
- Laboratório de Biologia Molecular e Celular de Tumores, Universidade São Francisco, Bragança Paulista, Brazil
| | - Marcelo Lima Ribeiro
- Laboratório de Imunofarmacologia e Biologia Molecular, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lúcio Fábio Caldas Ferraz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
21
|
Structural basis for promoter DNA recognition by the response regulator OmpR. J Struct Biol 2020; 213:107638. [PMID: 33152421 DOI: 10.1016/j.jsb.2020.107638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 11/21/2022]
Abstract
OmpR, a response regulator of the EnvZ/OmpR two-component system (TCS), controls the reciprocal regulation of two porin proteins, OmpF and OmpC, in bacteria. During signal transduction, OmpR (OmpR-FL) undergoes phosphorylation at its conserved Asp residue in the N-terminal receiver domain (OmpRn) and recognizes the promoter DNA from its C-terminal DNA-binding domain (OmpRc) to elicit an adaptive response. Apart from that, OmpR regulates many genes in Escherichia coli and is important for virulence in several pathogens. However, the molecular mechanism of the regulation and the structural basis of OmpR-DNA binding is still not fully clear. In this study, we presented the crystal structure of OmpRc in complex with the F1 region of the ompF promoter DNA from E. coli. Our structural analysis suggested that OmpRc binds to its cognate DNA as a homodimer, only in a head-to-tail orientation. Also, the OmpRc apo-form showed a unique domain-swapped crystal structure under different crystallization conditions. Biophysical experimental data, such as NMR, fluorescent polarization and thermal stability, showed that inactive OmpR-FL (unphosphorylated) could bind to promoter DNA with a weaker binding affinity as compared with active OmpR-FL (phosphorylated) or OmpRc, and also confirmed that phosphorylation may only enhance DNA binding. Furthermore, the dimerization interfaces in the OmpRc-DNA complex structure identified in this study provide an opportunity to understand the regulatory role of OmpR and explore the potential for this "druggable" target.
Collapse
|
22
|
In vitro Edwardsiella piscicida CK108 Transcriptome Profiles with Subinhibitory Concentrations of Phenol and Formalin Reveal New Insights into Bacterial Pathogenesis Mechanisms. Microorganisms 2020; 8:microorganisms8071068. [PMID: 32709101 PMCID: PMC7409036 DOI: 10.3390/microorganisms8071068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Phenol and formalin are major water pollutants that are frequently discharged into the aquatic milieu. These chemicals can affect broad domains of life, including microorganisms. Aquatic pollutants, unlike terrestrial pollutants, are easily diluted in water environments and exist at a sub-inhibitory concentration (sub-IC), thus not directly inhibiting bacterial growth. However, they can modulate gene expression profiles. The sub-IC values of phenol and formalin were measured by minimal inhibitory concentration (MIC) assay to be 0.146% (1.3 mM) and 0.0039% (0.38 mM), respectively, in Edwardsiella piscicida CK108, a Gram-negative fish pathogen. We investigated the differentially expressed genes (DEG) by RNA-seq when the cells were exposed to the sub-ICs of phenol and formalin. DEG analyses revealed that genes involved in major virulence factors (type I fimbriae, flagella, type III and type VI secretion system) and various cellular pathways (energy production, amino acid synthesis, carbohydrate metabolism and two-component regulatory systems) were up- or downregulated by both chemicals. The genome-wide gene expression data corresponded to the results of a quantitative reverse complementary-PCR and motility assay. This study not only provides insight into how a representative fish pathogen, E. piscicida CK108, responds to the sub-ICs of phenol and formalin but also shows the importance of controlling chemical pollutants in aquatic environments.
Collapse
|
23
|
Vibrio cholerae OmpR Contributes to Virulence Repression and Fitness at Alkaline pH. Infect Immun 2020; 88:IAI.00141-20. [PMID: 32284367 DOI: 10.1128/iai.00141-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022] Open
Abstract
Vibrio cholerae is a Gram-negative human pathogen and the causative agent of the life-threatening disease cholera. V. cholerae is a natural inhabitant of marine environments and enters humans through the consumption of contaminated food or water. The ability to transition between aquatic ecosystems and the human host is paramount to the pathogenic success of V. cholerae The transition between these two disparate environments requires the expression of adaptive responses, and such responses are most often regulated by two-component regulatory systems such as the EnvZ/OmpR system, which responds to osmolarity and acidic pH in many Gram-negative bacteria. Previous work in our laboratory indicated that V. cholerae OmpR functioned as a virulence regulator through repression of the LysR-family transcriptional regulator aphB; however, the role of OmpR in V. cholerae biology outside virulence regulation remained unknown. In this work, we sought to further investigate the function of OmpR in V. cholerae biology by defining the OmpR regulon through RNA sequencing. This led to the discovery that V. cholerae ompR was induced at alkaline pH to repress genes involved in acid tolerance and virulence factor production. In addition, OmpR was required for V. cholerae fitness during growth under alkaline conditions. These findings indicate that V. cholerae OmpR has evolved the ability to respond to novel signals during pathogenesis, which may play a role in the regulation of adaptive responses to aid in the transition between the human gastrointestinal tract and the marine ecosystem.
Collapse
|
24
|
Zhang M, Kang J, Wu B, Qin Y, Huang L, Zhao L, Mao L, Wang S, Yan Q. Comparative transcriptome and phenotype analysis revealed the role and mechanism of ompR in the virulence of fish pathogenic Aeromonas hydrophila. Microbiologyopen 2020; 9:e1041. [PMID: 32282134 PMCID: PMC7349151 DOI: 10.1002/mbo3.1041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022] Open
Abstract
Aeromonas hydrophila B11 strain was isolated from diseased Anguilla japonica, which had caused severe gill ulcers in farmed eel, causing huge economic losses. EnvZ‐OmpR is a model two‐component system in the bacteria and is widely used in the research of signal transduction and gene transcription regulation. In this study, the ompR of A. hydrophila B11 strain was first silenced by RNAi technology. The role of ompR in the pathogenicity of A. hydrophila B11 was investigated by analyzing both the bacterial comparative transcriptome and phenotype. The qRT‐PCR results showed that the expression of ompR in the ompR‐RNAi strain decreased by 97% compared with the wild‐type strain. The virulence test showed that after inhibition of the ompR expression, the LD50 of A. hydrophila B11 decreased by an order of magnitude, suggesting that ompR is involved in the regulation of bacterial virulence. Comparative transcriptome analysis showed that the expression of ompR can directly regulate the expression of several important virulence‐related genes, such as the bacterial type II secretion system; moreover, ompR expression also regulates the expression of multiple genes related to bacterial chemotaxis, motility, adhesion, and biofilm formation. Further studies on the phenotype of A. hydrophila B11 and ompR‐RNAi also confirmed that the downregulation of ompR expression can decrease bacterial chemotaxis, adhesion, and biofilm formation.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Jianping Kang
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Bin Wu
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China.,Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fujian Tianma Science and Technology Group Co., Ltd., Fuqing, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Leilei Mao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Suyun Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| |
Collapse
|
25
|
Vibrio cholerae OmpR Represses the ToxR Regulon in Response to Membrane Intercalating Agents That Are Prevalent in the Human Gastrointestinal Tract. Infect Immun 2020; 88:IAI.00912-19. [PMID: 31871096 DOI: 10.1128/iai.00912-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Multidrug efflux systems belonging to the resistance-nodulation-division (RND) superfamily are ubiquitous in Gram-negative bacteria. RND efflux systems are often associated with multiple antimicrobial resistance and also contribute to the expression of diverse bacterial phenotypes including virulence, as documented in the intestinal pathogen Vibrio cholerae, the causative agent of the severe diarrheal disease cholera. Transcriptomic studies with RND efflux-negative V. cholerae suggested that RND-mediated efflux was required for homeostasis, as loss of RND efflux resulted in the activation of transcriptional regulators, including multiple environmental sensing systems. In this report, we investigated six RND efflux-responsive regulatory genes for contributions to V. cholerae virulence factor production. Our data showed that the V. cholerae gene VC2714, encoding a homolog of Escherichia coli OmpR, was a virulence repressor. The expression of ompR was elevated in an RND-null mutant, and ompR deletion partially restored virulence factor production in the RND-negative background. Virulence inhibitory activity in the RND-negative background resulted from OmpR repression of the key ToxR regulon virulence activator aphB, and ompR overexpression in wild-type cells also repressed virulence through aphB We further show that ompR expression was not altered by changes in osmolarity but instead was induced by membrane-intercalating agents that are prevalent in the host gastrointestinal tract and which are substrates of the V. cholerae RND efflux systems. Our collective results indicate that V. cholerae ompR is an aphB repressor and regulates the expression of the ToxR virulence regulon in response to novel environmental cues.
Collapse
|
26
|
Panjaitan NSD, Horng YT, Cheng SW, Chung WT, Soo PC. EtcABC, a Putative EII Complex, Regulates Type 3 Fimbriae via CRP-cAMP Signaling in Klebsiella pneumoniae. Front Microbiol 2019; 10:1558. [PMID: 31354661 PMCID: PMC6629953 DOI: 10.3389/fmicb.2019.01558] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023] Open
Abstract
Biofilm formation by Klebsiella pneumoniae on indwelling medical devices increases the risk of infection. Both type 1 and type 3 fimbriae are important factors in biofilm formation by K. pneumoniae. We found that a putative enzyme II (EII) complex of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), etcA (EIIA)-etcB (EIIB)-etcC (EIIC), regulated biofilm and type 3 fimbriae formation by K. pneumoniae STU1. In this study, the regulatory mechanism of etcABC in K. pneumoniae type 3 fimbriae formation was investigated. We found via quantitative RT-PCR that overexpression of etcABC enhanced the transcription level of the mrk operon, which is involved in type 3 fimbriae synthesis, and reduced the transcription level of the fim operon, which is involved in type 1 fimbriae synthesis. To gain further insight into the role of etcABC in type 3 fimbriae synthesis, we analyzed the region upstream of the mrk operon and found the potential cyclic 3′5′-adenosine monophosphate (cAMP) receptor protein (CRP) binding site. After crp was deleted in K. pneumoniae STU1 and two clinical isolates, these three crp mutant strains could not express MrkA, the major subunit of the fimbrial shaft, indicating that CRP positively regulated type 3 fimbriae synthesis. Moreover, a crp mutant overexpressing etcABC could not express MrkA, indicating that the regulation of type 3 fimbriae by etcABC was dependent on CRP. In addition, deletion of cyaA, which encodes the adenylyl cyclase that synthesizes cAMP, and deletion of crr, which encodes the glucose-specific EIIA, led to a reduction in lac operon regulation and therefore bacterial lactose uptake in K. pneumoniae. Exogenous cAMP but not etcABC overexpression compensated for the role of cyaA in bacterial lactose uptake. However, either etcABC overexpression or exogenous cAMP compensated for the role of crr in bacterial lac operon regulation that would eventually restore lactose uptake. We also found via ELISA and the luxCDABE reporter system that overexpression of etcABC increased intracellular cAMP levels and the transcription level of crp, respectively, in K. pneumoniae. In conclusion, overexpression of etcABC positively regulated cAMP production and cAMP-CRP activity to activate the mrk operon, resulting in increased type 3 fimbriae synthesis in K. pneumoniae.
Collapse
Affiliation(s)
| | - Yu-Tze Horng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Shih-Wen Cheng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Wen-Ting Chung
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Po-Chi Soo
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien City, Taiwan.,Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien City, Taiwan
| |
Collapse
|
27
|
Barbosa VAA, Lery LMS. Insights into Klebsiella pneumoniae type VI secretion system transcriptional regulation. BMC Genomics 2019; 20:506. [PMID: 31215404 PMCID: PMC6580597 DOI: 10.1186/s12864-019-5885-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
Background Klebsiella pneumoniae (KP) is an opportunistic pathogen that mainly causes respiratory and urinary tract infections. The frequent occurrence of simultaneously virulent and multiple drug-resistant isolates led WHO to include this species in the list of top priorities for research and development of therapeutic alternatives. The comprehensive knowledge of the molecular mechanisms underlying KP virulence may lead to the proposal of more efficient and specific drugs. One of its virulence factors is the Type VI Secretion System (T6SS), which contributes to bacterial competition, cell invasion and in vivo colonisation. Despite the few studies showing the involvement of T6SS in KP pathogenesis, little is known concerning the regulation of its expression. The understanding of regulatory mechanisms may give more clues about the function of the system and the possibilities of future interference in this process. This work aimed to standardise the annotation of T6SS genes in KP strains and identify mechanisms of their transcriptional regulation through computational predictions. Results We analyzed the genomes of Kp52.145, HS11286 and NTUH-K2044 strains to perform a broad prediction and re-annotation of T6SS genes through similarity searches, comparative and linear discriminant analysis. 38 genes were found in Kp52.145, while 29 in HS11286 and 30 in NTUH-K2044. Genes coding for iron uptake systems are encoded in adjacencies of T6SS, suggesting that KP T6SS might also play a role in ion import. Some of the T6SS genes are comprised in syntenic regions. 17 sigma 70-dependent promoter regions were identified in Kp52.145, 12 in HS11286 and 12 in NTUH-K2044. Using VirtualFootprint algorithm, binding sites for 13 transcriptional regulators were found in Kp52.145 and 9 in HS11286 and 17 in NTUH-K2044. Six of them are common to the 3 strains: OxyR, H-NS, RcsAB, GcvA, Fis, and OmpR. Conclusions The data presented herein are derived from computational analysis. Although future experimental studies are required to confirm those predictions, they suggest that KP T6SS might be regulated in response to environmental signals that are indeed sensed by the bacteria inside the human host: temperature (H-NS), nutrition-limitation (GcvA and Fis), oxidative stress (OxyR) and osmolarity (RscAB and OmpR). Electronic supplementary material The online version of this article (10.1186/s12864-019-5885-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Victor Augusto Araújo Barbosa
- Cellular Microbiology Laboratory, Oswaldo Cruz Foundation - Oswaldo Cruz Institute, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil
| | - Leticia Miranda Santos Lery
- Cellular Microbiology Laboratory, Oswaldo Cruz Foundation - Oswaldo Cruz Institute, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil.
| |
Collapse
|
28
|
Bhagirath AY, Li Y, Patidar R, Yerex K, Ma X, Kumar A, Duan K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int J Mol Sci 2019; 20:E1781. [PMID: 30974906 PMCID: PMC6480566 DOI: 10.3390/ijms20071781] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Gram-negative pathogens such as Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the leading cause of nosocomial infections throughout the world. One commonality shared among these pathogens is their ubiquitous presence, robust host-colonization and most importantly, resistance to antibiotics. A significant number of two-component systems (TCSs) exist in these pathogens, which are involved in regulation of gene expression in response to environmental signals such as antibiotic exposure. While the development of antimicrobial resistance is a complex phenomenon, it has been shown that TCSs are involved in sensing antibiotics and regulating genes associated with antibiotic resistance. In this review, we aim to interpret current knowledge about the signaling mechanisms of TCSs in these three pathogenic bacteria. We further attempt to answer questions about the role of TCSs in antimicrobial resistance. We will also briefly discuss how specific two-component systems present in K. pneumoniae, A. baumannii, and P. aeruginosa may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Anjali Y Bhagirath
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Yanqi Li
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Rakesh Patidar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Katherine Yerex
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaoxue Ma
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Ayush Kumar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|