1
|
de Jesús-Campos D, Bojórquez-Velázquez E, Ruiz-May E, Fimbres-Olivarría D, Hayano-Kanashiro C, Huerta-Ocampo JÁ. Proteomic insights into cell signaling and stress response mechanisms in Chaetoceros muelleri under nitrogen limitation. J Proteomics 2025; 316:105435. [PMID: 40122379 DOI: 10.1016/j.jprot.2025.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/09/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Microalgae are often called "green factories" because they can perform photosynthesis, converting sunlight into biomass and high-value metabolites. Nitrogen concentration is a critical factor influencing protein accumulation. Unfortunately, nitrogen deprivation often negatively impacts biomass production. Understanding the relationship between nitrogen concentration and protein accumulation is crucial for harnessing the potential of microalgae in various industries and addressing environmental challenges. Here, we quantitatively compared the proteomic profiles of Chaetoceros muelleri diatom, grown in two Nitrogen-deficient conditions and control treatment by employing a Tandem Mass Tag-based quantitative proteomic approach. Proteins involved in photosynthesis were differentially accumulated under moderately nitrogen-deficient conditions. In contrast, proteins involved in cell signaling and protection mechanisms were differentially accumulated under severely nitrogen-limited conditions. Proteins associated with nitrogen metabolism, carbohydrate metabolism, and protein biosynthesis were differentially decreased in severely nitrogen-limited conditions, indicating differential response mechanisms of C. muelleri to varying nitrogen conditions. Our results show that C. muelleri employs distinct strategies in response to nitrogen limitation. These results provide valuable insights into the adaptive strategies of C. muelleri under nitrogen limitation, offering potential applications in optimizing microalgal cultures for the enhanced production of target metabolites in industrial bioreactors. BIOLOGICAL SIGNIFICANCE: The marine diatom Chaetoceros muelleri accumulates lipids and carbohydrates under low nitrogen conditions without affecting its biomass. Response to nitrogen limitation in C. muelleri was examined by isobaric labelling-based proteomics. We identified changes mainly focused on photosynthesis pathways, cell signaling and protection mechanisms, nitrogen and carbohydrate metabolism, as well as protein biosynthesis. Our results indicate that C. muelleri activate unique strategies in response to different nitrogen concentrations, and this differential response represents a key factor for inducing metabolite accumulation without affecting biomass production.
Collapse
Affiliation(s)
- Damaristelma de Jesús-Campos
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo CP 83000, Sonora, Mexico
| | | | - Eliel Ruiz-May
- Instituto de Ecología, A.C., Xalapa-Veracruz CP 91073, Mexico
| | - Diana Fimbres-Olivarría
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo CP 83000, Sonora, Mexico
| | - Corina Hayano-Kanashiro
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo CP 83000, Sonora, Mexico.
| | | |
Collapse
|
2
|
Kim HS, Abassi S, Bui QTN, Ki JS. Nitrogen (N) balancing metabolism in the toxic dinoflagellate Alexandrium pacificum against N shift revealed by physiology and N-related genes regulation. CHEMOSPHERE 2025; 379:144437. [PMID: 40279932 DOI: 10.1016/j.chemosphere.2025.144437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The dinoflagellate Alexandrium pacificum is responsible for harmful algal blooms and paralytic shellfish poisoning in marine environments. Its physiology is greatly affected by nitrogen (N) sources; however, the molecular mechanisms involved in N acquisition and balancing are not clearly understood. Here, we determined the full-length gene sequences of nitrate (NO3-) transporter (ApNRT), NO3- reductase (ApNR), and ammonium (NH4+) transporter (ApAMT) from the dinoflagellate A. pacificum. In addition, we examined physiological and transcriptional responses of these three genes under diverse concentrations of NO3- (0.00-8.82 mM) and NH4+ (0.00-1.76 mM). The open reading frames of ApNRT, ApNR, and ApAMT were determined as 1767 bp, 3312 bp, and 1363 bp, without introns in their genomic coding regions. Their encoded proteins were phylogenetically close to those of other photosynthetic eukaryotes. NO3- supplementation promoted cell growth, while NH4+ inhibited it. Expression of ApNRT and ApNR were correlated in both low and high N conditions. Sufficient uptake of one of the N forms (NO3- and NH4+, respectively) suppressed the regulation of the other dissolved inorganic nitrogen (DIN) transporter (ApAMT and ApNRT, respectively). These results showed that A. pacificum may have a selective mechanism for N uptake depending on the available N sources, suggesting a proliferation strategy of dinoflagellate in eutrophic environments.
Collapse
Affiliation(s)
- Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul, 03016, South Korea; Institute of Natural Science, Sangmyung University, Seoul, 03016, South Korea
| | - Sofia Abassi
- Department of Life Science, Sangmyung University, Seoul, 03016, South Korea
| | - Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul, 03016, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul, 03016, South Korea; Institute of Natural Science, Sangmyung University, Seoul, 03016, South Korea.
| |
Collapse
|
3
|
Guérin N, Seyman C, Orvain C, Bertrand L, Gourvil P, Probert I, Vacherie B, Brun É, Magdelenat G, Labadie K, Wincker P, Thurotte A, Carradec Q. Transcriptomic response of the picoalga Pelagomonas calceolata to nitrogen availability: new insights into cyanate lyase function. Microbiol Spectr 2025; 13:e0265424. [PMID: 40130850 PMCID: PMC12054182 DOI: 10.1128/spectrum.02654-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/12/2025] [Indexed: 03/26/2025] Open
Abstract
Cyanate (OCN-) is an organic nitrogen compound found in aquatic environments potentially involved in phytoplankton growth. Given the prevalence and activity of cyanate lyase genes in eukaryotic microalgae, cyanate has been suggested as an alternative source of nitrogen in the environment. However, the conditions under which cyanate lyase is expressed and the actual capacity of microalgae to assimilate cyanate remain largely underexplored. Here, we studied the nitrogen metabolism in the cosmopolitan open-ocean picoalga Pelagomonas calceolata (Pelagophyceae and Stramenopiles) in environmental metatranscriptomes and transcriptomes from culture experiments under different nitrogen sources and concentrations. We observed that cyanate lyase is upregulated in nitrate-poor oceanic regions, suggesting that cyanate is an important molecule contributing to the persistence of P. calceolata in oligotrophic environments. Non-axenic cultures of P. calceolata were capable of growing on various nitrogen sources, including nitrate, urea, and cyanate, but not ammonium. RNA sequencing of these cultures revealed that cyanate lyase was downregulated in the presence of cyanate, indicating that this gene is not involved in the catabolism of extracellular cyanate to ammonia. Based on environmental data sets and laboratory experiments, we propose that cyanate lyase is important in nitrate-poor environments to generate ammonia from cyanate produced by endogenous nitrogenous compound recycling rather than being used to metabolize imported extracellular cyanate as an alternative nitrogen source.IMPORTANCEVast oceanic regions are nutrient-poor, yet several microalgae thrive in these environments. While various acclimation strategies to these conditions have been discovered in a limited number of model microalgae, many important lineages remain understudied. Investigating nitrogen metabolism across different microalga lineages is crucial for understanding ecosystem functioning in low-nitrate areas, especially in the context of global ocean warming. This study describes the nitrogen metabolism of Pelagomonas calceolata, an abundant ochrophyte in temperate and tropical oceans. By utilizing both global scale in situ metatranscriptomes and laboratory-based transcriptomics, we uncover how P. calceolata adapts to low-nitrate conditions. Our findings reveal that P. calceolata can metabolize various nitrogenous compounds and relies on cyanate lyase to recycle endogenous nitrogen in low-nitrate conditions. This result paves the way for future investigations into the significance of cyanate metabolism within oceanic trophic webs.
Collapse
Affiliation(s)
- Nina Guérin
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, Paris, France
| | - Chloé Seyman
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, Paris, France
| | - Céline Orvain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, Paris, France
| | - Laurie Bertrand
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, Paris, France
| | - Priscillia Gourvil
- FR2424, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, Brittany, France
| | - Ian Probert
- FR2424, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, Brittany, France
| | - Benoit Vacherie
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry-Courcouronnes, France
| | - Élodie Brun
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry-Courcouronnes, France
| | - Ghislaine Magdelenat
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry-Courcouronnes, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry-Courcouronnes, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, Paris, France
| | - Adrien Thurotte
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, Paris, France
| |
Collapse
|
4
|
Hamzelou S, Belobrajdic D, Broadbent JA, Juhász A, Lee Chang K, Jameson I, Ralph P, Colgrave ML. Utilizing proteomics to identify and optimize microalgae strains for high-quality dietary protein: a review. Crit Rev Biotechnol 2024; 44:1280-1295. [PMID: 38035669 DOI: 10.1080/07388551.2023.2283376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Algae-derived protein has immense potential to provide high-quality protein foods for the expanding human population. To meet its potential, a broad range of scientific tools are required to identify optimal algal strains from the hundreds of thousands available and identify ideal growing conditions for strains that produce high-quality protein with functional benefits. A research pipeline that includes proteomics can provide a deeper interpretation of microalgal composition and biochemistry in the pursuit of these goals. To date, proteomic investigations have largely focused on pathways that involve lipid production in selected microalgae species. Herein, we report the current state of microalgal proteome measurement and discuss promising approaches for the development of protein-containing food products derived from algae.
Collapse
Affiliation(s)
| | | | | | - Angéla Juhász
- School of Science, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, Joondalup, Australia
| | | | - Ian Jameson
- CSIRO Ocean and Atmosphere, Hobart, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Michelle L Colgrave
- CSIRO Agriculture and Food, St Lucia, Australia
- School of Science, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
5
|
Zhao S, Li X, Yao X, Liu X, Pan C, Guo L, Bai J, Chen T, Yu H, Hu C. Detoxification of tetracycline and synthetic dyes by a newly characterized Lentinula edodes laccase, and safety assessment using proteomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116324. [PMID: 38636260 DOI: 10.1016/j.ecoenv.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Fungal laccase has strong ability in detoxification of many environmental contaminants. A putative laccase gene, LeLac12, from Lentinula edodes was screened by secretome approach. LeLac12 was heterogeneously expressed and purified to characterize its enzymatic properties to evaluate its potential use in bioremediation. This study showed that the extracellular fungal laccase from L. edodes could effectively degrade tetracycline (TET) and the synthetic dye Acid Green 25 (AG). The growth inhibition of Escherichia coli and Bacillus subtilis by TET revealed that the antimicrobial activity was significantly reduced after treatment with the laccase-HBT system. 16 transformation products of TET were identified by UPLC-MS-TOF during the laccase-HBT oxidation process. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that LeLac12 could completely mineralize ring-cleavage products. LeLac12 completely catalyzed 50 mg/L TET within 4 h by adding AG (200 mg/L), while the degradation of AG was above 96% even in the co-contamination system. Proteomic analysis revealed that central carbon metabolism, energy metabolism, and DNA replication/repair were affected by TET treatment and the latter system could contribute to the formation of multidrug-resistant strains. The results demonstrate that LeLac12 is an efficient and environmentally method for the removal of antibiotics and dyes in the complex polluted wastewater.
Collapse
Affiliation(s)
- Shuxue Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Xiaohang Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Xingdong Yao
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xuyang Liu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Chao Pan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Tiantian Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| | - Chunhui Hu
- Instrumental Analysis Center of Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| |
Collapse
|
6
|
Chen XH, Yang MK, Li YY, Xie ZX, Zhang SF, Töpel M, Amin SA, Lin L, Ge F, Wang DZ. Improving the genome and proteome annotations of the marine model diatom Thalassiosira pseudonana using a proteogenomics strategy. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:102-115. [PMID: 37073328 PMCID: PMC10077189 DOI: 10.1007/s42995-022-00161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 12/17/2022] [Indexed: 05/03/2023]
Abstract
Diatoms are unicellular eukaryotic phytoplankton that account for approximately 20% of global carbon fixation and 40% of marine primary productivity; thus, they are essential for global carbon biogeochemical cycling and climate. The availability of ten diatom genome sequences has facilitated evolutionary, biological and ecological research over the past decade; however, a complimentary map of the diatom proteome with direct measurements of proteins and peptides is still lacking. Here, we present a proteome map of the model marine diatom Thalassiosira pseudonana using high-resolution mass spectrometry combined with a proteogenomic strategy. In-depth proteomic profiling of three different growth phases and three nutrient-deficient samples identified 9526 proteins, accounting for ~ 81% of the predicted protein-coding genes. Proteogenomic analysis identified 1235 novel genes, 975 revised genes, 104 splice variants and 234 single amino acid variants. Furthermore, our quantitative proteomic analysis experimentally demonstrated that a considerable number of novel genes were differentially translated under different nutrient conditions. These findings substantially improve the genome annotation of T. pseudonana and provide insights into new biological functions of diatoms. This relatively comprehensive diatom proteome catalog will complement available diatom genome and transcriptome data to advance biological and ecological research of marine diatoms. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00161-y.
Collapse
Affiliation(s)
- Xiao-Huang Chen
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000 China
| | - Ming-Kun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Yuan-Yuan Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
| | - Mats Töpel
- Department of Marine Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
- IVL-Swedish Environmental Research Institute, Box 53021, 40014 Gothenburg, Sweden
| | - Shady A. Amin
- New York University Abu Dhabi, Saadiyat Island, 129188 Abu Dhabi, United Arab Emirates
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
| |
Collapse
|
7
|
Brownlee C, Helliwell KE, Meeda Y, McLachlan D, Murphy EA, Wheeler GL. Regulation and integration of membrane transport in marine diatoms. Semin Cell Dev Biol 2023; 134:79-89. [PMID: 35305902 DOI: 10.1016/j.semcdb.2022.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/27/2022]
Abstract
Diatoms represent one of the most successful groups of marine phytoplankton and are major contributors to ocean biogeochemical cycling. They have colonized marine, freshwater and ice environments and inhabit all regions of the World's oceans, from poles to tropics. Their success is underpinned by a remarkable ability to regulate their growth and metabolism during nutrient limitation and to respond rapidly when nutrients are available. This requires precise regulation of membrane transport and nutrient acquisition mechanisms, integration of nutrient sensing mechanisms and coordination of different transport pathways. This review outlines transport mechanisms involved in acquisition of key nutrients (N, C, P, Si, Fe) by marine diatoms, illustrating their complexity, sophistication and multiple levels of control.
Collapse
Affiliation(s)
- Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Sciences, University of Southampton, Southampton SO14 3ZH, UK
| | - Katherine E Helliwell
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Yasmin Meeda
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Deirdre McLachlan
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Eleanor A Murphy
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Glen L Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
8
|
Zhang B, Hu S, Sun S, Fang T, Yu Y, Sun X, Xu N. Transcriptomic analysis provides insights into the algicidal mechanism of cocamidopropyl betaine against the red tide microalgae Skeletonema costatum. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105838. [PMID: 36525828 DOI: 10.1016/j.marenvres.2022.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the effect of the surfactant cocamidopropyl betaine (CAB) on the growth of red tide microalgae Skeletonema costatum. It was found that CAB caused cell lysis in a time- and dose-dependent manner and significantly inhibited the growth of S. costatum. Additionally, the transcriptomic approach was coupled with physiological analysis to elucidate the inhibitory mechanism of CAB on S. costatum. Among the 30726 genes identified, 17720 and 20583 genes were differentially expressed after treatment for 3 h and 6 h, respectively, which revealed that CAB redirected metabolic pathways, of which the expressions of genes related to the proteasome, ABC transporters, and amino acid-related metabolism were significantly upregulated, while genes involved in photosynthesis, biofilm and cell wall synthesis, mitogen-activated protein kinase (MAPK) cascades and antioxidant system were downregulated. The results above corresponded to the decreasing antioxidant enzymes activities, protein and photosynthetic pigments contents, as well as the increasing malondialdehyde (MDA) content. Our study presented herein shed light on the algicidal mechanism of CAB at the transcriptome level and was useful to red tide control, and marine environmental protection.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shanshan Hu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Siqi Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tian Fang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yanyan Yu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
9
|
Zhang SF, Han BB, Shi RJ, Wu FX, Rao YY, Dai M, Huang HH. Quantitative Proteomic Analysis Reveals the Key Molecular Events Driving Phaeocystis globosa Bloom and Dissipation. Int J Mol Sci 2022; 23:ijms232012668. [PMID: 36293526 PMCID: PMC9604223 DOI: 10.3390/ijms232012668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Phaeocystis globosa is a marine-bloom-forming haptophyte with a polymorphic life cycle alternating between free-living cells and a colonial morphotype, that produces high biomass and impacts ecological structure and function. The mechanisms of P. globosa bloom formation have been extensively studied, and various environmental factors are believed to trigger these events. However, little is known about the intrinsic biological processes that drive the bloom process, and the mechanisms underlying P. globosa bloom formation remain enigmatic. Here, we investigated a P. globosa bloom occurring along the Chinese coast and compared the proteomes of in situ P. globosa colonies from bloom and dissipation phases using a tandem mass tag (TMT)-based quantitative proteomic approach. Among the 5540 proteins identified, 191 and 109 proteins displayed higher abundances in the bloom and dissipation phases, respectively. The levels of proteins involved in photosynthesis, pigment metabolism, nitrogen metabolism, and matrix substrate biosynthesis were distinctly different between these two phases. Ambient nitrate is a key trigger of P. globosa bloom formation, while the enhanced light harvest and multiple inorganic carbon-concentrating mechanisms support the prosperousness of colonies in the bloom phase. Additionally, colonies in the bloom phase have greater carbon fixation potential, with more carbon and energy being fixed and flowing toward the colonial matrix biosynthesis. Our study revealed the key biological processes underlying P. globosa blooms and provides new insights into the mechanisms behind bloom formation.
Collapse
Affiliation(s)
- Shu-Fei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Bei-Bei Han
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Rong-Jun Shi
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Feng-Xia Wu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yi-Yong Rao
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Ming Dai
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Hong-Hui Huang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511485, China
- Correspondence:
| |
Collapse
|
10
|
Zhao S, Pan C, Zhao J, Du H, Li M, Yu H, Chen X. Quantitative proteomic analysis of the microbial degradation of 3-aminobenzoic acid by Comamonas sp. QT12. Sci Rep 2022; 12:17609. [PMID: 36266292 PMCID: PMC9584955 DOI: 10.1038/s41598-022-17570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023] Open
Abstract
A mab cluster associated with 3-aminobenzoic acid (3AB) degradation was identified in Comamonas sp. QT12. However, the cellular response of Comamonas sp. QT12 to 3-aminobenzoic acid remains unclear. In this study, label-free quantitative proteome analysis based on LC-MS/MS was used to study the protein expression difference of strain QT12 under the condition of using 3AB (3AB) and citric acid/ammonium chloride as substrates (3ABCon). A total of 2068 proteins were identified, of which 239 were significantly up-regulated in 3AB group, 124 were significantly down-regulated in 3AB group, 624 were expressed only in 3AB group, and 216 were expressed only in 3ABCon group in 3AB group. KEGG pathway analysis found that 83 pathways were up-regulated and 49 pathways were down-regulated, In GO analysis, 315 paths were up-regulated and 156 paths were down-regulated. There were 6 genes in the mab cluster that were only detected in the 3AB group.The mab cluster was found to be related to degradation of 3AB. By knockout, it was found that the growth rate of the mutant △orf7 and △orf9 were slowed down. HPLC results showed that the mutant △orf7 and △orf9 could still degrade 3AB, it was found that orf7, orf9 were not key genes about 3AB degradation and they could be replaced by other genes in strain QT12. These findings improve our understanding of the molecular mechanisms underlying the cellular response of 3AB degradation in Comamonas bacterium.
Collapse
Affiliation(s)
- Shuxue Zhao
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China ,grid.412608.90000 0000 9526 6338Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109 Shandong Province People’s Republic of China
| | - Chao Pan
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| | - Junxing Zhao
- Qingdao Water Administration Bureau, Qingdao, 266071 China
| | - Haiyan Du
- grid.412608.90000 0000 9526 6338Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109 Shandong Province People’s Republic of China
| | - Min Li
- grid.412608.90000 0000 9526 6338Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109 Shandong Province People’s Republic of China
| | - Hao Yu
- grid.412608.90000 0000 9526 6338Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109 Shandong Province People’s Republic of China
| | - Xi Chen
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| |
Collapse
|
11
|
Ma J, Chen F, Zhou B, Zhang Z, Pan K. Effects of nitrogen and phosphorus availability on cadmium tolerance in the marine diatom Phaeodactylum tricornutum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156615. [PMID: 35691352 DOI: 10.1016/j.scitotenv.2022.156615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Although the influence of major nutrients on metal toxicity in marine phytoplankton has been widely explored, the mechanisms involving the cell surface are poorly understood. Here, the model marine diatom Phaeodactylum tricornutum was cultured under different nitrogen (N), and phosphorus (P) availabilities from the f/2 to the f/20 level in the laboratory; the diatom's accumulation of cadmium (Cd) and the effects of the physical and chemical properties of the cell wall were investigated at the single-cell level. Under higher N and/or P supply at the f/2 level, both the adsorption and uptake of Cd were enhanced in the P. tricornutum cells. The N and P increased the ion-binding sites on the cell surface, causing more negative surface potential and less depolarization of the diatoms' cell walls. Up-regulated transporter genes were detected in those cells with enriched nutrient supply, which could be attributed to the higher Cd uptake. These results strongly indicate that N and P are critical nutrients for frustule-mediated metal accumulation and tolerance in marine diatoms. Our study provides new clues on the nutrient-dependent cell-surface physical and chemical mechanisms involved in metal toxicity in marine diatoms.
Collapse
Affiliation(s)
- Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Beibei Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
12
|
Zhang X, Xue C, Wang R, Shen R, Lan P. Physiological and proteomic dissection of the rice roots in response to iron deficiency and excess. J Proteomics 2022; 267:104689. [PMID: 35914714 DOI: 10.1016/j.jprot.2022.104689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
Iron (Fe) disorder is a pivotal factor that limits rice yields in many parts of the world. Extensive research has been devoted to studying how rice molecularly copes with the stresses of Fe deficiency or excess. However, a comprehensive dissection of the whole Fe-responsive atlas at the protein level is still lacking. Here, different concentrations of Fe (0, 40, 350, and 500 μM) were supplied to rice to demonstrate its response differences to Fe deficiency and excess via physiological and proteomic analysis. Results showed that compared with the normal condition, the seedling growth and contents of Fe and manganese were significantly disturbed under either Fe stress. Proteomic analysis revealed that differentially accumulated proteins under Fe deficiency and Fe excess were commonly enriched in localization, carbon metabolism, biosynthesis of amino acids, and antioxidant system. Notably, proteins with abundance retuned by Fe starvation were individually associated with phenylpropanoid biosynthesis, cysteine and methionine metabolism, while ribosome- and endocytosis-related proteins were specifically enriched in treatment of Fe overdose of 500 μM. Moreover, several novel proteins which may play potential roles in rice Fe homeostasis were predicted. These findings expand the understanding of rice Fe nutrition mechanisms, and provide efficient guidance for genetic breeding work. SIGNIFICANCE: Both iron (Fe) deficiency and excess significantly inhibited the growth of rice seedlings. Fe deficiency and excess disturbed processes of localization and cellular oxidant detoxification, metabolisms of carbohydrates and amino acids in different ways. The Fe-deficiency and Fe-excess-responsive proteins identified by the proteome were somewhat different from the reported transcriptional profiles, providing complementary information to the transcriptomic data.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Caiwen Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Gérard C, Carrière F, Receveur-Bréchot V, Launay H, Gontero B. A Trajectory of Discovery: Metabolic Regulation by the Conditionally Disordered Chloroplast Protein, CP12. Biomolecules 2022; 12:1047. [PMID: 36008940 PMCID: PMC9406205 DOI: 10.3390/biom12081047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
The chloroplast protein CP12, which is widespread in photosynthetic organisms, belongs to the intrinsically disordered proteins family. This small protein (80 amino acid residues long) presents a bias in its composition; it is enriched in charged amino acids, has a small number of hydrophobic residues, and has a high proportion of disorder-promoting residues. More precisely, CP12 is a conditionally disordered proteins (CDP) dependent upon the redox state of its four cysteine residues. During the day, reducing conditions prevail in the chloroplast, and CP12 is fully disordered. Under oxidizing conditions (night), its cysteine residues form two disulfide bridges that confer some stability to some structural elements. Like many CDPs, CP12 plays key roles, and its redox-dependent conditional disorder is important for the main function of CP12: the dark/light regulation of the Calvin-Benson-Bassham (CBB) cycle responsible for CO2 assimilation. Oxidized CP12 binds to glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase and thereby inhibits their activity. However, recent studies reveal that CP12 may have other functions beyond the CBB cycle regulation. In this review, we report the discovery of this protein, its features as a disordered protein, and the many functions this small protein can have.
Collapse
Affiliation(s)
| | | | | | - Hélène Launay
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR3479, 31 Chemin J. Aiguier, CEDEX 9, 13 402 Marseille, France; (C.G.); (F.C.); (V.R.-B.)
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR3479, 31 Chemin J. Aiguier, CEDEX 9, 13 402 Marseille, France; (C.G.); (F.C.); (V.R.-B.)
| |
Collapse
|
14
|
Ma X, Johnson KB, Gu B, Zhang H, Li G, Huang X, Xia X. The in-situ release of algal bloom populations and the role of prokaryotic communities in their establishment and growth. WATER RESEARCH 2022; 219:118565. [PMID: 35597219 DOI: 10.1016/j.watres.2022.118565] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HABs) may quickly travel and inoculate new water bodies via currents and runoff in estuaries. The role of in-situ prokaryotic communities in the re-establishment and growth of inoculated algal blooms remains unknown. A novel on-board incubation experiment was employed to simulate the sudden surge of algal blooms to new estuarine waters and reveal possible outcomes. A dinoflagellate (Amphidinium carterae) and a diatom species (Thalassiosira weissflogii) which had bloomed in the Pearl River Estuary (PRE) area were cultured to bloom densities and reintroduced back into PRE natural seawaters. The diatom showed better adaptation ability to the new environment and increased significantly after the incubation. Simultaneously, particle-attached (PA) prokaryotic community structure was strongly influenced by adding of the diatom, with some opportunistic prokaryotes significantly enhanced in the diatom treatment. Whereas the dinoflagellate population did not increase following incubation, and their PA prokaryotic community showed no significant differences relative to the control. Metagenomic analyzes revealed that labile carbohydrates and organic nitrogen produced by the diatom contributed to the surge of certain PA prokaryotes. Genomic properties of a bacteria strain, which is affiliated with genus GMD16E07 (Planctomycetaceae) and comprised up to 50% of PA prokaryotes in the diatom treatment, was described here for the first time. Notably, the association of Planctomycetaceae and T. weissflogii likely represents symbiotic mutualism, with the diatom providing organic matter for Planctomycetaceae and the bacteria supplying vitamins and detoxifying nitriles and hydrogen peroxides in exchange. Therefore, the close association between Planctomycetaceae and T. weissflogii promoted the growth of both populations, and eventually facilitated the diatom bloom establishment.
Collapse
Affiliation(s)
- Xiao Ma
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China
| | - Kevin B Johnson
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Bowei Gu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hao Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China.
| |
Collapse
|
15
|
Daily Samples Revealing Shift in Phytoplankton Community and Its Environmental Drivers during Summer in Qinhuangdao Coastal Area, China. WATER 2022. [DOI: 10.3390/w14101625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rapid urbanization and economic development in coastal regions have significantly increased coastal nutrient pollution and remarkably changed the phytoplankton community and developed some species into bloom, resulting in large economic losses and serious threats to public health. Therefore, it is indispensable to reveal the shift in the phytoplankton community and phytoplankton abundance, and phytoplankton’s environmental drivers. However, previous studies could not present the details of the environmental drivers of phytoplankton due to samples being collected with low temporal resolution. Here, high-temporal-resolution (daily) samples were collected to investigate the influence of environmental factors on phytoplankton in Qinhuangdao for 44 days. Phytoplankton communities showed a rapid succession, with predominant genera changing in the order Skeletonema–Chaetoceros–Skeletonema–Thalassiosira. Similarly, Thalassiosira pacifica, Skeletonema costatum, Chaetoceros tortissimus, and Chattonella marina were identified as the dominant species and were abundant in 0–1.27 × 107 cells·L−1, 0–9.34 × 106 cells·L−1, 0–6.49 × 106 cells·L−1, and 0–3.64 × 106 cells·L−1, respectively. Moreover, inflows facilitate the rapid succession of the phytoplankton community. Dissolved inorganic phosphorus (DIP) was found to remarkably influence the succession of phytoplankton communities and the bloom of the top three dominant species, i.e., Thalassiosira pacifica, Skeletonema costatum, and Chaetoceros tortissimus. Overall, our results provide high-temporal-resolution observations of phytoplankton community succession and reveal its environmental drivers. This contributes to our current understanding of the occurrence of algae blooms and supports the development of management strategies to control algae bloom in coastal waters.
Collapse
|
16
|
Abstract
Biomass and lipid production by the marine centric diatom Thalassiosira pseudonana were characterized in media based on palm oil mill effluent (POME) as a source of key nutrients. The optimal medium comprised 20% by volume POME, 80 µM Na2SiO3, and 35 g NaCl L−1 in water at pH ~7.7. In 15-day batch cultures (16:8 h/h light–dark cycle; 200 µmol photons m−2 s−1, 26 ± 1 °C) bubbled continuously with air mixed with CO2 (2.5% by vol), the peak concentration of dry biomass was 869 ± 14 mg L−1 corresponding to a productivity of ~58 mg L−1 day−1. The neutral lipid content of the biomass was 46.2 ± 1.1% by dry weight. The main components of the esterified lipids were palmitoleic acid methyl ester (31.6% w/w) and myristic acid methyl ester (16.8% w/w). The final biomass concentration and the lipid content were affected by the light–dark cycle. Continuous (24 h light) illumination at the above-specified irradiance reduced biomass productivity to ~54 mg L−1 day−1 and lipid content to 38.1%.
Collapse
|
17
|
Machado M, Vaz MGMV, Bromke MA, Rosa RM, Covell L, Souza LPD, Rocha DI, Martins MA, Araújo WL, Szymański J, Nunes-Nesi A. Metabolic stability of freshwater Nitzschia palea strains under silicon stress associated with triacylglycerol accumulation. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Zhao S, Chen X, Sun Q, Wang F, Hu C, Guo L, Bai J, Yu H. Label-Free Quantitative Proteomic Analysis of the Global Response to Indole-3-Acetic Acid in Newly Isolated Pseudomonas sp. Strain LY1. Front Microbiol 2021; 12:694874. [PMID: 34447357 PMCID: PMC8383072 DOI: 10.3389/fmicb.2021.694874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Indole-3-acetic acid (IAA), known as a common plant hormone, is one of the most distributed indole derivatives in the environment, but the degradation mechanism and cellular response network to IAA degradation are still not very clear. The objective of this study was to elucidate the molecular mechanisms of IAA degradation at the protein level by a newly isolated strain Pseudomonas sp. LY1. Label-free quantitative proteomic analysis of strain LY1 cultivated with IAA or citrate/NH4Cl was applied. A total of 2,604 proteins were identified, and 227 proteins have differential abundances in the presence of IAA, including 97 highly abundant proteins and 130 less abundant proteins. Based on the proteomic analysis an IAA degrading (iad) gene cluster in strain LY1 containing IAA transformation genes (organized as iadHABICDEFG), genes of the β-ketoadipate pathway for catechol and protocatechuate degradation (catBCA and pcaABCDEF) were identified. The iadA, iadB, and iadE-disrupted mutants lost the ability to grow on IAA, which confirmed the role of the iad cluster in IAA degradation. Degradation intermediates were analyzed by HPLC, LC-MS, and GC-MS analysis. Proteomic analysis and identified products suggested that multiple degradation pathways existed in strain LY1. IAA was initially transformed to dioxindole-3-acetic acid, which was further transformed to isatin. Isatin was then transformed to isatinic acid or catechol. An in-depth data analysis suggested oxidative stress in strain LY1 during IAA degradation, and the abundance of a series of proteins was upregulated to respond to the stress, including reaction oxygen species (ROS) scavenging, protein repair, fatty acid synthesis, RNA protection, signal transduction, chemotaxis, and several membrane transporters. The findings firstly explained the adaptation mechanism of bacteria to IAA degradation.
Collapse
Affiliation(s)
- Shuxue Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xi Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Qianshu Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Fei Wang
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chunhui Hu
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lizhong Guo
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Hao Yu
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
19
|
Zhang K, Zhou Z, Li J, Wang J, Yu L, Lin S. SPX-related genes regulate phosphorus homeostasis in the marine phytoplankton, Phaeodactylum tricornutum. Commun Biol 2021; 4:797. [PMID: 34172821 PMCID: PMC8233357 DOI: 10.1038/s42003-021-02284-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphorus (P) is an essential nutrient for marine phytoplankton. Maintaining intracellular P homeostasis against environmental P variability is critical for phytoplankton, but how they achieve this is poorly understood. Here we identify a SPX gene and investigate its role in Phaeodactylum tricornutum. SPX knockout led to significant increases in the expression of phosphate transporters, alkaline phosphatases (the P acquisition machinery) and phospholipid hydrolases (a mechanism to reduce P demand). These demonstrate that SPX is a negative regulator of both P uptake and P-stress responses. Furthermore, we show that SPX regulation of P uptake and metabolism involves a phosphate starvation response regulator (PHR) as an intermediate. Additionally, we find the SPX related genes exist and operate across the phytoplankton phylogenetic spectrum and in the global oceans, indicating its universal importance in marine phytoplankton. This study lays a foundation for better understanding phytoplankton adaptation to P variability in the future changing oceans.
Collapse
Affiliation(s)
- Kaidian Zhang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
| | - Jiashun Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, China.
| |
Collapse
|
20
|
Kong L, Price NM. Transcriptomes of an oceanic diatom reveal the initial and final stages of acclimation to copper deficiency. Environ Microbiol 2021; 24:951-966. [PMID: 34029435 DOI: 10.1111/1462-2920.15609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
Copper (Cu) concentration is greatly reduced in the open sea so that phytoplankton must adjust their uptake systems and acclimate to sustain growth. Acclimation to low Cu involves changes to the photosynthetic apparatus and specific biochemical reactions that use Cu, but little is known how Cu affects cellular metabolic networks. Here we report results of whole transcriptome analysis of a plastocyanin-containing diatom, Thalassiosira oceanica 1005, during its initial stages of acclimation and after long-term adaptation in Cu-deficient seawater. Gene expression profiles, used to identify Cu-regulated metabolic pathways, show downregulation of anabolic and energy-yielding reactions in Cu-limited cells. These include the light reactions of photosynthesis, carbon fixation, nitrogen assimilation and glycolysis. Reduction of these pathways is consistent with reduced growth requirements for C and N caused by slower rates of photosynthetic electron transport. Upregulation of oxidative stress defence systems persists in adapted cells, suggesting cellular damage by increased reactive oxygen species (ROS) occurs even after acclimation. Copper deficiency also alters fatty acid metabolism, possibly in response to an increase in lipid peroxidation and membrane damage driven by ROS. During the initial stages of Cu-limitation the majority of differentially regulated genes are associated with photosynthetic metabolism, highlighting the chloroplast as the primary target of low Cu availability. The results provide insights into the mechanisms of acclimation and adaptation of T. oceanica to Cu deficiency.
Collapse
Affiliation(s)
- Liangliang Kong
- Department of Biology, McGill University, Montréal, QC, Canada.,College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Neil M Price
- Department of Biology, McGill University, Montréal, QC, Canada
| |
Collapse
|
21
|
Shao H, Huang W, Avilan L, Receveur-Bréchot V, Puppo C, Puppo R, Lebrun R, Gontero B, Launay H. A new type of flexible CP12 protein in the marine diatom Thalassiosira pseudonana. Cell Commun Signal 2021; 19:38. [PMID: 33761918 PMCID: PMC7992989 DOI: 10.1186/s12964-021-00718-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background CP12 is a small chloroplast protein that is widespread in various photosynthetic organisms and is an actor of the redox signaling pathway involved in the regulation of the Calvin Benson Bassham (CBB) cycle. The gene encoding this protein is conserved in many diatoms, but the protein has been overlooked in these organisms, despite their ecological importance and their complex and still enigmatic evolutionary background. Methods A combination of biochemical, bioinformatics and biophysical methods including electrospray ionization-mass spectrometry, circular dichroism, nuclear magnetic resonance spectroscopy and small X ray scattering, was used to characterize a diatom CP12. Results Here, we demonstrate that CP12 is expressed in the marine diatom Thalassiosira pseudonana constitutively in dark-treated and in continuous light-treated cells as well as in all growth phases. This CP12 similarly to its homologues in other species has some features of intrinsically disorder protein family: it behaves abnormally under gel electrophoresis and size exclusion chromatography, has a high net charge and a bias amino acid composition. By contrast, unlike other known CP12 proteins that are monomers, this protein is a dimer as suggested by native electrospray ionization-mass spectrometry and small angle X-ray scattering. In addition, small angle X-ray scattering revealed that this CP12 is an elongated cylinder with kinks. Circular dichroism spectra indicated that CP12 has a high content of α-helices, and nuclear magnetic resonance spectroscopy suggested that these helices are unstable and dynamic within a millisecond timescale. Together with in silico predictions, these results suggest that T. pseudonana CP12 has both coiled coil and disordered regions. Conclusions These findings bring new insights into the large family of dynamic proteins containing disordered regions, thus increasing the diversity of known CP12 proteins. As it is a protein that is more abundant in many stresses, it is not devoted to one metabolism and in particular, it is not specific to carbon metabolism. This raises questions about the role of this protein in addition to the well-established regulation of the CBB cycle. Choregraphy of metabolism by CP12 proteins in Viridiplantae and Heterokonta. While the monomeric CP12 in Viridiplantae is involved in carbon assimilation, regulating phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) through the formation of a ternary complex, in Heterokonta studied so far, the dimeric CP12 is associated with Ferredoxin-NADP reductase (FNR) and GAPDH. The Viridiplantae CP12 can bind metal ions and can be a chaperone, the Heterokonta CP12 is more abundant in all stresses (C, N, Si, P limited conditions) and is not specific to a metabolism. ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00718-x.
Collapse
Affiliation(s)
- Hui Shao
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Wenmin Huang
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Luisana Avilan
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | | | - Carine Puppo
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Rémy Puppo
- CNRS FR 3479, Plate-Forme Protéomique de L'Institut de Microbiologie de La Méditerranée (IMM), Aix Marseille Univ, 13009, Marseille, France
| | - Régine Lebrun
- CNRS FR 3479, Plate-Forme Protéomique de L'Institut de Microbiologie de La Méditerranée (IMM), Aix Marseille Univ, 13009, Marseille, France
| | - Brigitte Gontero
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.
| | - Hélène Launay
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.
| |
Collapse
|
22
|
Thangaraj S, Palanisamy SK, Zhang G, Sun J. Quantitative Proteomic Profiling of Marine Diatom Skeletonema dohrnii in Response to Temperature and Silicate Induced Environmental Stress. Front Microbiol 2021; 11:554832. [PMID: 33519723 PMCID: PMC7841394 DOI: 10.3389/fmicb.2020.554832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
Global warming is expected to reduce the nutrient concentration in the upper ocean and affect the physiology of marine diatoms, but the underlying molecular mechanisms controlling these physiological changes are currently unknown. To understand these mechanisms, here we investigated iTRAQ based proteomic profiling of diatom Skeletonema dohrnii in a multifactorial experimental with a combining change of temperature and silicate concentrations. In total, 3369 differently abundant proteins were detected in four different environmental conditions, and the function of all proteins was identified using Gene Ontology and KEGG pathway analysis. For discriminating the proteome variation among samples, multivariate statistical analysis (PCA, PLS-DA) was performed by comparing the protein ratio differences. Further, performing pathway analysis on diatom proteomes, we here demonstrated downregulation of photosynthesis, carbon metabolism, and ribosome biogenesis in the cellular process that leads to decrease the oxidoreductase activity and affects the cell cycle of the diatom. Using PLS-DA VIP score plot analysis, we identified 15 protein biomarkers for discriminating studied samples. Of these, five proteins or gene (rbcL, PRK, atpB, DNA-binding, and signal transduction) identified as key biomarkers, induced by temperature and silicate stress in diatom metabolism. Our results show that proteomic finger-printing of S. dohrnii with different environmental conditions adds biological information that strengthens marine phytoplankton proteome analysis.
Collapse
Affiliation(s)
| | - Satheesh Kumar Palanisamy
- Department of Zoology, School of Natural Science, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Guicheng Zhang
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China
| |
Collapse
|
23
|
Li T, Chen X, Lin S. Physiological and transcriptomic responses to N-deficiency and ammonium: Nitrate shift in Fugacium kawagutii (Symbiodiniaceae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141906. [PMID: 32890873 DOI: 10.1016/j.scitotenv.2020.141906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Symbiodiniaceae are the source of essential coral symbionts of reef building corals. The growth and density of endosymbiotic Symbiodiniaceae within the coral host is dependent on nutrient availability, yet little is known about how Symbiodiniaceae respond to the dynamics of the nutrients, including switch between different chemical forms and changes in abundance. In this study, we investigated physiological, cytometric, and transcriptomic responses in Fugacium kawagutii to nitrogen (N)-nutrient deficiency and different chemical N forms (nitrate and ammonium) in batch culture conditions. We mainly found that ammonium was consumed faster than nitrate when provided separately, and was preferentially utilized over nitrate when both N compounds were supplied at 1:2, 1:1 and 2:1 molarity ratios. Besides, N-deficiency caused decreases in growth, energy production, antioxidative capacity and investment in photosynthate transport but increased energy consumption. Growing on ammonium produced a similar cell yield as nitrate, but with a reduced investment in nutrient transport and assimilation; yet at high concentrations ammonium exhibited inhibitory effects. These findings together have important implications in N-nutrient regulation of coral symbiosis. In addition, we identified ten highly and stably expressed genes as candidate reference genes, which will be potentially useful for gene expression studies in the future.
Collapse
Affiliation(s)
- Tangcheng Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| | - Xibei Chen
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266237, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
24
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
25
|
Launay H, Huang W, Maberly SC, Gontero B. Regulation of Carbon Metabolism by Environmental Conditions: A Perspective From Diatoms and Other Chromalveolates. FRONTIERS IN PLANT SCIENCE 2020; 11:1033. [PMID: 32765548 PMCID: PMC7378808 DOI: 10.3389/fpls.2020.01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Diatoms belong to a major, diverse and species-rich eukaryotic clade, the Heterokonta, within the polyphyletic chromalveolates. They evolved as a result of secondary endosymbiosis with one or more Plantae ancestors, but their precise evolutionary history is enigmatic. Nevertheless, this has conferred them with unique structural and biochemical properties that have allowed them to flourish in a wide range of different environments and cope with highly variable conditions. We review the effect of pH, light and dark, and CO2 concentration on the regulation of carbon uptake and assimilation. We discuss the regulation of the Calvin-Benson-Bassham cycle, glycolysis, lipid synthesis, and carbohydrate synthesis at the level of gene transcripts (transcriptomics), proteins (proteomics) and enzyme activity. In contrast to Viridiplantae where redox regulation of metabolic enzymes is important, it appears to be less common in diatoms, based on the current evidence, but regulation at the transcriptional level seems to be widespread. The role of post-translational modifications such as phosphorylation, glutathionylation, etc., and of protein-protein interactions, has been overlooked and should be investigated further. Diatoms and other chromalveolates are understudied compared to the Viridiplantae, especially given their ecological importance, but we believe that the ever-growing number of sequenced genomes combined with proteomics, metabolomics, enzyme measurements, and the application of novel techniques will provide a better understanding of how this important group of algae maintain their productivity under changing conditions.
Collapse
Affiliation(s)
- Hélène Launay
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
| | - Wenmin Huang
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Stephen C. Maberly
- UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Lancaster, United Kingdom
| | | |
Collapse
|
26
|
The Biotechnological Potential of the Marine Diatom Skeletonema dohrnii to the Elevated Temperature and pCO 2 Concentration. Mar Drugs 2020; 18:md18050259. [PMID: 32429035 PMCID: PMC7281586 DOI: 10.3390/md18050259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Marine diatoms are promising candidates for biotechnological applications, since they contain high-value compounds, naturally. To facilitate the production of these compounds, stress conditions are often preferable; however, challenges remain with respect to maximizing a metabolic potential for the large-scale cultivation. Here, we sequenced the transcriptome of diatom Skeletonema dohrnii under the actual (21 °C, 400 ppm) and elevated (25 °C, 1000 ppm) temperature and pCO2 condition. Results indicated that cells grown at higher temperature and pCO2 showed increasing growth rate, pigment composition, and biochemical productivity as did the expression of chlorophyll, carotenoid and bioactive compound related genes or transcripts. Furthermore, performing de novo transcriptome, we identified 32,884 transcript clusters and found 10,974 of them were differentially expressed between these two conditions. Analyzing the functions of differentially expressed transcripts, we found many of them involved in core metabolic and biosynthesis pathways, including chlorophyll metabolism, carotenoid, phenylpropanoid, phenylalanine and tyrosine, and flavonoid biosynthesis was upregulated. Moreover, we here demonstrated that utilizing a unique bio-fixation ability, S. dohrnii is capable of suppressing central carbon metabolism to promote lipid productivity, fatty acid contents and other bioactive compounds under high temperature and pCO2 treatment. Our study suggests that this S. dohrnii species could be a potential candidate for wide-scale biotechnological applications under elevated temperature and CO2 conditions.
Collapse
|
27
|
Zhang S, Han B, Wu F, Huang H. Quantitative proteomic analysis provides insights into the algicidal mechanism of Halobacillus sp. P1 against the marine diatom Skeletonema costatum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137048. [PMID: 32070889 DOI: 10.1016/j.scitotenv.2020.137048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Algicidal behavior is a common interaction between marine microalgae and bacteria, especially in the dissipation phase of algal blooms. The marine bacterium Halobacillus sp. P1 was previously isolated and exhibits high algicidal activity against the diatom Skeletonema costatum. However, little is known about the mechanism underlying this algicidal process. Here, a tandem mass tag (TMT)-based proteomic approach was coupled with physiological analysis to investigate the cellular responses of S. costatum when treated with P1 culture supernatant. Among the 4582 proteins identified, 82 and 437 proteins were differentially expressed after treatment for 12 and 24 h, respectively. The proteomic results were in accordance with the results of verification by parallel reaction monitoring (PRM) assays. Proteins involved in reactive oxygen species scavenging, protein degradation and transport were upregulated, while proteins participating in nitrogen metabolism, protein translation, photosynthetic pigment biosynthesis and cell cycle regulation were significantly downregulated (p-value ≤0.05), corresponding to the increasing malondialdehyde content and the decreasing nitrogen, protein and chlorophyll a contents. A nutrient competitive relationship might exist between the bacterium P1 and S. costatum, and the inhibition of nitrogen metabolism by the P1 culture supernatant might be the key lethal factor that results in the dysfunction of S. costatum metabolism. Our study sheds light on the algicidal mechanism of P1 at the molecular level and provides new insights into algae-bacteria interactions.
Collapse
Affiliation(s)
- Shufei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Beibei Han
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Fengxia Wu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Honghui Huang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
28
|
Thangaraj S, Giordano M, Sun J. Comparative Proteomic Analysis Reveals New Insights Into the Common and Specific Metabolic Regulation of the Diatom Skeletonema dohrnii to the Silicate and Temperature Availability. FRONTIERS IN PLANT SCIENCE 2020; 11:578915. [PMID: 33224167 PMCID: PMC7674209 DOI: 10.3389/fpls.2020.578915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/28/2020] [Indexed: 05/12/2023]
Abstract
Silicate (Si) and temperature are essential drivers for diatom growth and development in the ocean. Response of diatoms to these particular stress has been investigated; however, their common and specific responses to regulate intracellular development and growth are not known. Here, we investigated the combination of physiological characteristics and comparative proteomics of the diatom Skeletonema dohrnii grown in silicate- and temperature-limited conditions. Results show that cell carbon and lipid quotas were higher at lower-temperature cells, whereas cellular phosphate was higher in cells grown with lower Si. In silicate-limited cells, nitrate transporters were downregulated and resulted in lower nitrate assimilation, whereas the phosphate transporters and its assimilation were reduced in lower-temperature conditions. In photosynthesis, lower silicate caused impact in the linear electron flow and NADPH production, whereas cycling electron transport and ATP production were affected by the lower temperature. Concerning cell cycle, imbalances in the translation process were observed in lower-silicate cells, whereas impact in the transcription mechanism was observed in lower-temperature cells. However, proteins associated with carbon fixation and photorespiration were downregulated in both stress conditions, while the carbohydrate and lipid synthesis proteins were upregulated. Our results showed new insights into the common and specific responses on the proteome and physiology of S. dohrnii to silicate and temperature limitation, providing particular nutrient (Si)- and temperature-dependent mechanisms in diatoms.
Collapse
Affiliation(s)
- Satheeswaran Thangaraj
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, China
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, China
- *Correspondence: Jun Sun,
| |
Collapse
|
29
|
Evans JS. The Biomineralization Proteome: Protein Complexity for a Complex Bioceramic Assembly Process. Proteomics 2019; 19:e1900036. [DOI: 10.1002/pmic.201900036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/04/2019] [Indexed: 12/20/2022]
Affiliation(s)
- John Spencer Evans
- Laboratory for Chemical PhysicsDepartment of Skeletal and Craniofacial BiologyNew York University College of Dentistry New York NY 10010 USA
| |
Collapse
|
30
|
Thangaraj S, Shang X, Sun J, Liu H. Quantitative Proteomic Analysis Reveals Novel Insights into Intracellular Silicate Stress-Responsive Mechanisms in the Diatom Skeletonema dohrnii. Int J Mol Sci 2019; 20:E2540. [PMID: 31126124 PMCID: PMC6566588 DOI: 10.3390/ijms20102540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 01/04/2023] Open
Abstract
Diatoms are a successful group of marine phytoplankton that often thrives under adverse environmental stress conditions. Members of the Skeletonema genus are ecologically important which may subsist during silicate stress and form a dense bloom following higher silicate concentration. However, our understanding of diatoms' underlying molecular mechanism involved in these intracellular silicate stress-responses are limited. Here an iTRAQ-based proteomic method was coupled with multiple physiological techniques to explore distinct cellular responses associated with oxidative stress in the diatom Skeletonema dohrnii to the silicate limitation. In total, 1768 proteins were detected; 594 proteins were identified as differentially expressed (greater than a two-fold change; p < 0.05). In Si-limited cells, downregulated proteins were mainly related to photosynthesis metabolism, light-harvesting complex, and oxidative phosphorylation, corresponding to inducing oxidative stress, and ROS accumulation. None of these responses were identified in Si-limited cells; in comparing with other literature, Si-stress cells showed that ATP-limited diatoms are unable to rely on photosynthesis, which will break down and reshuffle carbon metabolism to compensate for photosynthetic carbon fixation losses. Our findings have a good correlation with earlier reports and provides a new molecular level insight into the systematic intracellular responses employed by diatoms in response to silicate stress in the marine environment.
Collapse
Affiliation(s)
- Satheeswaran Thangaraj
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, No 29, 13th Avenue, TEDA, Tianjin 300457, China.
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, No 29, 13th Avenue, TEDA, Tianjin 300457, China.
- Faculty of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No 29, 13th Avenue, TEDA, Tianjin 300457, China.
| | - Xiaomei Shang
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, No 29, 13th Avenue, TEDA, Tianjin 300457, China.
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, No 29, 13th Avenue, TEDA, Tianjin 300457, China.
| | - Jun Sun
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, No 29, 13th Avenue, TEDA, Tianjin 300457, China.
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, No 29, 13th Avenue, TEDA, Tianjin 300457, China.
| | - Haijiao Liu
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, No 29, 13th Avenue, TEDA, Tianjin 300457, China.
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, No 29, 13th Avenue, TEDA, Tianjin 300457, China.
- Institute of Marine Science and Technology, Shandong University, No 27, Shanda Nan Road, Jinan 250110, China.
| |
Collapse
|