1
|
Bouaziz A, Bendjama E, Chelaghma W, Zaatout N, Farouk K, Beghami FZ, Boukhanoufa R, Demikha A, Rolain JM, Loucif L. Detection and genetic characterisation of ESBL, carbapenemase, and mcr-1 genes in Gram-negative bacterial isolates from companion animals in Batna, Algeria. Antonie Van Leeuwenhoek 2025; 118:70. [PMID: 40253565 DOI: 10.1007/s10482-025-02088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
The escalating prevalence of drug-resistant Gram-negative bacteria represents a widespread threat to global public health. This study aimed to investigate the occurrence and genetic determinants of extended-spectrum β-lactamases (ESBLs), carbapenemases, and mcr-encoding genes in GNB isolates from companion animals in the city of Batna, Algeria. In total, 50 faecal samples were collected from various veterinary clinics and pet shops, including direct collection of faecal droppings (n = 22) and rectal swabs (n = 28). After selective isolation, Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry was used to identify representative colonies. Susceptibility testing was carried out using the disk diffusion method. ESBLs, carbapenemases, and colistin resistance determinants were searched for by real-time PCR. Thirty-seven strains were isolated and were mostly identified as Escherichia coli (n = 21). Molecular analysis revealed that 23 isolates carried only the blaESBL genes. The genes which were most detected were blaCTX-M-A (n = 14) and blaCTX-M-A associated with blaTEM (n = 8). Two Enterobacter cloacae isolates were positive for the blaOXA-48 gene while one of them additionally carried the blaCTX-M-A gene. The mcr-1 gene was detected in one Enterobacter kobei isolate. To the best of our knowledge, this is the first report of E. kobei carrying the mcr-1 gene from rectal swabs of cats.
Collapse
Affiliation(s)
- Amira Bouaziz
- Laboratoire de Biotechnologie Des Molécules Bioactives Et de La Physiopathologie Cellulaire (LBMBPC), Faculté Des Sciences de La Nature Et de La Vie, Université Batna 2, 05000, Batna, Algeria
| | - Esma Bendjama
- Laboratoire de Biotechnologie Des Molécules Bioactives Et de La Physiopathologie Cellulaire (LBMBPC), Faculté Des Sciences de La Nature Et de La Vie, Université Batna 2, 05000, Batna, Algeria
- Département de Technologie Alimentaire, Institut Des Sciences Vétérinaires Et Des Sciences Agronomiques, Université Batna 1, 05000, Batna, Algeria
| | - Widad Chelaghma
- Faculté Des Sciences de La Nature Et de La Vie, Université Batna 2, 05000, Batna, Algeria
| | - Nawel Zaatout
- Département de Microbiologie Et de Biochimie, Faculté Des Sciences de La Nature Et de La Vie, Université Batna 2, 05000, Batna, Algeria
| | - Kaouther Farouk
- Département de Microbiologie Et de Biochimie, Faculté Des Sciences de La Nature Et de La Vie, Université Batna 2, 05000, Batna, Algeria
| | - Fatma Zohra Beghami
- Département de Microbiologie Et de Biochimie, Faculté Des Sciences de La Nature Et de La Vie, Université Batna 2, 05000, Batna, Algeria
| | - Rahma Boukhanoufa
- Département de Microbiologie Et de Biochimie, Faculté Des Sciences de La Nature Et de La Vie, Université Batna 2, 05000, Batna, Algeria
| | - Aroua Demikha
- Département de Microbiologie Et de Biochimie, Faculté Des Sciences de La Nature Et de La Vie, Université Batna 2, 05000, Batna, Algeria
| | - Jean-Marc Rolain
- Faculté de Médecine Et de Pharmacie, Aix Marseille Université, 13005, Marseille, France
- IHU Méditerranée Infection, MEPHI, Marseille, France
- Assistance Publique Des Hôpitaux de Marseille, 13005, Marseille, France
| | - Lotfi Loucif
- Laboratoire de Biotechnologie Des Molécules Bioactives Et de La Physiopathologie Cellulaire (LBMBPC), Faculté Des Sciences de La Nature Et de La Vie, Université Batna 2, 05000, Batna, Algeria.
| |
Collapse
|
2
|
Wang J, Dong ZH, Zhou XY, Ma QC, Wang ZY, Lin D, Huang YF, Zhang C, Jiao X, Li D, Li Q. Stool carriage of CTX-M/CMY-producing Salmonella enterica in a Chinese tertiary hospital in Shenzhen, China. Front Cell Infect Microbiol 2025; 15:1544757. [PMID: 40182768 PMCID: PMC11966408 DOI: 10.3389/fcimb.2025.1544757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Salmonellosis, caused by non-typhoidal Salmonella, is a common foodborne gastrointestinal infection. Third-generation cephalosporins are recommended as the first-line treatment for Salmonella infections. Our study aimed to investigate the molecular epidemiology, antimicrobial resistance, and the transmission of extended-spectrum β-lactamases (ESBL) genes in 96 clinical Salmonella isolates collected between 2020 and 2022 at a tertiary hospital in Shenzhen, China. We performed antimicrobial susceptibility testing and whole-genome sequencing to identify serotypes, multilocus sequence typing, antimicrobial resistance genes in these isolates, and the genetic structures of the bla CTX-M/bla CMY genes. Seventeen Salmonella serotypes were identified, with S. 4,[5],12:i:- (37.5%) being the most common, followed by S. Enteritidis (15.63%), S. Typhimurium (14.58%), S. London (7.29%), and S. Rissen (5.21%). MLST analysis revealed 19 distinct sequence types (STs), with ST34 being the most prevalent (36.46%), followed by ST11 (15.63%) and ST19 (13.54%). Antimicrobial resistance testing showed those isolates had high levels of resistance to ampicillin (72.92%) and tetracycline (71.88%), with 70.83% of isolates as multidrug-resistant (MDR). Three bla CTX-M genes (bla CTX-M-14, bla CTX-M-55, and bla CTX-M-65) and bla CMY-2 were identified among 18 cefotaxime-resistant strains, of which one and 12 isolates successfully transferred bla CMY or bla CTX-M to E. coli C600 via conjugation, respectively. The bla CTX-M/bla CMY-2-carrying contigs in nine Salmonella isolates ranged from 2,156 to 164,862 bp, were located either on the chromosome (n=1) or plasmids (IncI1, IncK1, IncA/C) (n=9), and the bla CTX-M/bla CMY-2 genes were associated with ISEcp1. Our study demonstrates the diversity of MDR Salmonella serotypes in clinical isolates, and highlights the role of plasmids and mobile genetic elements in the horizontal transfer of bla CTX-M/bla CMY, emphasizing the need for continuous surveillance of Salmonella in clinical samples.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Institute of Medical Sciences, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Zi-Han Dong
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xian-Yuan Zhou
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Qin-Chun Ma
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhen-Yu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Dachuan Lin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Ying-Feng Huang
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Chi Zhang
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Deng Li
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Ma Z, Wang B, Zeng D, Ding H, Zeng Z. Rapid Dissemination of blaNDM-5 Gene among Carbapenem-Resistant Escherichia coli Isolates in a Yellow-Feather Broiler Farm via Multiple Plasmid Replicon. Pathogens 2024; 13:387. [PMID: 38787239 PMCID: PMC11124502 DOI: 10.3390/pathogens13050387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Although carbapenems have not been approved for animal use, carbapenem-resistant Escherichia coli (CREC) strains are increasingly being detected in food-producing animals, posing a significant public health risk. However, the epidemiological characteristics of CREC isolates in yellow-feather broiler farms remain unclear. We comprehensively investigated the genetic features of carbapenem-resistance genes among E. coli isolates recovered from a yellow-feather broiler farm in Guangdong province, China. Among the 172 isolates, 88 (51.2%) were recovered from chicken feces (88.5%, 54/61), the farm environment (51.1%, 24/47), and specimens of dead chickens (15.6%, 41/64). All CREC isolates were positive for the blaNDM-5 gene and negative for other carbapenem-resistance genes. Among 40 randomly selected isolates subjected to whole-genome sequencing, 10 belonged to distinct sequence types (STs), with ST167 (n = 12) being the most prevalent across different sources, suggesting that the dissemination of blaNDM-5 was mainly due to horizontal and clonal transmission. Plasmid analysis indicated that IncX3, IncHI2, and IncR-X1-X3 hybrid plasmids were responsible for the rapid transmission of the blaNDM-5 gene, and the genetic surrounding of blaNDM-5 contained a common mobile element of the genetic fragment designated "IS5-△ISAba125-blaNDM-5-bleMBL-trpF-dsbC". These findings demonstrate a critical role of multiple plasmid replicons in the dissemination of blaNDM-5 and carbapenem resistance.
Collapse
Affiliation(s)
- Zhenbao Ma
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (B.W.); (D.Z.)
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511490, China
| | - Bo Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (B.W.); (D.Z.)
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (B.W.); (D.Z.)
| | - Huanzhong Ding
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (B.W.); (D.Z.)
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (B.W.); (D.Z.)
| |
Collapse
|
4
|
Dos Santos S, Diene SM, Benouda A, Zerouali K, Ghaith DM, El-Mahdy RH, El Tayeb SHM, Boutiba I, Hammami A, Chrabieh R, Daoud Z, Mereghetti L, Francois P, Van Der Mee-Marquet N. Carbapenem- and colistin-resistant Enterobacterales in intensive care unit patients in Mediterranean countries, 2019. Front Microbiol 2024; 15:1370553. [PMID: 38680922 PMCID: PMC11045966 DOI: 10.3389/fmicb.2024.1370553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction The colonization of patients by carbapenemase-producing Enterobacterales (CPE) has been associated with heightened mortality, especially in vulnerable individuals within intensive care units (ICUs). Our study aimed to comprehensively assess CPE prevalence among ICU patients across the Mediterranean region pre-COVID-19, conducting a multicenter prevalence study in the first quarter of 2019. Methods We collected clinical data and rectal or fecal samples from 256 ICU patients for CPE testing. Additionally, we performed whole-genome sequencing on 40 representative CPE strains to document their molecular characteristics. Results Among the 256 patients, CPE was detected in 73 samples (28.5%), with prevalence varying from 3.3 to 69.0% across participating centers. We observed 13 colistin-resistant CPE strains, affecting three ICUs. Genetic analysis revealed highly diverse E. coli and K. pneumoniae strains, predominantly from international high-risk clones. Notably, blaOXA-48 and blaNDM-1 were the most prevalent carbapenemase genes. Molecular typing uncovered potential patient clusters in six centers. Significantly, longer hospital stays were associated with increased CPE carriage (p < 0.001). Nine centers across Morocco, Tunisia, Egypt, and Lebanon voluntarily participated. Discussion Our study provides CPE prevalence in Mediterranean ICUs and reaffirms established CPE presence in this setting but also provides updates on the molecular diversity of CPE strains. These findings highlight the imperative of reinforcing infection control measures in the participating ICUs to curtail escalated mortality rates, and of strictly applying isolation measures around patients originating from the Mediterranean region when transferred to other healthcare institutions.
Collapse
Affiliation(s)
- Sandra Dos Santos
- Centre d’Appui pour la Prévention des Infections Associées aux Soins Centre Val de Loire, Centre Hospitalier Universitaire, Tours, France
| | - Seydina M. Diene
- Faculté de Pharmacie, Aix-Marseille Université, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Université, Marseille, France
- IHU-Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Amina Benouda
- Laboratoire de Microbiologie, Hôpital Cheikh Zaid, Rabat, Morocco
| | - Khalid Zerouali
- Laboratoire de Microbiologie, Centre Hospitalier Universitaire Ibn Rochd, Faculté de Médecine et de Pharmacie, Casablanca, Morocco
| | - Doaa M. Ghaith
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rasha H. El-Mahdy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Ilhem Boutiba
- Laboratoire de Microbiologie, Centre Hospitalier Universitaire Charles Nicolle, Tunis, Tunisia
| | - Adnene Hammami
- Laboratoire de Microbiologie, Centre Hospitalier Universitaire Habib Bourguiba, Sfax, Tunisia
| | - Remie Chrabieh
- Department of Dermatology, Lebanese American University Medical Center Rizk Hospital, Beirut, Lebanon
| | - Ziad Daoud
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, Saint George Hospital-UMC, Beirut, Lebanon
| | - Laurent Mereghetti
- Service de Bactériologie-Virologie-Hygiène, Centre Hospitalier Universitaire, Tours, France
| | - Patrice Francois
- Genomic Research Laboratory, Infectious Diseases Service, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Nathalie Van Der Mee-Marquet
- Centre d’Appui pour la Prévention des Infections Associées aux Soins Centre Val de Loire, Centre Hospitalier Universitaire, Tours, France
| | | |
Collapse
|
5
|
Mei CY, Jiang Y, Ma QC, Lu MJ, Wu H, Wang ZY, Jiao X, Wang J. Low prevalence of mcr-1 in Escherichia coli from food-producing animals and food products in China. BMC Vet Res 2024; 20:40. [PMID: 38297289 PMCID: PMC10832210 DOI: 10.1186/s12917-024-03891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND mcr-1-positive Escherichia coli has emerged as a significant threat to human health, veterinary health, and food safety in recent years. After the prohibition of colistin as a feed additive in animal husbandry in China, a noticeable reduction in both colistin resistance and the prevalence of mcr-1 was observed in E. coli from animals and humans. OBJECTIVES To assess the prevalence of the colistin resistance gene mcr-1 and characterize its genetic context in E. coli strains derived from fecal and meat samples from food-producing animals in China. METHODS A total of 1,353 fecal samples and 836 food samples were collected between 2019 and 2020 in China. E. coli isolates were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and their susceptibility to colistin were determined using the broth microdilution method. The colistin-resistant E. coli isolates were screened for the presence of mcr by PCR analysis and sequencing. The minimal inhibitory concentrations (MICs) of 15 antimicrobial agents against the mcr-1-positive strains were further tested using the agar dilution method, conjugation assays were performed, and whole genome sequencing was performed using Illumina HiSeq. RESULTS In total, 1,403 E. coli strains were isolated. Thirteen isolates from chicken meat (n = 7), chickens (n = 3), and pigs (n = 3) were resistant to colistin with MIC values of 4 to 16 mg/L, and carried mcr-1. All mcr-1-positive strains, except for isolate AH20PE105, contained multiple resistance genes and exhibited multidrug-resistant phenotypes. They belonged to 10 sequence types (STs), including a novel ST (ST14521). mcr-1 was located on IncI2 (n = 9), IncX4 (n = 2), and IncHI2 (n = 2) plasmids, which were highly similar to other mcr-1-carrying plasmids sharing the same incompatibility type. Seven mcr-1-carrying plasmids could be successfully conjugally transferred to E. coli C600. CONCLUSIONS While the low prevalence of mcr-1 (0.93%) identified in this study may not immediately seem alarming, the very emergence of this gene merits attention given its implications for colistin resistance and public health. Hence, ongoing surveillance of mcr-1 in E. coli remains crucial.
Collapse
Affiliation(s)
- Cai-Yue Mei
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China
| | - Yue Jiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China
| | - Qin-Chun Ma
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China
| | - Meng-Jun Lu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China
| | - Han Wu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China
| | - Zhen-Yu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China.
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
6
|
Osman M, Yassine I, Hamze M, Al Mir H, Ghorbani Tajani A, Bisha B, Cummings KJ, Madec JY, Haenni M, Kassem II. Emergence of Extended-Spectrum Cephalosporin- and Colistin-Resistant Enterobacterales in Otherwise Healthy University Students. Microb Drug Resist 2024; 30:101-107. [PMID: 38011748 DOI: 10.1089/mdr.2023.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Resistance to last resort antibiotics has been increasing, particularly in low- and middle-income countries such as Lebanon, which has well established challenges in antimicrobial stewardship and other public health and environmental issues. However, data on the emergence of antibiotic resistance in the community in Lebanon are limited. In this study, we assessed resistance to last resort antibiotics in the fecal samples of 111 otherwise healthy university students in north Lebanon. The results showed that 47.7% of the samples harbored extended-spectrum cephalosporin-resistant isolates, while 2.7% of the samples yielded colistin-resistant isolates. Furthermore, molecular analyses showed that the β-lactamase gene group, blaCTX-M-1 group, was detected in the majority (93%) of screened extended-spectrum β-lactamase isolates. In addition, the colistin-resistant Escherichia coli isolates carried mcr-1, including the novel mcr-1.26 variant, which was previously reported in clinical samples as well as in domesticated animals and the environment in Lebanon. Taken together, these findings highlight the occurrence of resistance to important antibiotics in the community, perhaps suggesting diffuse sources, including clinical and environmental settings, and multiple factors driving the spread of multidrug-resistant bacteria and resistance determinants. There is a pressing need for comprehensive antimicrobial stewardship programs and the implementation of evidence-based practices in clinical and community settings to mitigate the increasing spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Marwan Osman
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Iman Yassine
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Hiba Al Mir
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
- ANSES, Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | | | - Bledar Bisha
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Kevin J Cummings
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jean-Yves Madec
- ANSES, Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- ANSES, Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Issmat I Kassem
- Department of Food Science and Technology, Center for Food Safety, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
7
|
Sun L, Sun GZ, Jiang Y, Mei CY, Wang ZY, Wang HY, Kong GM, Jiao X, Wang J. Low prevalence of mobilized resistance genes blaNDM, mcr-1, and tet(X4) in Escherichia coli from a hospital in China. Front Microbiol 2023; 14:1181940. [PMID: 37275145 PMCID: PMC10237293 DOI: 10.3389/fmicb.2023.1181940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023] Open
Abstract
The emergence and spread of carbapenemase genes, colistin resistance genes mcr-1, and tigecycline resistance gene tet(X) represent a significant threat to clinical therapy and public health. In this study, we investigated the presence of carbapenemase genes, mcr-1, and tet(X) in 298 Escherichia coli strains obtained from a teaching hospital in China. In total, eight (2.68%), six (2.01%), and one (0.34%) E. coli isolates carried blaNDM, mcr-1, and tet(X4), respectively. The blaNDM gene was located on IncX3 (n = 4), F2:A-:B- (n = 3), and F2:A1:B1 (n = 1) plasmids, with high similarity to multiple plasmids belonging to the same incompatibility type from Enterobacteriaceae. Six MCR-producing strains contained mcr-1-carrying IncI2 plasmids, organized similarly to other mcr-1-bearing IncI2 plasmids from animals in China. The blaCTX-M-55/64/132/199 gene located within a typical transposition unit (ISEcp1-blaCTX-M-orf477Δ) was inserted near dnaJ to generate 5-bp direct repeats in four mcr-1-positive plasmids. The tet(X) and another four resistance genes [aadA2, tet(A), floR, and Δlnu(F)] were co-located on an IncX1 plasmid, highly similar to other tet(X4)-carrying IncX1 plasmids from Escherichia and Klebsiella of animal or food origin, except that the conjugative transfer region of IncX1 plasmids was absent in our plasmid. Although a low prevalence of blaNDM, mcr-1, and tet(X) was observed in E. coli from patients in this study, their dissemination associated with some successful pandemic plasmids is of great concern. The continued surveillance of these crucial resistance genes in patients should be strengthened.
Collapse
Affiliation(s)
- Lin Sun
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Guo-Zhuang Sun
- Department of Clinical Laboratory, Xuyi People's Hospital, Huai'an, China
| | - Yue Jiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Cai-Yue Mei
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhen-Yu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Han-Yun Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Gui-Mei Kong
- Medical School of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Lee S, An JU, Kim WH, Yi S, Lee J, Cho S. Different threats posed by two major mobilized colistin resistance genes - mcr-1.1 and mcr-3.1 - revealed through comparative genomic analysis. J Glob Antimicrob Resist 2023; 32:50-57. [PMID: 36572149 DOI: 10.1016/j.jgar.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Global spread of mobilized colistin resistance gene (mcr)-carrying Escherichia coli poses serious threats to public health. This study aimed to provide insights into different threats posed by two major mcr variants: mcr-1.1 and mcr-3.1. METHODS Genetic backgrounds and characteristics of mobile genetic elements carrying mcr-1.1 or mcr-3.1 in 74 (mcr)-carrying E. coli isolated from swine farms were analysed, and comparative genomic analysis was performed with the public sequence database. RESULTS The mcr-1.1 showed high horizontal transferability (6.30 logCFU/ml). Genetic background of mcr-1.1, including genetic cassette/plasmid, was transferred without insertion sequences (ISs) and/or multi-drug resistance (MDR) and highly shared across strains. The major mcr-1.1-cassette was "mcr-1.1-pap2", mainly encoded in IncI2 and IncX4. Mcr-3.1 exhibited relatively lower conjugation frequency (0.97 logCFU/ml). The mcr-3.1-cassette was flanked by IS26 and was highly variable across strains because of the insertion, deletion, or truncation of IS6100, IS4321, or IS5075. Near the mcr-3.1 cassette, MDR regions consisting of antimicrobial/heavy metal resistance genes were identified, which varied across strains. From the MCR3-E13 strain, a mcr-3.1-carrying IncHI2-fragment was integrated into the bacterial chromosome via IS26-mediated co-integration. To our knowledge, this was the first study to describe that a mcr-3.1-carrying plasmid could be inserted into the bacterial chromosome. CONCLUSIONS Based on high horizontal transferability, mcr-1.1 could play a major role on colistin resistance propagation. On the other hand, mcr-3.1 could be transmitted with MDR and have dual pathways mediated by plasmid transfer (horizontal transmission) and chromosomal insertion (vertical transmission), enabling it to proliferate stably despite its lower horizontal transferability.
Collapse
Affiliation(s)
- Soomin Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jae-Uk An
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Woo-Hyun Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Saehah Yi
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Junbum Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Chromosomally and Plasmid-Located mcr in Salmonella from Animals and Food Products in China. Microbiol Spectr 2022; 10:e0277322. [PMID: 36409077 PMCID: PMC9769515 DOI: 10.1128/spectrum.02773-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate the prevalence and genomic characteristics of the colistin resistance gene mcr in Salmonella enterica in China. In total, 445 S. enterica isolates from animals and food products were screened through PCR and sequencing for the presence of mcr. The mcr genes were detected in nine Salmonella strains (2.02%), with complete mcr-1 in S. enterica serovar Indiana (n = 1) and an S. Typhimurium monophasic variant (S. 4,[5],12:i:-; n = 1), mcr-4.3 in S. enterica serovar London (n = 1), and an incomplete mcr-1 in S. Indiana (n = 6). They exhibited MIC values of 0.25 to 8 mg/L to colistin and showed resistance to multiple antimicrobial agents. Whole-genome sequencing was performed on mcr-positive Salmonella strains using Illumina HiSeq or PacBio single-molecule real-time sequencing. The complete mcr-1 gene was located on conjugative IncN1-IncHI2 plasmid and IncX4 plasmid, respectively, with high similarity to other mcr-1-bearing plasmids belonging to the same incompatibility type. Together with an additional 13 antimicrobial resistance genes, the incomplete mcr-1 was embedded in an 81,442-bp multiresistance region on the chromosome in S. Indiana YZ20MCS6. The Δmcr-1-pap2 segment and a set of tellurite resistance determinants (terYXWZABCDEF) in six S. Indiana strains were similar to other IncHI2 plasmid backbones. The mcr-4.3 gene was located on an untyped plasmid pYULZMPS10. Although low prevalence of mcr was observed in Salmonella, continuous surveillance of this gene in Salmonella is required. Plasmids play an important role in mcr transmission, and mcr-1, although incomplete, can be captured by chromosomes with the help of mobile elements. IMPORTANCE Colistin is a last-resort antibiotic for severe infections caused by multidrug-resistant (MDR) Gram-negative pathogens. Colistin resistance genes mcr, particularly mcr-1, have been found in Enterobacteriaceae around the world, mainly in Escherichia coli and Salmonella. Salmonella enterica is a major foodborne pathogen, with MDR Salmonella being considered a "Serious Threat Level pathogen" by the Centers for Disease Control and Prevention. Therefore, the prevalence of mcr in Salmonella strains must be monitored. In this study, a low mcr prevalence (2.02%) was observed in Salmonella strains from animals and food products, with plasmid-borne mcr-1 in S. enterica serovar Indiana and an S. Typhimurium monophasic variant (S. 4,[5],12:i:-) and chromosomally located mcr-1 in S. Indiana. The mcr-4.3 gene was first identified in S. enterica serovar London associated with an untyped plasmid. Although this study reports a low mcr prevalence in Salmonella, the transmission ability of mcr-positive Salmonella strains to humans via the food chain is a public health concern.
Collapse
|
10
|
Lin H, Chen W, Zhou R, Yang J, Wu Y, Zheng J, Fei S, Wu G, Sun Z, Li J, Chen X. Characteristics of the plasmid-mediated colistin-resistance gene mcr-1 in Escherichia coli isolated from a veterinary hospital in Shanghai. Front Microbiol 2022; 13:1002827. [PMID: 36386648 PMCID: PMC9650080 DOI: 10.3389/fmicb.2022.1002827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/03/2022] [Indexed: 09/09/2023] Open
Abstract
The mobile colistin-resistance (mcr)-1 gene is primarily detected in Enterobacteriaceae species, such as Escherichia coli and Salmonella enterica, and represents a significant public health threat. Herein, we investigated the prevalence and characteristics of mcr-1-positive E. coli (MCRPEC) in hospitalized companion animals in a pet hospital in Shanghai, China, from May 2021 to July 2021. Seventy-nine non-duplicate samples were collected from the feces (n = 52) and wounds (n = 20) of cats and dogs and the surrounding hospital environment (n = 7). Seven MCRPEC strains, identified using screening assays and polymerase chain reaction, exhibited multidrug-resistant phenotypes in broth-microdilution and agar-dilution assays. Based in whole-genome sequencing and bioinformatics analyses, all seven isolates were determined to belong to sequence type (ST) 117. Moreover, the Incl2 plasmid was prevalent in these MCRPEC isolates, and the genetic environment of the seven E. coli strains was highly similar to that of E. coli SZ02 isolated from human blood. The isolates also harbored the β-lactamase gene bla CTX-M-65, and florfenicol resistance gene floR, among other resistance genes. Given that horizontal transfer occurred in all seven strains, E. coli plasmid transferability may accelerate the emergence of multidrug-resistant bacteria and may be transmitted from companion animals to humans. Therefore, the surveillance of MCRPEC isolates among companion animals should be strengthened.
Collapse
Affiliation(s)
- Hongguang Lin
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenxin Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Rushun Zhou
- Hunan Provincial Institution of Veterinary Drug and Feed Control, Changsha, Hunan, China
| | - Jie Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiaomei Zheng
- Changsha Animal and Plant Disease Control Center, Changsha, Hunan, China
| | - Shuyue Fei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Guiting Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiyun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaojun Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
11
|
Emergence and Transmission of Plasmid-Mediated Mobile Colistin Resistance Gene mcr-10 in Humans and Companion Animals. Microbiol Spectr 2022; 10:e0209722. [PMID: 36000890 PMCID: PMC9603504 DOI: 10.1128/spectrum.02097-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mobile colistin resistance (mcr) genes mediated by plasmids have widely disseminated throughout the world. Recently, 10 mcr genes (mcr-1 to mcr-10) and a large number of variants have been identified in more than 60 countries. However, only a few instances of Enterobacter cloacae complex (ECC) bearing mcr-10 from animal origin have been reported globally. The aim of this study was to fill a knowledge gap in mcr-10-positive ECC of animal origin and analyze the potential transmission trend and different characteristics between human and companion animal isolates. The mcr-10 gene was identified on a self-transmissible plasmid in the human isolate and non-transmissible plasmids in other three animal strains. mcr-10 was adjacent to a XerC-type tyrosine recombinase-gene, and various insertion sequences were located on the downstream of core conservative structure xerC-mcr-10, thus indicating this region might be a candidate for insertions of mobile genetic elements and mcr-10 might be mobilized by IS-mediated mechanisms. Moreover, phylogenetic analysis found that mcr-10-positive isolates were mainly distributed in the clade of Enterobacter roggenkampii, exhibiting significant species specificity. These findings indicated that mcr-10 has emerged among Enterobacter spp. within humans and companion animals, highlighting that the importance of taking effective control measures to monitor the dissemination and evolution of mcr genes. IMPORTANCE Colistin was considered as the last-resort drug against severe clinical infections caused by multidrug-resistant Gram-negative pathogens. Mobile colistin resistance (mcr) genes and its variants carried by plasmids have been reported in diverse niches in recent years, and yet few studies reported carriage of mcr-10 in ECC strains of companion animal origin. How plasmid-borne mcr-10 transmitted in opportunistic pathogens and different characteristics of mcr-10-bearing strains isolated from humans and companion animals are not well understood. In this study, we discovered mcr-10-harboring strains in multidrug-resistant ECC isolates of companion animal origin for the first time and conducted a comprehensive analysis of the genetic environment of mcr-10 from multiple countries around the world, providing the potential basis for formulating control measures to slow down the spread of colistin resistance.
Collapse
|
12
|
Hamame A, Davoust B, Cherak Z, Rolain JM, Diene SM. Mobile Colistin Resistance ( mcr) Genes in Cats and Dogs and Their Zoonotic Transmission Risks. Pathogens 2022; 11:698. [PMID: 35745552 PMCID: PMC9230929 DOI: 10.3390/pathogens11060698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Pets, especially cats and dogs, represent a great potential for zoonotic transmission, leading to major health problems. The purpose of this systematic review was to present the latest developments concerning colistin resistance through mcr genes in pets. The current study also highlights the health risks of the transmission of colistin resistance between pets and humans. Methods: We conducted a systematic review on mcr-positive bacteria in pets and studies reporting their zoonotic transmission to humans. Bibliographic research queries were performed on the following databases: Google Scholar, PubMed, Scopus, Microsoft Academic, and Web of Science. Articles of interest were selected using the PRISMA guideline principles. Results: The analyzed articles from the investigated databases described the presence of mcr gene variants in pets including mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-8, mcr-9, and mcr-10. Among these articles, four studies reported potential zoonotic transmission of mcr genes between pets and humans. The epidemiological analysis revealed that dogs and cats can be colonized by mcr genes that are beginning to spread in different countries worldwide. Overall, reported articles on this subject highlight the high risk of zoonotic transmission of colistin resistance genes between pets and their owners. Conclusions: This review demonstrated the spread of mcr genes in pets and their transmission to humans, indicating the need for further measures to control this significant threat to public health. Therefore, we suggest here some strategies against this threat such as avoiding zoonotic transmission.
Collapse
Affiliation(s)
- Afaf Hamame
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Bernard Davoust
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Zineb Cherak
- Faculté des Sciences de la Nature et de la Vie, Université Batna-2, Route de Constantine, Fésdis, Batna 05078, Algeria;
| | - Jean-Marc Rolain
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Seydina M. Diene
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| |
Collapse
|
13
|
Lee S, An JU, Woo J, Song H, Yi S, Kim WH, Lee JH, Ryu S, Cho S. Prevalence, Characteristics, and Clonal Distribution of Escherichia coli Carrying Mobilized Colistin Resistance Gene mcr-1.1 in Swine Farms and Their Differences According to Swine Production Stages. Front Microbiol 2022; 13:873856. [PMID: 35602044 PMCID: PMC9121016 DOI: 10.3389/fmicb.2022.873856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Global spread of Escherichia coli strains carrying the mobilized colistin resistance gene mcr-1.1 (MCR1-EC) poses serious threats to public health. Colistin has been generally prescribed for swine colibacillosis, having made swine farms as major reservoirs of MCR1-EC. The present study aimed to understand characteristic differences of MCR1-EC, including prevalence, antimicrobial resistance, and virulence, according to swine production stages. In addition, genetic relatedness was evaluated between MCR1-EC isolated from this study as well as pig-, human-, and chicken-derived strains published in the National Center for Biotechnology Information (NCBI), based on the multi-locus sequence types (MLSTs) and whole-genome sequences (WGS). Individual fecal samples (n = 331) were collected from asymptomatic weaning-piglets, growers, finishers, and sows from 10 farrow-to-finishing farms in South Korea between 2017 and 2019. The weighted prevalence of MCR1-EC was 11.6% (95% CI: 8.9%–15.0%, 55/331), with the highest prevalence at weaning stage. The 96.2% of MCR1-EC showed multi-drug resistance. Notably, weaning stage-derived MCR1-EC showed higher resistance rates (e.g., against extended-spectrum β-lactams or quinolones) than those from other stages. MCR1-EC with virulence advantages (e.g., intestinal/extraintestinal pathogenic E. coli or robust biofilm formation) were identified from all pig stages, accounting for nearly half of the total strains. WGS-based in-depth characterization showed that intestinal pathogenic MCR1-EC harbored multi-drug resistance and multiple virulence factors, which were highly shared between strains isolated from pigs of different stages. The clonal distribution of MCR1-EC was shared within swine farms but rarely across farms. The major clonal type of MCR1-EC from swine farms and NCBI database was ST10-A. Core genomes of MCR1-EC isolated from individuals within closed environments (same farms or human hospitals) were highly shared (genetic distance < 0.01), suggesting a high probability of clonal expansion of MCR1-EC within closed environments such as livestock husbandry. To the best of our knowledge, this is the first study to analyze the differences in the characteristics and clonal distribution of MCR1-EC according to production stages in swine farms, an important reservoir of MCR1-EC. Our results highlight the need to establish MCR1-EC control plans in swine farms based on an in-depth understanding of MCR1-EC characteristics according to swine production stages, focusing especially on the weaning stages.
Collapse
Affiliation(s)
- Soomin Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jae-Uk An
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - JungHa Woo
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyokeun Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Saehah Yi
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Woo-Hyun Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- *Correspondence: Seongbeom Cho,
| |
Collapse
|
14
|
Chang MX, Zhang J, Zhang JF, Ding XM, Lu Y, Zhang J, Li R, Jiang HX. Formation, Transmission, and Dynamic Evolution of a Multidrug-Resistant Chromosomally Integrated Plasmid in Salmonella Spp. Front Microbiol 2022; 13:846954. [PMID: 35464949 PMCID: PMC9019673 DOI: 10.3389/fmicb.2022.846954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
IncHI2 plasmids, possessing high flexibility and genetic plasticity, play a vital role in the acquisition and transmission of resistance determinants. Polymorphic mobile genetic elements (MGEs) generated by a chromosomally integrated IncHI2 plasmid in an individual Salmonella isolate have not yet been detected, and the mechanisms of the formation, excision, and dynamic evolution of a multidrug-resistant chromosomally integrated plasmid (MRCP) have remained obscure. Herein, we identified a 260-kb blaCTX–M–55-qnrS1-bearing IncHI2 plasmid within a Salmonella Muenster strain. Plenty of heterogeneous MGEs (new Escherichia coli chromosomally integrated plasmid or circular plasmids with different profiles) were yielded when this MRCP was conjugated into E. coli J53 with a transfer frequency of 10–4–10–5 transconjugants per donor. A bioinformatic analysis indicated that replicative transposition and homologous recombination of IS26 elements were particularly active, and the truncated Tn1721 also played a vital role in the formation of MRCP offspring. More importantly, when released from the chromosome, MRCP could capture and co-transfer adjacent chromosomal segments to form larger plasmid progeny than itself. Stability and growth kinetics assays showed that the biological characteristics of MRCP progeny were differentiated. This study provides an insight into a flexible existence of MRCP. The conversion between vertical and horizontal transmission endowed MRCP with genetic stability as a chromosomal coding structure and transferability as extra-chromosomal elements. This alternation may accelerate the acquisition and persistence of antibiotic resistance of clinical pathogens and enhance their ability to respond to adverse environments, which poses a great challenge to the traditional antibiotic treatment.
Collapse
Affiliation(s)
- Man-Xia Chang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jing Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jin-Fei Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Min Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yang Lu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jie Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hong-Xia Jiang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
15
|
Antimicrobial Resistance in Escherichia coli Isolates from Healthy Food Animals in South Korea, 2010-2020. Microorganisms 2022; 10:microorganisms10030524. [PMID: 35336100 PMCID: PMC8949494 DOI: 10.3390/microorganisms10030524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial-resistant bacteria in food animals pose a major public health threat worldwide. In this study, we aimed to assess the antimicrobial resistance profiles and resistance trends of commensal Escherichia coli isolated from the feces of healthy cattle, pigs, and chickens in South Korea during 2010 and 2020. A total of 7237 E. coli isolates (2733 cattle, 2542 pig, and 1962 chicken isolates) were tested for susceptibility towards 12 antimicrobials. About 48%, 90%, and 97% of cattle, pig, and chicken isolates, respectively, were resistant to one or more antimicrobial agents. Cattle isolates presented low resistance (<15%) to most of the tested antimicrobials. In contrast, chicken and pig isolates demonstrated a relatively high (>45%) resistance rate to ampicillin, chloramphenicol, streptomycin, and tetracycline. We observed high ciprofloxacin and nalidixic acid resistance rates in chicken (76.1% and 88.6%, respectively), isolates in pig (12.7% and 26.7%, respectively) and cattle (2.7% and 8.2%, respectively) isolates. Notably, a very small proportion of isolates (<5%) from cattle, chickens, and pigs demonstrated resistance to amoxicillin/clavulanic acid, cefoxitin, and colistin. We identified ceftiofur resistance in a small proportion of chicken (8.8%), pig (3.7%), and cattle (0.7%) isolates. We noted an increasing but fluctuating trend of ampicillin, amoxicillin/clavulanic acid, ceftiofur, cefoxitin, chloramphenicol, ciprofloxacin, and streptomycin resistance in pig isolates. Similarly, the ampicillin, ceftiofur, and chloramphenicol resistance rates were increased but fluctuated through time in chicken isolates. Overall, 56% of the isolates showed multidrug-resistant (MDR). The proportion of MDR isolates was low in cattle (17.1%); however, this proportion was high in chickens (87.1%) and pigs (73.7%). Most of the resistance patterns included streptomycin and tetracycline in pigs and cattle, and ciprofloxacin and nalidixic acid in chickens. In conclusion, this study showed high resistance of commensal E. coli isolated from major food animals in Korea to commonly used antimicrobials including critically important antimicrobials. These bacteria could not only be a resistance reservoir but also could have potential to spread this resistance through gene transfer to pathogenic bacteria. Thus, the high prevalence of antimicrobial resistance in food animals highlights the urgent need for measures to restrict and ensure the prudent use of antimicrobials in Korea.
Collapse
|
16
|
Nittayasut N, Yindee J, Boonkham P, Yata T, Suanpairintr N, Chanchaithong P. Multiple and High-Risk Clones of Extended-Spectrum Cephalosporin-Resistant and blaNDM-5-Harbouring Uropathogenic Escherichia coli from Cats and Dogs in Thailand. Antibiotics (Basel) 2021; 10:1374. [PMID: 34827312 PMCID: PMC8614778 DOI: 10.3390/antibiotics10111374] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Resistance to extended-spectrum cephalosporins (ESC) and carbapenems in Escherichia coli (E. coli), increasingly identified in small animals, indicates a crisis of an antimicrobial resistance situation in veterinary medicine and public health. This study aimed to characterise the genetic features of ESC-resistant E. coli isolated from cats and dogs with urinary tract infections in Thailand. Of 72 ESC-resistant E. coli isolated from diagnostic samples (2016-2018), blaCTX-M including group 1 (CTX-M-55, -15 and -173) and group 9 (CTX-M-14, -27, -65 and -90) variants were detected in 47 isolates (65.28%) using PCR and DNA sequencing. Additional antimicrobial resistance genes, including plasmid-mediated AmpC (CIT and DHA), blaNDM-5, mcr-3, mph(A) and aac(6')-Ib-cr, were detected in these isolates. Using a broth microdilution assay, all the strains exhibited multidrug-resistant phenotypes. The phylogroups were F (36.11%), A (20.83%), B1 (19.44%), B2 (19.44%) and D (4.17%), with several virulence genes, plasmid replicons and an integrase gene. The DNA fingerprinting using a repetitive extragenic palindromic sequence-PCR presented clonal relationships within phylogroups. Multiple human-associated, high-risk ExPEC clones associated with multidrug resistance, including sequence type (ST) 38, ST131, ST224, ST167, ST354, ST410, ST617 and ST648, were identified, suggesting clonal dissemination. Dogs and cats are a potential reservoir of ESC-resistant E. coli and significant antimicrobial resistance genes.
Collapse
Affiliation(s)
- Naiyaphat Nittayasut
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.N.); (J.Y.)
| | - Jitrapa Yindee
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.N.); (J.Y.)
| | - Pongthai Boonkham
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nipattra Suanpairintr
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pattrarat Chanchaithong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.N.); (J.Y.)
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
17
|
Lei L, Wang Y, He J, Cai C, Liu Q, Yang D, Zou Z, Shi L, Jia J, Wang Y, Walsh TR, Shen J, Zhong Y. Prevalence and risk analysis of mobile colistin resistance and extended-spectrum β-lactamase genes carriage in pet dogs and their owners: a population based cross-sectional study. Emerg Microbes Infect 2021; 10:242-251. [PMID: 33502946 PMCID: PMC7889244 DOI: 10.1080/22221751.2021.1882884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mobile colistin resistance gene mcr-1 and extended-spectrum β-lactamase gene bla CTX-M are highly prevalent in human - and pet-derived bacteria. Isolation of identical strains of mcr-1-positive Escherichia coli (MCRPEC) or bla CTX-M-positive E. coli (CTX-MPEC) from pets and humans highlighted the potential for co-colonization of antibiotic-resistant bacteria which can be a risk for dissemination of resistance genes. In this study, the prevalence of mcr-1 and bla CTX-M carriage from rectal swabs in 299 families (dogs and their owners) were 2.7 and 5.3%, respectively. We identified a significant association of mcr-1 carriage between dogs and their owners. Whilst antibiotic use in the previous three months was associated with bla CTX-M carriage in dogs. Only one instance of dog and owner carrying identical CTX-MPEC was observed. Although the prevalence of identical strains in one family is rare, the huge number of dog ownership worldwide suggest that this threat should not be underestimated.
Collapse
Affiliation(s)
- Lei Lei
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Yongqiang Wang
- Microbiology and Immunology Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Junjia He
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Chang Cai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Qingzhi Liu
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Dawei Yang
- China Institute of Veterinary Drug Control, Beijing, People's Republic of China
| | - Zhiyu Zou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Lingyu Shi
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Jianqin Jia
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Timothy R Walsh
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,Department of Zoology, University of Oxford, Oxford, UK
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yougang Zhong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
18
|
Ma Z, Zeng Z, Liu J, Liu C, Pan Y, Zhang Y, Li Y. Emergence of IncHI2 Plasmid-Harboring blaNDM-5 from Porcine Escherichia coli Isolates in Guangdong, China. Pathogens 2021; 10:pathogens10080954. [PMID: 34451418 PMCID: PMC8398143 DOI: 10.3390/pathogens10080954] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Carbapenem resistance has posed potential harmful risks to human and animals. The objectives of this study were to understand the prevalence of blaNDM-5 in pigs and investigate the molecular characteristics of NDM-5-producing Escherichia coli isolates in Guangdong province in China. Carbapenem-resistant E. coli isolates were isolated from pigs and obtained using MacConkey plates containing 0.5 mg/L meropenem. Conjugation assay and antimicrobial susceptibility testing were conducted for the isolates and their transconjugants. Whole-genome sequence (WGS) was used to analyze the plasmid genetic feature. A total of five blaNDM-5-carrying E. coli isolates were obtained in the present investigations. They belonged to five ST types. The blaNDM-5 genes were found to be in IncX3 and IncHI2 plasmid. The IncX3 plasmid was 46,161 bp in size and identical to other reports. IncHI2 plasmid was 246,593 bp in size and similar to other IncHI2-ST3 plasmids. It consisted of a typical IncHI2 plasmid backbone region and a multiresistance region (MRR). The blaNDM-5 was closely associated with the IS3000-ISAba125-blaNDM-5-bleMBL-trpF-tat-IS26 unit. We first reported the blaNDM-5-carrying IncHI2 in E. coli isolates recovered from pigs and revealed the molecular characterization. Continued surveillance for the dissemination of blaNDM-5 among food-producing animals is required.
Collapse
Affiliation(s)
- Zhenbao Ma
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.L.); (C.L.); (Y.P.)
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.L.); (C.L.); (Y.P.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Jiao Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.L.); (C.L.); (Y.P.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Chang Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.L.); (C.L.); (Y.P.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Yu Pan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.L.); (C.L.); (Y.P.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Yanan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China;
| | - Yafei Li
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Correspondence: ; Tel.: +86-020-85161406
| |
Collapse
|
19
|
Josephs-Spaulding J, Krogh TJ, Rettig HC, Lyng M, Chkonia M, Waschina S, Graspeuntner S, Rupp J, Møller-Jensen J, Kaleta C. Recurrent Urinary Tract Infections: Unraveling the Complicated Environment of Uncomplicated rUTIs. Front Cell Infect Microbiol 2021; 11:562525. [PMID: 34368008 PMCID: PMC8340884 DOI: 10.3389/fcimb.2021.562525] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are frequent in humans, affecting the upper and lower urinary tract. Present diagnosis relies on the positive culture of uropathogenic bacteria from urine and clinical markers of inflammation of the urinary tract. The bladder is constantly challenged by adverse environmental stimuli which influence urinary tract physiology, contributing to a dysbiotic environment. Simultaneously, pathogens are primed by environmental stressors such as antibiotics, favoring recurrent UTIs (rUTIs), resulting in chronic illness. Due to different confounders for UTI onset, a greater understanding of the fundamental environmental mechanisms and microbial ecology of the human urinary tract is required. Such advancements could promote the tandem translation of bench and computational studies for precision treatments and clinical management of UTIs. Therefore, there is an urgent need to understand the ecological interactions of the human urogenital microbial communities which precede rUTIs. This review aims to outline the mechanistic aspects of rUTI ecology underlying dysbiosis between both the human microbiome and host physiology which predisposes humans to rUTIs. By assessing the applications of next generation and systems level methods, we also recommend novel approaches to elucidate the systemic consequences of rUTIs which requires an integrated approach for successful treatment. To this end, we will provide an outlook towards the so-called 'uncomplicated environment of UTIs', a holistic and systems view that applies ecological principles to define patient-specific UTIs. This perspective illustrates the need to withdraw from traditional reductionist perspectives in infection biology and instead, a move towards a systems-view revolving around patient-specific pathophysiology during UTIs.
Collapse
Affiliation(s)
- Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Thøger Jensen Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hannah Clara Rettig
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Mark Lyng
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mariam Chkonia
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Silvio Waschina
- Research Group Nutriinformatics, Institute of Human Nutrition and Food Science, Christian-Albrechts-Universität, Kiel, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
20
|
Lu J, Dong N, Liu C, Zeng Y, Sun Q, Zhou H, Hu Y, Chen S, Shen Z, Zhang R. Prevalence and molecular epidemiology of mcr-1-positive Klebsiella pneumoniae in healthy adults from China. J Antimicrob Chemother 2021; 75:2485-2494. [PMID: 32516364 DOI: 10.1093/jac/dkaa210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the nationwide prevalence of mcr-1-positive Klebsiella pneumoniae (MCRPKP) strains among healthy adults in China and identify their phenotypic and genomic characterizations. METHODS A total of 7401 rectal swab samples were collected from healthy individuals in 30 hospitals located in 30 provinces and municipalities of mainland China in 2016. Colistin-resistant bacteria were enriched in colistin-supplemented lysogeny broth. MCRPKP strains were isolated and characterized with MALDI-TOF MS, PCR analysis and antimicrobial susceptibility testing. The genomic characteristics of MCRPKP strains were determined by WGS and bioinformatics analysis. RESULTS Seven MCRPKP strains and one mcr-1-positive Klebsiella variicola strain were selectively isolated from six locales (three from Henan and one from each of Tianjin, Jiangxi, Yunnan, Gansu and Tibet). Antimicrobial susceptibility testing results indicated that all mcr-1-positive strains were susceptible to meropenem, aztreonam and ceftazidime/avibactam. WGS analysis suggested these strains belonged to seven distinct STs: ST15, ST1425, ST1462, ST273, ST307, ST391 and ST37-SLV. mcr-1 genes were carried by diverse plasmids, including IncHI2 (n = 3), IncX4 (n = 2), IncHI2/IncN (n = 1), IncFIB (n = 1) and one other plasmid type. Two ST15 strains harboured both mcr-1 and mcr-8 genes, which has not been reported before. CONCLUSIONS Our data indicated a low prevalence of mcr-1-positive Klebsiella strains (0.11%, 8/7401) in healthy individuals in mainland China and most of these strains remained susceptible to clinically important antibiotics. The prevalence and coexistence of mcr-1 and mcr-8 in K. pneumoniae may further threaten public health through either the food chain or environmental routes.
Collapse
Affiliation(s)
- Jiayue Lu
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ning Dong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Congcong Liu
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yu Zeng
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qiaoling Sun
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hongwei Zhou
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yanyan Hu
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
21
|
Galani I, Karaiskos I, Giamarellou H. Multidrug-resistant Klebsiella pneumoniae: mechanisms of resistance including updated data for novel β-lactam-β-lactamase inhibitor combinations. Expert Rev Anti Infect Ther 2021; 19:1457-1468. [PMID: 33945387 DOI: 10.1080/14787210.2021.1924674] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Multi-drug-resistant Klebsiella pneumoniae is currently one of the most pressing emerging issues in bacterial resistance. Treatment of K.pneumoniae infections is often problematic due to the lack of available therapeutic options, with a relevant impact in terms of morbidity, mortality and healthcare-associated costs. Soon after the launch of Ceftazidime-Avibactam, one of the approved new β-lactam/β-lactamase inhibitor combinations, reports of ceftazidime-avibactam-resistant strains developing resistance during treatment were published. Being a hospital-associated pathogen, K.pneumoniae is continuously exposed to multiple antibiotics resulting in constant selective pressure, which in turn leads to additional mutations that are positively selected.Areas covered: Herein the authors present the K.pneumoniae mechanisms of resistance to different antimicrobials, including updated data for ceftazidime-avibactam.Expert opinion: K.pneumoniae is a nosocomial pathogen commonly implicated in hospital outbreaks with a propensity for antimicrobial resistance toward mainstay β-lactam antibiotics and multiple other antibiotic classes. Following the development of drug resistance and understanding the mechanisms involved, we can improve the efficacy of current antimicrobials, by applying careful stewardship and rational use to preserve their potential utility. The knowledge on antibiotic resistance mechanisms should be used to inform the design of novel therapeutic agents that might not be subject to, or can circumvent, mechanisms of resistance.
Collapse
Affiliation(s)
- Irene Galani
- Medicine, Infectious Diseases Laboratory, 4thDepartment of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilias Karaiskos
- 1st Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Helen Giamarellou
- 1 Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| |
Collapse
|
22
|
Al-Mir H, Osman M, Drapeau A, Hamze M, Madec JY, Haenni M. WGS Analysis of Clonal and Plasmidic Epidemiology of Colistin-Resistance Mediated by mcr Genes in the Poultry Sector in Lebanon. Front Microbiol 2021; 12:624194. [PMID: 33763043 PMCID: PMC7982416 DOI: 10.3389/fmicb.2021.624194] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Poultry and poultry meat are important contributors to the global antimicrobial burden. Unregulated and illegal use of extended-spectrum cephalosporins (ESC) in this sector has long been identified as a major cause of massive spread of ESC-resistant Escherichia coli, and colistin usage is considered a main driver of plasmid-mediated mcr genes dissemination. In Lebanon, the first mcr-1-positive E. coli found in poultry dates back to 2015, followed by a few reports of mcr-1-positive E. coli in poultry, swine, humans, and the environment. On the contrary, a comprehensive picture of the population structure of mcr-1-positive E. coli and mcr-1-bearing plasmids carrying the mcr-1 gene using whole-genome analysis is largely lacking. This study reports the prevalence of mcr-1-positive E. coli in poultry originating from 32 farms across three Lebanese governorates and slaughtered in the same place. We report 27/32 (84.4%) mcr-1 positive farms, leading to a total of 84 non-duplicate E. coli collected, of which 62 presented the mcr-1 gene. Numerous associated resistances were identified, including to ESC through the presence of bla CTX-M or bla CMY genes. The mcr-1 gene was mostly carried by IncX4 (n = 36) and IncI2 (n = 24) plasmids, which are both known for their efficient transfer capacities. A high genetic diversity was detected, arguing for the lack of contamination during the slaughter process. ST744 and ST1011 were the most widely identified clones, which have been both regularly associated to mcr-1-carrying E. coli and to the poultry sector. The wide dissemination of colistin-resistance, coupled to resistances to ESC and numerous other molecules, should urge authorities to implement efficient guidelines for the use of antibiotics in the poultry sector in Lebanon.
Collapse
Affiliation(s)
- Hiba Al-Mir
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
- Université de Lyon – ANSES Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Antoine Drapeau
- Université de Lyon – ANSES Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Jean-Yves Madec
- Université de Lyon – ANSES Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- Université de Lyon – ANSES Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| |
Collapse
|
23
|
Li W, Li Y, Jia Y, Sun H, Zhang C, Hu G, Yuan L. Genomic characteristics of mcr-1 and bla CTX-M-type in a single multidrug-resistant Escherichia coli ST93 from chicken in China. Poult Sci 2021; 100:101074. [PMID: 33774373 PMCID: PMC8025056 DOI: 10.1016/j.psj.2021.101074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
This study was undertaken to discern the transmission characteristics of mcr-1 and blaCTX-M-type in one multidrug-resistant Escherichia coli LWY24 from chicken in China. The genetic profiles of LWY24 isolate were determined by conjugation, S1-pulsed-field gel electrophoresis, southern blot hybridization, and whole genome sequencing analysis. Meanwhile, co-transfer of plasmids in LWY24 isolate was screened by dual conjugation assays. The LWY24 isolate was identified as ST93, and harbored 3 conjugative plasmids, pLWY24J-3 (blaCTX-M-55-bearing IncFⅡ), pLWY24J-mcr-1 (mcr-1-carrying IncI2), and pLWY24J-4 (non-resistance-conferring IncI1), and one nonconjugative plasmid pLWY24 (blaCTX-M-14-containing IncHI2/IncHI2A). Numerous resistance genes, insertion sequences (especially IS26), and transposons were found in the 4 plasmids, suggesting that horizontal transmission have occurred by plasmid mating, homologous recombination, and transpositions. Under the selection pressure of cefotaxime and colistin or cefotaxime alone, the mcr-1-bearing plasmid and the blaCTX-M-55-harboring plasmid could be co-transferred at a similar frequency, with 8.00 × 10−4 or 9.00 × 10−4 transconjugants per donor cell, respectively. The specific shufflon region in mcr-1-encoding plasmid could generate up to 6 diverse PilV structures, which may further accelerate the horizontal transfer of plasmid. In conclusion, the transmission characteristics of mcr-1 and blaCTX-M-type in LWY24 isolate could due to clonal spread of ST93, selective pressure of cefotaxime, IS26-mediate homologous recombination and transposition, and the specific shufflon region.
Collapse
Affiliation(s)
- Wenya Li
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yinshu Li
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yating Jia
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Huarun Sun
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Chunhui Zhang
- College of Animal Medicine, Henan University of Animal Husbandry & Economy, Zhengzhou 450046, China
| | - Gongzheng Hu
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Li Yuan
- College of Animal Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
24
|
Wang J, Xia YB, Huang XY, Wang Y, Lv LC, Lin QQ, Yi MY, Lu PL, Liu JH, Zeng ZL. Emergence of blaNDM-5 in Enterobacteriaceae Isolates from Companion Animals in Guangzhou, China. Microb Drug Resist 2020; 27:809-815. [PMID: 33216688 DOI: 10.1089/mdr.2020.0210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The occurrence and characterization of carbapenemase-producing Enterobacteriaceae from companion animals in Guangzhou, China, are investigated. Six isolates (2.3%, 6/257) were positive for blaNDM-5, that is, one Enterobacter cloacae, one Citrobacter freundii, and four Escherichia coli. Three E. coli isolates obtained from the same animal hospital were ST410 and showed identical pulse field gel electrophoresis pattern, resistance profiles, and resistance genes. blaNDM-5 was located on IncX3 (n = 5) and IncK2 (n = 1) plasmid, respectively. The presence of carbapenemase-producing Enterobacteriaceae among companion animals needs continued surveillance.
Collapse
Affiliation(s)
- Jing Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Ying-Bi Xia
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xin-Yi Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yan Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Lu-Chao Lv
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qing-Qing Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Meng-Ying Yi
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Pei-Lan Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhen-Ling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
25
|
Moon DC, Mechesso AF, Kang HY, Kim SJ, Choi JH, Kim MH, Song HJ, Yoon SS, Lim SK. First Report of an Escherichia coli Strain Carrying the Colistin Resistance Determinant mcr-1 from a Dog in South Korea. Antibiotics (Basel) 2020; 9:E768. [PMID: 33147688 PMCID: PMC7694106 DOI: 10.3390/antibiotics9110768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 01/02/2023] Open
Abstract
We studied the presence of the mobile colistin resistance gene mcr-1 in Escherichia coli isolates recovered from fecal and urine samples of companion animals, that were collected from South Korea in 2018 and 2019. The mcr-1 gene was detected in one colistin-resistant E. coli isolated from a diarrheic dog. The isolate exhibited additional resistance to multiple antimicrobials, including fluoroquinolones and third-generation cephalosporins. The mcr-1 carrying isolate belonged to ST160. The pulsed-field gel electrophoresis pattern of our strain differed from those ST160 E. coli strains previously identified from chickens in Korea. The mcr-1 gene was identified in the IncI2 plasmid. It was also transferred to E. coli J53 recipient strain, with a conjugation efficiency of 2.8 × 10-4. Average nucleotide identity analysis demonstrated that the mcr-1-carrying plasmid in this study was closely related to those from patients in Korea. To the best of our knowledge, this is the first report of mcr-1 carrying E. coli from a companion animal in South Korea. Our findings support One Health approach is necessary to prevent the dissemination of this high-risk gene.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea; (D.C.M.); (A.F.M.); (H.Y.K.); (S.-J.K.); (J.-H.C.); (M.H.K.); (H.-J.S.); (S.-S.Y.)
| |
Collapse
|
26
|
Flament-Simon SC, de Toro M, García V, Blanco JE, Blanco M, Alonso MP, Goicoa A, Díaz-González J, Nicolas-Chanoine MH, Blanco J. Molecular Characteristics of Extraintestinal Pathogenic E. coli (ExPEC), Uropathogenic E. coli (UPEC), and Multidrug Resistant E. coli Isolated from Healthy Dogs in Spain. Whole Genome Sequencing of Canine ST372 Isolates and Comparison with Human Isolates Causing Extraintestinal Infections. Microorganisms 2020; 8:microorganisms8111712. [PMID: 33142871 PMCID: PMC7716232 DOI: 10.3390/microorganisms8111712] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/11/2023] Open
Abstract
Under a one health perspective and the worldwide antimicrobial resistance concern, we investigated extraintestinal pathogenic Escherichia coli (ExPEC), uropathogenic E. coli (UPEC), and multidrug resistant (MDR) E. coli from 197 isolates recovered from healthy dogs in Spain between 2013 and 2017. A total of 91 (46.2%) isolates were molecularly classified as ExPEC and/or UPEC, including 50 clones, among which (i) four clones were dominant (B2-CH14-180-ST127, B2-CH52-14-ST141, B2-CH103-9-ST372 and F-CH4-58-ST648) and (ii) 15 had been identified among isolates causing extraintestinal infections in Spanish and French humans in 2015 and 2016. A total of 28 (14.2%) isolates were classified as MDR, associated with B1, D, and E phylogroups, and included 24 clones, of which eight had also been identified among the human clinical isolates. We selected 23 ST372 strains, 21 from healthy dogs, and two from human clinical isolates for whole genome sequencing and built an SNP-tree with these 23 genomes and 174 genomes (128 from canine strains and 46 from human strains) obtained from public databases. These 197 genomes were segregated into six clusters. Cluster 1 comprised 74.6% of the strain genomes, mostly composed of canine strain genomes (p < 0.00001). Clusters 4 and 6 also included canine strain genomes, while clusters 2, 3, and 5 were significantly associated with human strain genomes. Finding several common clones and clone-related serotypes in dogs and humans suggests a potentially bidirectional clone transfer that argues for the one health perspective.
Collapse
Affiliation(s)
- Saskia-Camille Flament-Simon
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain;
| | - Vanesa García
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Jesús E. Blanco
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Miguel Blanco
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - María Pilar Alonso
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Unidade de Microbioloxía, Hospital Universitario Lucus Augusti (HULA), 27003 Lugo, Spain
| | - Ana Goicoa
- Servicio de Medicina Interna, Hospital Veterinario Universitario Rof Codina, USC, 27002 Lugo, Spain;
- Departamento de Anatomía, Producción Animal e Ciencias Clínicas Veterinarias, USC, 27002 Lugo, Spain
| | - Juan Díaz-González
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
| | | | - Jorge Blanco
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Correspondence:
| |
Collapse
|
27
|
High Prevalence and Diversity of Cephalosporin-Resistant Enterobacteriaceae Including Extraintestinal Pathogenic E. coli CC648 Lineage in Rural and Urban Dogs in Northwest Spain. Antibiotics (Basel) 2020; 9:antibiotics9080468. [PMID: 32752283 PMCID: PMC7460362 DOI: 10.3390/antibiotics9080468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to assess the prevalence of extended spectrum-β-lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae in fecal samples recovered from rural and urban healthy dogs in Northwest Spain (Galicia) to identify potential high-risk clones and to molecularly characterize positive isolates regarding the genes coding for ESBL/pAmpC resistance and virulence. Thirty-five (19.6%) out of 179 dogs were positive for cephalosporin-resistant Enterobacteriaceae, including Escherichiacoli and Klebsiella pneumoniae (39 and three isolates, respectively). All the isolates were multidrug resistant, with high rates of resistance to different drugs, including ciprofloxacin (71.4%). A wide diversity of ESBL/pAmpC enzymes, as well as E. coli phylogroups (A, B1, C, D, E, F and clade I) were found. The eight isolates (20.5%) found to conform to the ExPEC status, belonged to clones O1:H45-clade I-ST770 (CH11-552), O18:H11-A-ST93-CC168 (CH11-neg), O23:H16-B1-ST453-CC86 (CH6-31), and O83:H42-F-ST1485-CC648 (CH231-58), with the latter also complying the uropathogenic (UPEC) status. The three K. pneumoniae recovered produced CTX-M-15 and belonged to the ST307, a clone previously reported in human clinical isolates. Our study highlights the potential role of both rural and urban dogs as a reservoir of high-risk Enterobacteriaceae clones, such as the CC648 of E. coli and antimicrobial resistance traits. Within a One-Health approach, their surveillance should be a priority in the fight against antimicrobial resistance.
Collapse
|
28
|
Liu YY, Sun YW, Sun HR, Luo XW, He DD, Wu H, Yuan L, Pan YS, Hu GZ, Liu JH. Characterization of the IncHI 2 plasmid pTW4 harboring tet(M) from an isolate of Escherichia coli ST162. J Antibiot (Tokyo) 2020; 73:876-880. [PMID: 32528162 DOI: 10.1038/s41429-020-0337-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/01/2020] [Accepted: 05/25/2020] [Indexed: 11/09/2022]
Abstract
To investigate the genetic features and biological costs of the plasmid pTW4 harboring tet(M) in an isolate of Escherichia coli ST162 from a duck. The complete nucleotide sequence of plasmid pTW4 was determined. The characteristics of plasmid pTW4 in E. coli were investigated by stability and direct competition assays. pTW4 is an IncHI2-type plasmid that contained the resistant genes tet(M), floR, strAB, sul2, rmtB, and blaCMY-2. Tet(M) is located in the composite transposon Tn6539 within the multidrug resistant (MDR) region on this plasmid. Furthermore, the resistance gene rmtB and blaCMY-2 were found outside the MDR region. The plasmid pTW4 remained stable in the host strain E. coli J53 after passage under an antibiotic-free environment for 7 days. However, the strain E. coli J53/pTW4 showed a fitness disadvantage of 6% per ten generations in the process of growth competition with E. coli J53. In conclusion, the plasmid pTW4, a mobile MDR vehicle, may promote the dissemination of tet(M), floR, rmtB, strAB, sul2, and blaCMY-2 among bacteria and then, but it appears to confer growth disadvantage to the host.
Collapse
Affiliation(s)
- Ying-Ying Liu
- Department of Pharmacology and Toxicology, College of Animal Husbandry and Veterinary Science, Henan Agricultural University, 450002, Zhengzhou, PR China
| | - Ya-Wei Sun
- Department of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, PR China
| | - Hua-Run Sun
- Department of Pharmacology and Toxicology, College of Animal Husbandry and Veterinary Science, Henan Agricultural University, 450002, Zhengzhou, PR China
| | - Xing-Wei Luo
- Department of Pharmacology and Toxicology, College of Animal Husbandry and Veterinary Science, Henan Agricultural University, 450002, Zhengzhou, PR China
| | - Dan-Dan He
- Department of Pharmacology and Toxicology, College of Animal Husbandry and Veterinary Science, Henan Agricultural University, 450002, Zhengzhou, PR China
| | - Hua Wu
- Department of Pharmacology and Toxicology, College of Animal Husbandry and Veterinary Science, Henan Agricultural University, 450002, Zhengzhou, PR China
| | - Li Yuan
- Department of Pharmacology and Toxicology, College of Animal Husbandry and Veterinary Science, Henan Agricultural University, 450002, Zhengzhou, PR China
| | - Yu-Shan Pan
- Department of Pharmacology and Toxicology, College of Animal Husbandry and Veterinary Science, Henan Agricultural University, 450002, Zhengzhou, PR China
| | - Gong-Zheng Hu
- Department of Pharmacology and Toxicology, College of Animal Husbandry and Veterinary Science, Henan Agricultural University, 450002, Zhengzhou, PR China.
| | - Jian-Hua Liu
- Department of Pharmacology and Toxicology, College of Animal Husbandry and Veterinary Science, Henan Agricultural University, 450002, Zhengzhou, PR China
| |
Collapse
|
29
|
Shen Y, Zhang R, Schwarz S, Wu C, Shen J, Walsh TR, Wang Y. Farm animals and aquaculture: significant reservoirs of mobile colistin resistance genes. Environ Microbiol 2020; 22:2469-2484. [PMID: 32114703 DOI: 10.1111/1462-2920.14961] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
Colistin resistance has attracted substantial attention after colistin was considered as a last-resort drug for the treatment of infections caused by carbapenem-resistant and/or multidrug-resistant (MDR) Gram-negative bacteria in clinical settings. However, with the discovery of highly mobile colistin resistance (mcr) genes, colistin resistance has become an increasingly urgent issue worldwide. Despite many reviews, which summarized the prevalence, mechanisms, and structures of these genes in bacteria of human and animal origin, studies on the prevalence of mobile colistin resistance genes in aquaculture and their transmission between animals and humans remain scarce. Herein, we review recent reports on the prevalence of colistin resistance genes in animals, especially wildlife and aquaculture, and their possibility of transmission to humans via the food chain. This review also gives some insights into the routine surveillance, changing policy and replacement of polymyxins by polymyxin derivatives, molecular inhibitors, and traditional Chinese medicine to tackle colistin resistance.
Collapse
Affiliation(s)
- Yingbo Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, 310009, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Timothy R Walsh
- Department of Medical Microbiology and Infectious Disease, Institute of Infection & Immunity, UHW Main Building, Heath Park Hospital, Cardiff, CF14 4XN, UK
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|