1
|
Mallick D, Yadav U, Gupta M, Kumar D, Kumar R. The evolving landscape of Chandipura virus: A comprehensive account of outbreaks to recent advances. Virology 2025; 608:110541. [PMID: 40311237 DOI: 10.1016/j.virol.2025.110541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/29/2025] [Accepted: 04/11/2025] [Indexed: 05/03/2025]
Abstract
Chandipura virus (CHPV), a member of the family Rhabdoviridae, has garnered attention due to its significant implications on human health, particularly in India, where it has contributed to encephalitis outbreaks. This review provides a full-spectrum analysis of CHPV, detailing its origin, historical context, and geographical distribution, which primarily spans India and parts of Africa. CHPV is predominantly transmitted through infected sandflies, although alternative transmission routes cannot be overruled. Neurotropism plays a vital role in CHPV-associated pathogenesis, leading to severe neurological ailments, including encephalitis and fatalities among children at a significantly high rate. Current diagnostic approaches for CHPV infection harness molecular biology tools like PCR for viral RNA detection and serological methods to identify antibodies. Effective therapeutic strategies remain limited, with antivirals such as Favipiravir indicating strong prospects in preclinical studies. We also discuss various animal models used in CHPV research, including murine models, offering critical insights into the CHPV pathogenesis and evaluating the efficacy of potential therapeutic interventions. Concisely, this review underscores the significance of robust monitoring and further research to enhance our understanding of CHPV and develop effective strategies for its control and prevention.
Collapse
Affiliation(s)
- Disharee Mallick
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Urvashi Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Megha Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Dilip Kumar
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, India
| | - Rajesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| |
Collapse
|
2
|
Ye L, Lv Y, Feng C, Yuan J, Lin X, Feng Q, Ji S, Wu W, Dai J. Establishment and evaluation of rabbit model for corneal ectasia by photorefractive keratectomy. Exp Eye Res 2025; 251:110248. [PMID: 39862961 DOI: 10.1016/j.exer.2025.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/04/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The study aimed to compare the effects of different types of excimer laser keratectomy on rabbit corneas and to identify the optimal disease model for corneal ectasia. Additionally, investigating the structural and molecular alterations in the novel disease model helped explore the mechanisms underlying biomechanical cues in corneal ectasia. 2.0-2.5 kg New Zealand white rabbits were treated with different types of excimer laser keratectomy, including comparisons between photorefractive keratectomy (PRK) and phototherapeutic keratectomy (PTK) surgeries, as well as comparisons of different ablation depths of PRK. Detailed tests on post-surgery corneas included pentacam analyzer, H&E staining and optical coherence tomography (OCT), transmission electron microscopy (TEM), raman spectroscopy and uniaxial tensile tests. Later, tandem mass tag-labeled proteomics and multiply statistic analysis were performed on post-PRK75 corneas. Western blot was used to validate protein expression. Herein, we found that tapered corneal thinning in post-PRK corneas predisposed to corneal ectasia. Greater ablation depth increased ectasia risk. PRK75 (ablation of 75% of corneal thickness using PRK mode) emerged as the optimal modeling approach, evidenced by significant and sustained corneal ectasia for 4 weeks. The 4-week post-PRK75 corneas were evaluated by changes in stromal cell microstructure, basement membrane, collagen lamellae, collagen covalent bonds and decreased corneal biomechanical strength. Additionally, PRK75 surgery induced 109 differentially expressed proteins (DEPs), with 51 previously linked to human corneal ectasia. The statistic analysis demonstrated the dysregulation of immue response was involved in the post-PRK75 corneas, and identified nine core proteins involved in corneal ectasia, including SERPINH1, ALDH1A1, MMP10, A2M, GSTM3, CD44, CLU, C3, and ITGB2. Therefore, we concluded that PRK75 was a novel and reliable modeling method for corneal ectasia, resemble human corneal ectasia. The intrinsic structural remodeling and molecular alteration in post-PRK75 corneas could shed lights on understanding the mechanism of biomechanical cues in corneal ectasia in the future.
Collapse
MESH Headings
- Animals
- Rabbits
- Photorefractive Keratectomy/methods
- Photorefractive Keratectomy/adverse effects
- Disease Models, Animal
- Dilatation, Pathologic/etiology
- Dilatation, Pathologic/metabolism
- Dilatation, Pathologic/pathology
- Cornea/surgery
- Cornea/pathology
- Cornea/metabolism
- Tomography, Optical Coherence
- Lasers, Excimer/therapeutic use
- Blotting, Western
- Corneal Topography
- Microscopy, Electron, Transmission
- Spectrum Analysis, Raman
- Corneal Diseases/metabolism
- Corneal Diseases/etiology
- Proteomics
- Keratoconus/metabolism
Collapse
Affiliation(s)
- Lin Ye
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiu Lv
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chenli Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiayue Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xueqi Lin
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianhong Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shunmei Ji
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China; Fudan Zhangjiang Institute, Shanghai, 201203, China.
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Coronado L, Wang M, Bohórquez JA, Muñoz-Aguilera A, Alberch M, Martínez P, Ruggli N, Ramayo-Caldas Y, Ganges L. Gene Expression Signatures of Porcine Bone Marrow-Derived Antigen-Presenting Cells Infected with Classical Swine Fever Virus. Viruses 2025; 17:160. [PMID: 40006915 PMCID: PMC11860178 DOI: 10.3390/v17020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
For a better understanding of classical swine fever (CSF) pathogenesis, a transcriptomic analysis was performed using porcine bone marrow (BM)-derived antigen-presenting cells (APCs) infected ex vivo with two different cDNA-derived classical swine fever virus (CSFV) strains, the low-virulence Pinar de Rio (vPdR-36U) or the lethal vPdR-H30K-5U. The transcriptomic profile of vPdR-36U- or vPdR-H30K-5U-infected versus noninfected cells revealed 946 and 2643 differentially expressed genes (DEGs), respectively. The upregulation of ISG15, CXCL-10, ADAM8, and CSF1 was found after infection with vPdR-36U, which could contribute to the generation of mild CSF forms. In contrast, cells infected with the lethal vPdR-H30K-5U overexpressed the immune checkpoint molecules PD-L1, CD276, and LAG3, which are involved in T-cell exhaustion and could be associated with adaptive immunity impairment. vPdR-H30K-5U also induced increased expression of PPBP, IL-8, IL-6, ECE1, and Rab27b, which are mediators of inflammatory responses that can be involved in cytokine storms. The TNF signaling pathway, which is related to the activation and proliferation of different subsets of immune cells, including CD4+ T cells, was notably upregulated in response to the low-pathogenicity virus. The Th17, Th1, and Th2 differentiation pathways were downregulated by the highly pathogenic virus only, supporting the role of T-cell-mediated immunity in protecting against CSFV.
Collapse
Affiliation(s)
- Liani Coronado
- Institute for Research and Technology in Food and Agriculture (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain; (L.C.); (M.W.); (J.A.B.); (A.M.-A.); (M.A.); (P.M.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- Classical Swine Fever World Organization for Animal Health (WOAH) Reference Laboratory for, IRTA-CReSA, 08193 Barcelona, Spain
| | - Miaomiao Wang
- Institute for Research and Technology in Food and Agriculture (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain; (L.C.); (M.W.); (J.A.B.); (A.M.-A.); (M.A.); (P.M.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- Classical Swine Fever World Organization for Animal Health (WOAH) Reference Laboratory for, IRTA-CReSA, 08193 Barcelona, Spain
| | - Jose Alejandro Bohórquez
- Institute for Research and Technology in Food and Agriculture (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain; (L.C.); (M.W.); (J.A.B.); (A.M.-A.); (M.A.); (P.M.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- Classical Swine Fever World Organization for Animal Health (WOAH) Reference Laboratory for, IRTA-CReSA, 08193 Barcelona, Spain
| | - Adriana Muñoz-Aguilera
- Institute for Research and Technology in Food and Agriculture (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain; (L.C.); (M.W.); (J.A.B.); (A.M.-A.); (M.A.); (P.M.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- Classical Swine Fever World Organization for Animal Health (WOAH) Reference Laboratory for, IRTA-CReSA, 08193 Barcelona, Spain
- Instituto Colombiano Agropecuario (ICA), Bogotá 110911, Colombia
| | - Mònica Alberch
- Institute for Research and Technology in Food and Agriculture (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain; (L.C.); (M.W.); (J.A.B.); (A.M.-A.); (M.A.); (P.M.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- Classical Swine Fever World Organization for Animal Health (WOAH) Reference Laboratory for, IRTA-CReSA, 08193 Barcelona, Spain
| | - Patricia Martínez
- Institute for Research and Technology in Food and Agriculture (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain; (L.C.); (M.W.); (J.A.B.); (A.M.-A.); (M.A.); (P.M.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- Classical Swine Fever World Organization for Animal Health (WOAH) Reference Laboratory for, IRTA-CReSA, 08193 Barcelona, Spain
| | - Nicolas Ruggli
- Division of Virology, Institute of Virology and Immunology (IVI), 3147 Mittelhäusern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain;
| | - Llilianne Ganges
- Institute for Research and Technology in Food and Agriculture (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain; (L.C.); (M.W.); (J.A.B.); (A.M.-A.); (M.A.); (P.M.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, 08193 Barcelona, Spain
- Classical Swine Fever World Organization for Animal Health (WOAH) Reference Laboratory for, IRTA-CReSA, 08193 Barcelona, Spain
| |
Collapse
|
4
|
Elizagaray ML, Barrachina F, Avenatti MC, Bastepe I, Chen A, Odriozola A, Ukairo O, Ros VD, Ottino K, Subiran N, Battistone MA. Chronic inflammation drives epididymal tertiary lymphoid structure formation and autoimmune fertility disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623224. [PMID: 39605691 PMCID: PMC11601424 DOI: 10.1101/2024.11.12.623224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The incomplete understanding of epididymal mucosal immunity is a significant contributing factor to the classification of many male infertility cases as idiopathic. Conditions that disrupt the immune balance in the male reproductive tract, such as vasectomy and infections, can expose sperm to the immune system, leading to increased production of anti-sperm antibodies (ASAs) and subsequent reproductive challenges. Regulatory T cells (Tregs) regulate inflammation and maintain sperm tolerance. In a murine model, we demonstrated that disrupting sperm immunotolerance induces chronic autoimmune responses characterized by antibody production targeting sperm and reproductive tissue autoantigens and unique tissue-specific immune cell signatures in the epididymis and testis. Such inflammatory features impair sperm function, contribute to epididymal damage, and drive sustained male subfertility. Tertiary lymphoid structures (TLSs) were formed within the epididymis after Treg depletion, defined by clusters of heterogenous B and T cells, fibroblasts, and endothelial cells. These ectopic structures perpetuate inflammation and lower the activation threshold for future immune threats. Similar isotypes of autoantibodies were detected in the seminal plasma of infertile patients, suggesting shared mechanistic pathways between mice and humans. Overall, we provide an in-depth understanding of the diverse B- and T-cell dynamics and TLS formation during epididymitis to develop precision-targeted therapies for infertility and chronic inflammation. Additionally, this immunological characterization of the epididymal microenvironment has the potential to identify novel targets for the development of male contraceptives. One Sentence Summary Understanding the epididymal immune cell landscape dynamics aids in developing targeted therapies for infertility and contraception.
Collapse
|
5
|
Huerta V, Martin AM, Sarría M, Guirola O, Yero A, Ramos Y, Pupo D, Martin D, Carletti T, González-Lodeiro LG, Marcello A, Chinea G. The Low-Density Lipoprotein Receptor-Related Protein-1 Is Essential for Dengue Virus Infection. Viruses 2024; 16:1692. [PMID: 39599807 PMCID: PMC11599027 DOI: 10.3390/v16111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Dengue virus (DENV) causes the most prevalent and rapidly spreading arboviral disease of humans. It enters human cells by receptor-mediated endocytosis. Numerous cell-surface proteins were proposed as DENV entry factors. Among these, the phosphatidylserine receptor TIM-1 is the only one known to mediate virus internalization. However, several cellular models lacking TIM-1 are permissive to DENV infection, suggesting that other receptors exist. Here, we show that the low-density lipoprotein receptor-related protein-1 (LRP1) binds DENV virions by interacting with the DIII of the viral envelope glycoprotein. DENV infection is effectively inhibited by the purified receptor at 5 × 10-8 mol/L, and the interaction of the envelope protein with LRP1 is also blocked by a natural ligand of LRP1. The depletion of LRP1 causes 100-fold lower production of infectious virus than controls. Our results indicate that LRP1 is another DENV receptor, thus becoming an attractive target to evaluate for the development of effective antiviral drugs against DENV.
Collapse
Affiliation(s)
- Vivian Huerta
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Alejandro M. Martin
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Mónica Sarría
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Osmany Guirola
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Alexis Yero
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Yassel Ramos
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Dianne Pupo
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Dayron Martin
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Tea Carletti
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (T.C.); (A.M.)
| | - Luis G. González-Lodeiro
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (T.C.); (A.M.)
| | - Glay Chinea
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| |
Collapse
|
6
|
Pavesi A, Tiecco G, Rossi L, Sforza A, Ciccarone A, Compostella F, Lovatti S, Tomasoni LR, Castelli F, Quiros-Roldan E. Inflammatory Response Associated with West Nile Neuroinvasive Disease: A Systematic Review. Viruses 2024; 16:383. [PMID: 38543749 PMCID: PMC10976239 DOI: 10.3390/v16030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND West Nile virus (WNV) infection is a seasonal arbovirosis with the potential to cause severe neurological disease. Outcomes of the infection from WNV depend on viral factors (e.g., lineage) and host-intrinsic factors (e.g., age, sex, immunocompromising conditions). Immunity is essential to control the infection but may also prove detrimental to the host. Indeed, the persistence of high levels of pro-inflammatory cytokines and chemokines is associated with the development of blood-brain barrier (BBB) damage. Due to the importance of the inflammatory processes in the development of West Nile neuroinvasive disease (WNND), we reviewed the available literature on the subject. METHODS According to the 2020 updated PRISMA guidelines, all peer-reviewed articles regarding the inflammatory response associated with WNND were included. RESULTS One hundred and thirty-six articles were included in the data analysis and sorted into three groups (in vitro on-cell cultures, in vivo in animals, and in humans). The main cytokines found to be increased during WNND were IL-6 and TNF-α. We highlighted the generally small quantity and heterogeneity of information about the inflammatory patterns associated with WNND. CONCLUSIONS Further studies are needed to understand the pathogenesis of WNND and to investigate the extent and the way the host inflammatory response either helps in controlling the infection or in worsening the outcomes. This might prove useful both for the development of target therapies and for the development of molecular markers allowing early identification of patients displaying an inflammatory response that puts them at a higher risk of developing neuroinvasive disease and who might thus benefit from early antiviral therapies.
Collapse
Affiliation(s)
- Alessandro Pavesi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Giorgio Tiecco
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Luca Rossi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Anita Sforza
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Andrea Ciccarone
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Federico Compostella
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Sofia Lovatti
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Lina Rachele Tomasoni
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Francesco Castelli
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| |
Collapse
|
7
|
Hu Z, Zhang M, Fan J, Hu J, Lin G, Piao S, Liu P, Liu J, Fu S, Sun W, Gygi SP, Zhang J, Zhou C. High-Level Secretion of Pregnancy Zone Protein Is a Novel Biomarker of DNA Damage-Induced Senescence and Promotes Spontaneous Senescence. J Proteome Res 2023; 22:3570-3579. [PMID: 37831546 DOI: 10.1021/acs.jproteome.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Identification of unique and specific biomarkers to better detect and quantify senescent cells remains challenging. By a global proteomic profiling of senescent human skin BJ fibroblasts induced by ionizing radiation (IR), the cellular level of pregnancy zone protein (PZP), a presumable pan-protease inhibitor never been linked to cellular senescence before, was found to be decreased by more than 10-fold, while the level of PZP in the conditioned medium was increased concomitantly. This observation was confirmed in a variety of senescent cells induced by IR or DNA-damaging drugs, indicating that high-level secretion of PZP is a novel senescence-associated secretory phenotype. RT-PCR examination verified that the transcription of the PZP gene is enhanced in various cells at senescence or upregulated following DNA damage treatment in a p53-independent manner. Moreover, pretreatment with late pregnancy serum containing a high level of PZP led to inhibition of doxorubicin-induced senescence in A549 cells, and depletion of PZP in the pregnancy serum could enhance such inhibition. Finally, the addition of immuno-precipitated PZP complexes into tissue culture attenuated the growth of A549 cells and promoted the spontaneous senescence. Therefore, we revealed that high-level secretion of PZP is a novel and unique feature associated with DNA damage-induced senescence, and secreted PZP is a positive regulator of cellular senescence, particularly during the late stage of gestation.
Collapse
Affiliation(s)
- Ziqi Hu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Mingzhu Zhang
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Jiankun Fan
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Jiandong Hu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Guochao Lin
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Shengwen Piao
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Peng Liu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Jichao Liu
- The 2th Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Songbin Fu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin150081, China
| | - Wenjing Sun
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin150081, China
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jinwei Zhang
- The 2th Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Chunshui Zhou
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin150081, China
| |
Collapse
|
8
|
Elucidating Mechanisms of Tolerance to Salmonella Typhimurium across Long-Term Infections Using the Collaborative Cross. mBio 2022; 13:e0112022. [PMID: 35880881 PMCID: PMC9426527 DOI: 10.1128/mbio.01120-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding the molecular mechanisms underlying resistance and tolerance to pathogen infection may present the opportunity to develop novel interventions. Resistance is the absence of clinical disease with a low pathogen burden, while tolerance is minimal clinical disease with a high pathogen burden. Salmonella is a worldwide health concern. We studied 18 strains of collaborative cross mice that survive acute Salmonella Typhimurium (STm) infections. We infected these strains orally and monitored them for 3 weeks. Five strains cleared STm (resistant), six strains maintained a bacterial load and survived (tolerant), while seven strains survived >7 days but succumbed to infection within the study period and were called “delayed susceptible.” Tolerant strains were colonized in the Peyer’s patches, mesenteric lymph node, spleen, and liver, while resistant strains had significantly reduced bacterial colonization. Tolerant strains had lower preinfection core body temperatures and had disrupted circadian patterns of body temperature postinfection sooner than other strains. Tolerant strains had higher circulating total white blood cells than resistant strains, driven by increased numbers of neutrophils. Tolerant strains had more severe tissue damage and higher circulating levels of monocyte chemoattractant protein 1 (MCP-1) and interferon gamma (IFN-γ), but lower levels of epithelial neutrophil-activating protein 78 (ENA-78) than resistant strains. Quantitative trait locus (QTL) analysis revealed one significant association and six suggestive associations. Gene expression analysis identified 22 genes that are differentially regulated in tolerant versus resistant animals that overlapped these QTLs. Fibrinogen genes (Fga, Fgb, and Fgg) were found across the QTL, RNA, and top canonical pathways, making them the best candidate genes for differentiating tolerance and resistance.
Collapse
|
9
|
Chalise U, Daseke MJ, Kalusche WJ, Konfrst SR, Rodriguez-Paar JR, Flynn ER, Cook LM, Becirovic-Agic M, Lindsey ML. Macrophages secrete murinoglobulin-1 and galectin-3 to regulate neutrophil degranulation after myocardial infarction. Mol Omics 2022; 18:186-195. [PMID: 35230372 PMCID: PMC8963000 DOI: 10.1039/d1mo00519g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/11/2022] [Indexed: 02/03/2023]
Abstract
Inflammation presides early after myocardial infarction (MI) as a key event in cardiac wound healing. Ischemic cardiomyocytes secrete inflammatory cues to stimulate infiltration of leukocytes, predominantly macrophages and neutrophils. Infiltrating neutrophils degranulate to release a series of proteases including matrix metalloproteinase (MMP)-9 to break down extracellular matrix and remove necrotic myocytes to create space for the infarct scar to form. While neutrophil to macrophage communication has been explored, the reverse has been understudied. We used a proteomics approach to catalogue the macrophage secretome at MI day 1. Murinoglobulin-1 (MUG1) was the highest-ranked secreted protein (4.1-fold upregulated at MI day 1 vs. day 0 pre-MI cardiac macrophages, p = 0.004). By transcriptomics evaluation, galectin-3 (Lgals3) was 2.2-fold upregulated (p = 0.008) in MI day 1 macrophages. We explored the direct roles of MUG1 and Lgals3 on neutrophil degranulation. MUG1 blunted while Lgals3 amplified neutrophil degranulation in response to phorbol 12-myristate 13-acetate or interleukin-1β, as measured by MMP-9 secretion. Lgals3 itself also stimulated MMP-9 secretion. To determine if MUG1 regulated Lgals3, we co-stimulated neutrophils with MUG1 and Lgals3. MUG1 limited degranulation stimulated by Lgals3 by 64% (p < 0.001). In vivo, MUG1 was elevated in the infarct region at MI days 1 and 3, while Lgals3 increased at MI day 7. The ratio of MUG1 to Lgals3 positively correlated with infarct wall thickness, revealing that MUG1 attenuated infarct wall thinning. In conclusion, macrophages at MI day 1 secrete MUG1 to limit and Lgals3 to accentuate neutrophil degranulation to regulate infarct wall thinning.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Michael J Daseke
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - William J Kalusche
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Shelby R Konfrst
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Jocelyn R Rodriguez-Paar
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Elizabeth R Flynn
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mediha Becirovic-Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| |
Collapse
|
10
|
Wang Y, Wang J, Zhao Y, Liu P, Cai D, Zhang X, Gao L. Regulatory mechanisms of Beta-carotene and BCMO1 in adipose tissues: A gene enrichment-based bioinformatics analysis. Hum Exp Toxicol 2022; 41:9603271211072871. [PMID: 35306905 DOI: 10.1177/09603271211072871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Beta-carotene (β-carotene, BC) is one of the carotenoids most commonly consumed by humans. BCMO1 is expressed in various human tissues and is considered to be a key enzyme that converts BC into vitamin A. Studies indicated that BC-derived carotenoid signaling molecules affected the physiological functions of fat cells. In order to investigate the role and possible molecular mechanism of BC in mouse adipocytes, we conducted 4-group and 2-group difference analysis based on the data of GSE27271 chip in the Gene Expression Omnibus database. Genes differentially expressed in the inguinal white adipose tissue of mice were screened out and combined with the STRING database to construct protein-protein interaction (PPI) networks. Among them, Alb (albumin), Mug1 (murinoglobulin-1) and Uox (urate oxidase) genes were at relatively key positions and may affect the action of BC. Besides, Ppara (peroxisome proliferator-activated receptor alpha), Acly (ATP-citrate lyase) and Fabp5 (fatty acid-binding protein 5) genes constituted functional partners with many genes in the PPI network, and these genes may be Bcmo1 targeting molecules. Gene Ontology (GO) function and signaling pathways enrichment analysis were performed on the genes with protein interaction relationship in the PPI network. Fatty acid binding, cholesterol metabolic process, and regulation of fatty acid metabolic process were significantly enriched, and PPAR signaling pathway showed the most significant, indicating that BC and Bcmo1 might synergistically affect body metabolic functions such as fat metabolism. In general, BC and Bcmo1 may play a role in fat metabolism in mice, thereby affecting other functions or diseases.
Collapse
Affiliation(s)
- Yutao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuhua Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Pingxiang Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Da Cai
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Xiao Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Lei Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| |
Collapse
|
11
|
Dynamic tracking and identification of tissue-specific secretory proteins in the circulation of live mice. Nat Commun 2021; 12:5204. [PMID: 34471136 PMCID: PMC8410947 DOI: 10.1038/s41467-021-25546-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 08/12/2021] [Indexed: 12/16/2022] Open
Abstract
Secretory proteins are an essential component of interorgan communication networks that regulate animal physiology. Current approaches for identifying secretory proteins from specific cell and tissue types are largely limited to in vitro or ex vivo models which often fail to recapitulate in vivo biology. As such, there is mounting interest in developing in vivo analytical tools that can provide accurate information on the origin, identity, and spatiotemporal dynamics of secretory proteins. Here, we describe iSLET (in situ Secretory protein Labeling via ER-anchored TurboID) which selectively labels proteins that transit through the classical secretory pathway via catalytic actions of Sec61b-TurboID, a proximity labeling enzyme anchored in the ER lumen. To validate iSLET in a whole-body system, we express iSLET in the mouse liver and demonstrate efficient labeling of liver secretory proteins which could be tracked and identified within circulating blood plasma. Furthermore, proteomic analysis of the labeled liver secretome enriched from liver iSLET mouse plasma is highly consistent with previous reports of liver secretory protein profiles. Taken together, iSLET is a versatile and powerful tool for studying spatiotemporal dynamics of secretory proteins, a valuable class of biomarkers and therapeutic targets. The in vivo identification of proteins secreted from a specific cell type or tissue remains challenging. Here, the authors develop a proximity labeling-based method to selectively label secreted proteins and combine it with proteomics to identify liver secretory proteins in mouse plasma.
Collapse
|
12
|
Zhang H, Lipinski AA, Liktor-Busa E, Smith AF, Moutal A, Khanna R, Langlais PR, Largent-Milnes TM, Vanderah TW. The Effects of Repeated Morphine Treatment on the Endogenous Cannabinoid System in the Ventral Tegmental Area. Front Pharmacol 2021; 12:632757. [PMID: 33953672 PMCID: PMC8090348 DOI: 10.3389/fphar.2021.632757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
The therapeutic utility of opioids is diminished by their ability to induce rewarding behaviors that may lead to opioid use disorder. Recently, the endogenous cannabinoid system has emerged as a hot topic in the study of opioid reward but relatively little is known about how repeated opioid exposure may affect the endogenous cannabinoid system in the mesolimbic reward circuitry. In the present study, we investigated how sustained morphine may modulate the endogenous cannabinoid system in the ventral tegmental area (VTA) of Sprague Dawley rats, a critical region in the mesolimbic reward circuitry. Studies here using proteomic analysis and quantitative real-time PCR (qRT-PCR) found that the VTA expresses 32 different proteins or genes related to the endogenous cannabinoid system; three of these proteins or genes (PLCγ2, ABHD6, and CB2R) were significantly affected after repeated morphine exposure (CB2R was only detected by qRT-PCR but not proteomics). We also identified that repeated morphine treatment does not alter either anandamide (AEA) or 2-arachidonoylglycerol (2-AG) levels in the VTA compared to saline treatment; however, there may be diminished levels of anandamide (AEA) production in the VTA 4 h after a single morphine injection in both chronic saline and morphine pretreated cohorts. Treating the animals with an inhibitor of 2-AG degradation significantly decreased repeated opioid rewarding behavior. Taken together, our studies reveal a potential influence of sustained opioids on the endocannabinoid system in the VTA, suggesting that the endogenous cannabinoid system may participate in the opioid-induced reward.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Austin A. Lipinski
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Erika Liktor-Busa
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Angela F. Smith
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Paul R. Langlais
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
13
|
Neuroinvasion and Encephalitis Following Intranasal Inoculation of SARS-CoV-2 in K18-hACE2 Mice. Viruses 2021; 13:v13010132. [PMID: 33477869 PMCID: PMC7832889 DOI: 10.3390/v13010132] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can cause neurological disease in humans, but little is known about the pathogenesis of SARS-CoV-2 infection in the central nervous system (CNS). Herein, using K18-hACE2 mice, we demonstrate that SARS-CoV-2 neuroinvasion and encephalitis is associated with mortality in these mice. Intranasal infection of K18-hACE2 mice with 105 plaque-forming units of SARS-CoV-2 resulted in 100% mortality by day 6 after infection. The highest virus titers in the lungs were observed on day 3 and declined on days 5 and 6 after infection. By contrast, very high levels of infectious virus were uniformly detected in the brains of all the animals on days 5 and 6. Onset of severe disease in infected mice correlated with peak viral levels in the brain. SARS-CoV-2-infected mice exhibited encephalitis hallmarks characterized by production of cytokines and chemokines, leukocyte infiltration, hemorrhage and neuronal cell death. SARS-CoV-2 was also found to productively infect cells within the nasal turbinate, eye and olfactory bulb, suggesting SARS-CoV-2 entry into the brain by this route after intranasal infection. Our data indicate that direct infection of CNS cells together with the induced inflammatory response in the brain resulted in the severe disease observed in SARS-CoV-2-infected K18-hACE2 mice.
Collapse
|
14
|
Su L, Zhang G, Kong X. Prognostic Significance of Pregnancy Zone Protein and Its Correlation with Immune Infiltrates in Hepatocellular Carcinoma. Cancer Manag Res 2020; 12:9883-9891. [PMID: 33116846 PMCID: PMC7553665 DOI: 10.2147/cmar.s269215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aim Human pregnancy zone protein (PZP) is a pregnancy-related protein which is increased dramatically during pregnancy. However, the expression of PZP and its prognostic value, association with tumor-infiltrating immune cells (TIICs) in microenvironment and potential biological process in HCC were unclear. Methods The PZP expression, clinicopathology analysis and its influence on survival were analyzed by GEPIA and HPA. Fifty-nine HCC samples and 30 corresponding noncancerous tissues were collected and retrospectively analyzed to verify the results of bioinformatics analysis. Further, TIMER and CIBERSORT were performed to identify the significantly alerted biological process and affections of PZP expression on the immune system in patients with HCC. Finally, IHC assay of CD4+ T cells and Treg cells was performed to confirm the results of immune infiltrates analysis by TIMER and CIBERSORT. Results PZP expression was downregulated in HCC tissues and its low level was substantially correlated with poor prognosis in patients with HCC. TIMER analysis showed that PZP expression had a positive correlation with the levels of macrophage and neutrophil. Furthermore, CIBERSORT analysis showed that resting memory CD4 T cells were increased in high PZP expression group, while the results of Tregs were the opposite. Finally, the IHC results of CD4+ T cells and Treg cells showed that only Tregs were negatively associated with PZP expression. Conclusion PZP was identified as a novel prognosis biomarker of HCC and might play a vital role in the regulation and recruitment of TIICs in HCC immune microenvironment.
Collapse
Affiliation(s)
- Lisa Su
- Department of Genetic and Prenatal Diagnosis Center, Zhengzhou University First Affiliated Hospital, Zhengzhou, People's Republic of China
| | - Genhao Zhang
- Department of Blood Transfusion, Zhengzhou University First Affiliated Hospital, Zhengzhou, People's Republic of China
| | - Xiangdong Kong
- Department of Genetic and Prenatal Diagnosis Center, Zhengzhou University First Affiliated Hospital, Zhengzhou, People's Republic of China
| |
Collapse
|
15
|
The FDA-approved gold drug auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells. Virology 2020; 547:7-11. [PMID: 32442105 PMCID: PMC7236683 DOI: 10.1016/j.virol.2020.05.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 11/25/2022]
Abstract
SARS-COV-2 has recently emerged as a new public health threat. Herein, we report that the FDA-approved drug, auranofin, inhibits SARS-COV-2 replication in human cells at low micro molar concentration. Treatment of cells with auranofin resulted in a 95% reduction in the viral RNA at 48 h after infection. Auranofin treatment dramatically reduced the expression of SARS-COV-2-induced cytokines in human cells. These data indicate that auranofin could be a useful drug to limit SARS-CoV-2 infection and associated lung injury due to its antiviral, anti-inflammatory and anti-reactive oxygen species (ROS) properties. Further animal studies are warranted to evaluate the safety and efficacy of auranofin for the management of SARS-COV-2 associated disease. Auranofin inhibits replication of SARS-COV-2 in human cells at low micro molar concentration. Auranofin treatment resulted in significant reduction in SARS-COV-2-induced cytokines in human cells. Auranofin could mitigate SARS-COV-2 infection and lung damage due to its anti-viral and anti-inflammatory properties. Auranofin is a gold-containing FDA-approved drug.
Collapse
|
16
|
|
17
|
Cellular microRNA-155 Regulates Virus-Induced Inflammatory Response and Protects against Lethal West Nile Virus Infection. Viruses 2019; 12:v12010009. [PMID: 31861621 PMCID: PMC7019255 DOI: 10.3390/v12010009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022] Open
Abstract
West Nile virus (WNV) is a flavivirus that has disseminated globally as a significant cause of viral encephalitis in humans. MircoRNA-155 (miR-155) regulates various aspects of innate and adaptive immune responses. We previously reported that WNV infection induces upregulation of miR-155 in mice brains. In the current study, we demonstrate the critical role of miR-155 in restricting the pathogenesis of WNV infection in mice. Compared to wild-type (WT) mice, miR-155 knockout mice exhibited significantly higher morbidity and mortality after infection with either a lethal strain, WNV NY99, or a non-lethal strain, WNV Eg101. Increased mortality in miR-155−/− mice was associated with significantly high WNV burden in the serum and brains. Protein levels of interferon (IFN)-α in the serum and brains were higher in miR-155−/− mice. However, miR-155−/− mice exhibited significantly lower protein levels of anti-viral interleukin (IL)-1β, IL-12, IL-6, IL-15, and GM-CSF despite the high viral load. Primary mouse cells lacking miR-155 were more susceptible to infection with WNV compared to cells derived from WT mice. Besides, overexpression of miR-155 in human neuronal cells modulated anti-viral cytokine response and resulted in significantly lower WNV replication. These data collectively indicate that miR-155 restricts WNV production in mouse and human cells and protects against lethal WNV infection in mice.
Collapse
|
18
|
Finch S, Shoemark A, Dicker AJ, Keir HR, Smith A, Ong S, Tan B, Choi JY, Fardon TC, Cassidy D, Huang JTJ, Chalmers JD. Pregnancy Zone Protein Is Associated with Airway Infection, Neutrophil Extracellular Trap Formation, and Disease Severity in Bronchiectasis. Am J Respir Crit Care Med 2019; 200:992-1001. [PMID: 31264895 PMCID: PMC6794104 DOI: 10.1164/rccm.201812-2351oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
Rationale: PZP (pregnancy zone protein) is a broad-spectrum immunosuppressive protein believed to suppress T-cell function during pregnancy to prevent fetal rejection. It has not previously been reported in the airway.Objectives: To characterize PZP in the bronchiectasis airway, including its relationship with disease severity.Methods: Label-free liquid chromatography/mass spectrometry was performed for sputum protein profiling of patients with bronchiectasis confirmed by high-resolution computed tomography. Results for patients with and without Pseudomonas aeruginosa infection were compared. Sputum and serum PZP was measured by validated ELISA. Airway infection status was established by culture and 16S ribosomal RNA sequencing. Immunofluorescence, ELISA, and electron microscopy were used to identify the cellular source of PZP in neutrophils treated with multiple stimuli.Measurements and Main Results: Elevated PZP was identified by label-free liquid chromatography/mass spectrometry as being associated with P. aeruginosa infection. In a validation study of 124 patients, sputum but not serum concentrations of PZP were significantly associated with the Bronchiectasis Severity Index, the frequency of exacerbations, and symptoms. Airway infection with Proteobacteria such as P. aeruginosa was associated with higher concentrations of PZP. PZP in sputum was directly related to airway bacterial load. Neutrophils induced to form neutrophil extracellular traps (NETs) with phorbol myristate acetate released high concentrations of PZP in vitro, and fluorescence microscopy confirmed the presence of PZP in NETs, whereas fluorescence and electron microscopy localized PZP to the cytoplasm and nuclei of neutrophils. Effective antibiotic therapy reduced sputum PZP.Conclusions: PZP is released into NETs. We report a novel link between airway infection, NET formation, and disease severity in bronchiectasis during chronic airway inflammation.
Collapse
Affiliation(s)
- Simon Finch
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom; and
| | - Amelia Shoemark
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom; and
| | - Alison J. Dicker
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom; and
| | - Holly R. Keir
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom; and
| | | | - Samantha Ong
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom; and
| | - Brandon Tan
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom; and
| | - Jean-Yu Choi
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom; and
| | - Thomas C. Fardon
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom; and
| | - Diane Cassidy
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom; and
| | - Jeffrey T. J. Huang
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom; and
| | - James D. Chalmers
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom; and
| |
Collapse
|
19
|
Rothan HA, Arora K, Natekar JP, Strate PG, Brinton MA, Kumar M. Z-DNA-Binding Protein 1 Is Critical for Controlling Virus Replication and Survival in West Nile Virus Encephalitis. Front Microbiol 2019; 10:2089. [PMID: 31572318 PMCID: PMC6749019 DOI: 10.3389/fmicb.2019.02089] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/26/2019] [Indexed: 01/31/2023] Open
Abstract
West Nile virus (WNV), a neurotropic flavivirus, is the leading cause of viral encephalitis in the United States. Recently, Zika virus (ZIKV) infections have caused serious neurological diseases and birth defects, specifically Guillain-Barrè syndrome and microcephaly. Z-DNA binding protein 1 (ZBP1) is a cytoplasmic sensor that that has been shown to play a significant role in initiating a robust immune response. We previously reported that WNV and ZIKV infections induce dramatic up-regulation of ZBP1 in mouse brains as well as in infected primary mouse cells. Herein, we show the critical role of ZBP1 in restricting the pathogenesis of WNV and ZIKV infections. Deletion of ZBP1 resulted in significantly higher morbidity and mortality after infection with a pathogenic WNV NY99 strain in mice. No mortality was observed in wild-type (WT) mice infected with the non-pathogenic WNV strain, Eg101. Interestingly, infection of ZBP1-/- mice with WNV Eg101 was lethal resulting in 100% mortality, suggesting that ZBP1 is required for survival after WNV infection. Viremia and brain viral load were significantly higher in ZBP1-/- mice compared to WT mice. In addition, protein levels of interferon (IFN)-α, and inflammatory cytokines and chemokines were significantly higher in the serum and brains of infected ZBP1-/- mice compared to the WT mice. Primary mouse cortical neurons and mouse embryonic fibroblasts (MEFs) derived from ZBP1-/- mice produced higher virus titers compared to WT cells after infection with WNV NY99 and WNV Eg101. Similarly, neurons and MEFs lacking ZBP1 exhibited significantly enhanced replication of PRVABC59 (Asian) and MR766 (African) ZIKV compared to WT cells. The knockout of ZBP1 function in MEFs inhibited ZBP1-dependent virus-induced cell death. In conclusion, these data reveal that ZBP1 restricts WNV and ZIKV production in mouse cells and is required for survival of a peripheral WNV infection in mice.
Collapse
Affiliation(s)
- Hussin A Rothan
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Komal Arora
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Janhavi P Natekar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Philip G Strate
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Margo A Brinton
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|