1
|
González Ortega-Villaizán A, King E, Patel MK, Pérez-Alonso MM, Scholz SS, Sakakibara H, Kiba T, Kojima M, Takebayashi Y, Ramos P, Morales-Quintana L, Breitenbach S, Smolko A, Salopek-Sondi B, Bauer N, Ludwig-Müller J, Krapp A, Oelmüller R, Vicente-Carbajosa J, Pollmann S. The endophytic fungus Serendipita indica affects auxin distribution in Arabidopsis thaliana roots through alteration of auxin transport and conjugation to promote plant growth. PLANT, CELL & ENVIRONMENT 2024; 47:3899-3919. [PMID: 38847336 DOI: 10.1111/pce.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/09/2024] [Accepted: 05/13/2024] [Indexed: 11/20/2024]
Abstract
Plants share their habitats with a multitude of different microbes. This close vicinity promoted the evolution of interorganismic interactions between plants and many different microorganisms that provide mutual growth benefits both to the plant and the microbial partner. The symbiosis of Arabidopsis thaliana with the beneficial root colonizing endophyte Serendipita indica represents a well-studied system. Colonization of Arabidopsis roots with S. indica promotes plant growth and stress tolerance of the host plant. However, until now, the molecular mechanism by which S. indica reprograms plant growth remains largely unknown. This study used comprehensive transcriptomics, metabolomics, reverse genetics, and life cell imaging to reveal the intricacies of auxin-related processes that affect root growth in the symbiosis between A. thaliana and S. indica. Our experiments revealed the sustained stimulation of auxin signalling in fungus infected Arabidopsis roots and disclosed the essential role of tightly controlled auxin conjugation in the plant-fungus interaction. It particularly highlighted the importance of two GRETCHEN HAGEN 3 (GH3) genes, GH3.5 and GH3.17, for the fungus infection-triggered stimulation of biomass production, thus broadening our knowledge about the function of GH3s in plants. Furthermore, we provide evidence for the transcriptional alteration of the PIN2 auxin transporter gene in roots of Arabidopsis seedlings infected with S. indica and demonstrate that this transcriptional adjustment affects auxin signalling in roots, which results in increased plant growth.
Collapse
Affiliation(s)
- Adrián González Ortega-Villaizán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Eoghan King
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Manish K Patel
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Sandra S Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Patricio Ramos
- Instituto de Ciencias Biológicas, Campus Talca, Universidad de Talca, Talca, Chile
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Universidad Autonóma de Chile, Talca, Chile
| | - Sarah Breitenbach
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Ana Smolko
- Department for Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Nataša Bauer
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Anne Krapp
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Université Paris-Saclay, Versailles, France
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
2
|
Ansari MM, Bisht N, Singh T, Chauhan PS. Symphony of survival: Insights into cross-talk mechanisms in plants, bacteria, and fungi for strengthening plant immune responses. Microbiol Res 2024; 285:127762. [PMID: 38763015 DOI: 10.1016/j.micres.2024.127762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/05/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Plants coexist with a diverse array of microorganisms, predominantly bacteria and fungi, in both natural and agricultural environments. While some microorganisms positively influence plant development and yield, others can cause harm to the host, leading to significant adverse impacts on the environment and the economy. Plant growth-promoting microorganisms (PGPM), including plant growth-promoting bacteria, arbuscular mycorrhizal fungus (AMF), and rhizobia, have been found to increase plant biomass production by synthesizing hormones, fixing nitrogen, and solubilizing phosphate and potassium. Numerous studies have contributed to unraveling the complex process of plant-microbe interactions in recent decades. In light of the increasing global challenges such as population growth, climate change, and resource scarcity, it has become imperative to explore the potential of plant-bacteria-fungi crosstalk in promoting sustainability. This review aims to bridge existing knowledge gaps, providing a roadmap for future research in this dynamic field by synthesizing current knowledge and identifying emerging trends.
Collapse
Affiliation(s)
- Mohd Mogees Ansari
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Tanya Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
3
|
Ebadi M, Najari S, Miandoab LZ, Chaparzadeh N, Ebadi A. Mining Tamarix ramosissima roots for endophytic growth promoting fungi to improve wheat root growth. RESEARCH SQUARE 2024:rs.3.rs-4277791. [PMID: 38746082 PMCID: PMC11092856 DOI: 10.21203/rs.3.rs-4277791/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Endophytic fungi are commonly found in the root endosphere and can enhance plant growth through various mechanisms. The aim of this study was to isolate cultivable endophytic fungi associated with the roots of Tamarix ramosissima and to evaluate their plant growth promoting properties. About 35 isolated fungal endophytes belonging to the Ascomycota from four different genera were isolated from the endosphere of T. ramosissima: Alternaria, Aspergillus, Fusarium and Talaromyces. These fungal endophytes showed different abilities to solubilize phosphate and produce indole-3-acetic acid (IAA). The fungal isolates of T. allahabadensis (T3) and A. niger (T4) showed different efficiency in solubilizing phosphate. Almost all fungal isolates were able to produce IAA, and the highest value (0.699 μg/ml) was found in the isolate of F. solani (T11). Inoculation of wheat seeds with endophytic fungi significantly increased the initial growth of wheat roots. The results showed that inoculation with the endophytic fungus A. fumigatus T15 significantly increased root length by 75%. The extensive root system of T. ramosissima may be due to symbiosis with IAA-producing endophytic fungi, which enhance root development and water uptake in dry conditions. These fungi can also boost soil phosphorus levels, promoting plant growth.
Collapse
Affiliation(s)
| | | | | | | | - Ali Ebadi
- Nuclear Science and Technology Research Institute
| |
Collapse
|
4
|
Waqar S, Bhat AA, Khan AA. Endophytic fungi: Unravelling plant-endophyte interaction and the multifaceted role of fungal endophytes in stress amelioration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108174. [PMID: 38070242 DOI: 10.1016/j.plaphy.2023.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 02/15/2024]
Abstract
Endophytic fungi colonize interior plant tissue and mostly form mutualistic associations with their host plant. Plant-endophyte interaction is a complex mechanism and is currently a focus of research to understand the underlying mechanism of endophyte asymptomatic colonization, the process of evading plant immune response, modulation of gene expression, and establishment of a balanced mutualistic relationship. Fungal endophytes rely on plant hosts for nutrients, shelter, and transmission and improve the host plant's tolerance against biotic stresses, including -herbivores, nematodes, bacterial, fungal, viral, nematode, and other phytopathogens. Endophytic fungi have been reported to improve plant health by reducing and eradicating the harmful effect of phytopathogens through competition for space or nutrients, mycoparasitism, and through direct or indirect defense systems by producing secondary metabolites as well as by induced systemic resistance (ISR). Additionally, for efficient crop improvement, practicing them would be a fruitful step for a sustainable approach. This review article summarizes the current research progress in plant-endophyte interaction and the fungal endophyte mechanism to overcome host defense responses, their subsequent colonization, and the establishment of a balanced mutualistic interaction with host plants. This review also highlighted the potential of fungal endophytes in the amelioration of biotic stress. We have also discussed the relevance of various bioactive compounds possessing antimicrobial potential against a variety of agricultural pathogens. Furthermore, endophyte-mediated ISR is also emphasized.
Collapse
Affiliation(s)
- Sonia Waqar
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Adil Ameen Bhat
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abrar Ahmad Khan
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
5
|
Svietlova N, Reichelt M, Zhyr L, Majumder A, Scholz SS, Grabe V, Krapp A, Oelmüller R, Mithöfer A. The Beneficial Fungus Mortierella hyalina Modulates Amino Acid Homeostasis in Arabidopsis under Nitrogen Starvation. Int J Mol Sci 2023; 24:16128. [PMID: 38003319 PMCID: PMC10671455 DOI: 10.3390/ijms242216128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Non-mycorrhizal but beneficial fungi often mitigate (a)biotic stress-related traits in host plants. The underlying molecular mechanisms are mostly still unknown, as in the interaction between the endophytic growth-promoting soil fungus Mortierella hyalina and Arabidopsis thaliana. Here, abiotic stress in the form of nitrogen (N) deficiency was used to investigate the effects of the fungus on colonized plants. In particular, the hypothesis was investigated that fungal infection could influence N deficiency via an interaction with the high-affinity nitrate transporter NRT2.4, which is induced by N deficiency. For this purpose, Arabidopsis wild-type nrt2.4 knock-out and NRT2.4 reporter lines were grown on media with different nitrate concentrations with or without M. hyalina colonization. We used chemical analysis methods to determine the amino acids and phytohormones. Experimental evidence suggests that the fungus does not modulate NRT2.4 expression under N starvation. Instead, M. hyalina alleviates N starvation in other ways: The fungus supplies nitrogen (15N) to the N-starved plant. The presence of the fungus restores the plants' amino acid homeostasis, which was out of balance due to N deficiency, and causes a strong accumulation of branched-chain amino acids. We conclude that the plant does not need to invest in defense and resources for growth are maintained, which in turn benefits the fungus, suggesting that this interaction should be considered a mutualistic symbiosis.
Collapse
Affiliation(s)
- Nataliia Svietlova
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (N.S.); (L.Z.); (A.M.)
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Liza Zhyr
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (N.S.); (L.Z.); (A.M.)
| | - Anindya Majumder
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (N.S.); (L.Z.); (A.M.)
| | - Sandra S. Scholz
- Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller-University, 07743 Jena, Germany; (S.S.S.); (R.O.)
| | - Veit Grabe
- Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Anne Krapp
- Institut Jean-Pierre Bourgin (IJPB), AgroParisTech, INRAE, Université Paris-Saclay, 78000 Versailles, France;
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller-University, 07743 Jena, Germany; (S.S.S.); (R.O.)
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (N.S.); (L.Z.); (A.M.)
| |
Collapse
|
6
|
Li R, Ren C, Wu L, Zhang X, Mao X, Fan Z, Cui W, Zhang W, Wei G, Shu D. Fertilizing-induced alterations of microbial functional profiles in soil nitrogen cycling closely associate with crop yield. ENVIRONMENTAL RESEARCH 2023; 231:116194. [PMID: 37217131 DOI: 10.1016/j.envres.2023.116194] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Fertilization and rhizosphere selection are key regulators for soil nitrogen (N) cycling and microbiome. Thus, clarifying how the overall N cycling processes and soil microbiome respond to these factors is a prerequisite for understanding the consequences of high inputs of fertilizers, enhancing crop yields, and formulating reasonable nitrogen management strategies under agricultural intensification scenarios. To do this, we applied shotgun metagenomics sequencing to reconstruct N cycling pathways on the basis of abundance and distribution of related gene families, as well as explored the microbial diversity and interaction via high throughput sequencing based on a two-decade fertilization experiment in Loess Plateau of China semiarid area. We found that bacteria and fungi respond divergent to fertilization regimes and rhizosphere selection, in terms of community diversity, niche breadth, and microbial co-occurrence networks. Moreover, organic fertilization decreased the complexity of bacterial networks but increased the complexity and stability of fungal networks. Most importantly, rhizosphere selection exerted more strongly influences on the soil overall nitrogen cycling than the application of fertilizers, accompanied by the increase in the abundance of nifH, NIT-6, and narI genes and the decrease in the abundance of amoC, norC, and gdhA genes in the rhizosphere soil. Furthermore, keystone families screening from soil microbiome (e.g., Sphingomonadaceae, Sporichthyaceae, and Mortierellaceae), which were affected by the edaphic variables, contributed greatly to crop yield. Collectively, our findings emphasize the pivotal roles of rhizosphere selection interacting with fertilization regimes in sustaining soil nitrogen cycling processes in response to decades-long fertilization, as well as the potential importance of keystone taxa in maintaining crop yield. These findings significantly facilitate our understanding of nitrogen cycling in diverse agricultural soils and lay a foundation for manipulating specific microorganisms to regulate N cycling and promote agroecosystem sustainability.
Collapse
Affiliation(s)
- Ruochen Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Chengyao Ren
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Likun Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Xinxin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Xinyi Mao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Zhen Fan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Weili Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Wu Zhang
- Heihe Branch, Heilongjiang Academy of Agricultural Sciences, Heihe, Heilongjiang, 150086, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| | - Duntao Shu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Haro R, Lanza M, Aguilella M, Sanz-García E, Benito B. The transportome of the endophyte Serendipita indica in free life and symbiosis with Arabidopsis and its expression in moderate salinity. Front Microbiol 2023; 14:1191255. [PMID: 37405164 PMCID: PMC10315484 DOI: 10.3389/fmicb.2023.1191255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
Serendipita indica is an endophytic root symbiont fungus that enhances the growth of various plants under different stress conditions, including salinity. Here, the functional characterization of two fungal Na+/H+ antiporters, SiNHA1 and SiNHX1 has been carried out to study their putative role in saline tolerance. Although their gene expression does not respond specifically to saline conditions, they could contribute, together with the previously characterized Na+ efflux systems SiENA1 and SiENA5, to relieve Na+ from the S. indica cytosol under this stressed condition. In parallel, an in-silico study has been carried out to define its complete transportome. To further investigate the repertoire of transporters expressed in free-living cells of S. indica and during plant infection under saline conditions, a comprehensive RNA-seq approach was taken. Interestingly, SiENA5 was the only gene significantly induced under free-living conditions in response to moderate salinity at all the tested time points, revealing that it is one of the main salt-responsive genes of S. indica. In addition, the symbiosis with Arabidopsis thaliana also induced SiENA5 gene expression, but significant changes were only detected after long periods of infection, indicating that the association with the plant somehow buffers and protects the fungus against the external stress. Moreover, the significant and strongest induction of the homologous gene SiENA1 occurred during symbiosis, regardless the exposure to salinity. The obtained results suggest a novel and relevant role of these two proteins during the establishment and maintenance of fungus-plant interaction.
Collapse
Affiliation(s)
- Rosario Haro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Mónica Lanza
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Marcos Aguilella
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Eugenio Sanz-García
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Zhang X, Johnson C, Reed D. Diversity of Pythium Species Recovered from Float-Bed Tobacco Transplant Production Greenhouses. PLANT DISEASE 2023:PDIS06221438RE. [PMID: 36475744 DOI: 10.1094/pdis-06-22-1438-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pythium diseases are common in hydroponic crop production and often threaten the greenhouse production of cucumber, tomato, lettuce, and other crops. In tobacco transplant production, where float-bed hydroponic greenhouses are commonly used, Pythium diseases can cause up to 70% seedling loss. However, there have been few comprehensive studies on the composition and diversity of Pythium communities in tobacco greenhouses. In a 2017 survey, 360 Pythium isolates were collected from 41 tobacco greenhouses across four states (VA, MD, GA, and PA). Samples were collected from one to seven sites within each greenhouse. Twelve described Pythium species were identified (P. adhaerens, P. aristosporum, P. attrantheridium, P. catenulatum, P. coloratum, P. dissotocum, P. inflatum, P. irregulare, P. myriotylum, P. pectinolyticum, P. porphyrae, and P. torulosum) among the isolates obtained. Approximately 80% of the surveyed greenhouses harbored Pythium in at least one of four sites (bay water, tobacco seedlings, weeds, and center walkways) within the greenhouse. The structure of Pythium communities was diverse among the surveyed greenhouses: multiple Pythium species coexisted in the same sample, and multiple species were present within the same greenhouse at different sites. This diversity appeared to be influenced by the sampling sites within the surveyed tobacco greenhouses, sample type, and sampling time. Intraspecific variation may also exist among the P. dissotocum populations found in this study. These results uncovered the complexity and diversity of the Pythium communities within float tobacco transplant greenhouses, which could play a role in the variation in Pythium diseases observed in these production systems.
Collapse
Affiliation(s)
- Xuemei Zhang
- Virginia Tech Southern Piedmont Agricultural Research and Extension Center, Blackstone, VA 23824
| | - Charles Johnson
- Virginia Tech Southern Piedmont Agricultural Research and Extension Center, Blackstone, VA 23824
| | - David Reed
- Virginia Tech Southern Piedmont Agricultural Research and Extension Center, Blackstone, VA 23824
| |
Collapse
|
9
|
Parmagnani AS, Kanchiswamy CN, Paponov IA, Bossi S, Malnoy M, Maffei ME. Bacterial Volatiles (mVOC) Emitted by the Phytopathogen Erwinia amylovora Promote Arabidopsis thaliana Growth and Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030600. [PMID: 36978848 PMCID: PMC10045578 DOI: 10.3390/antiox12030600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Phytopathogens are well known for their devastating activity that causes worldwide significant crop losses. However, their exploitation for crop welfare is relatively unknown. Here, we show that the microbial volatile organic compound (mVOC) profile of the bacterial phytopathogen, Erwinia amylovora, enhances Arabidopsis thaliana shoot and root growth. GC-MS head-space analyses revealed the presence of typical microbial volatiles, including 1-nonanol and 1-dodecanol. E. amylovora mVOCs triggered early signaling events including plasma transmembrane potential Vm depolarization, cytosolic Ca2+ fluctuation, K+-gated channel activity, and reactive oxygen species (ROS) and nitric oxide (NO) burst from few minutes to 16 h upon exposure. These early events were followed by the modulation of the expression of genes involved in plant growth and defense responses and responsive to phytohormones, including abscisic acid, gibberellin, and auxin (including the efflux carriers PIN1 and PIN3). When tested, synthetic 1-nonanol and 1-dodecanol induced root growth and modulated genes coding for ROS. Our results show that E. amylovora mVOCs affect A. thaliana growth through a cascade of early and late signaling events that involve phytohormones and ROS.
Collapse
Affiliation(s)
- Ambra S. Parmagnani
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | | | - Ivan A. Paponov
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark
| | - Simone Bossi
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, 38098 San Michele all’Adige, Italy
| | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-5967
| |
Collapse
|
10
|
Kundu A, Vadassery J. Molecular mechanisms of Piriformospora indica mediated growth promotion in plants. PLANT SIGNALING & BEHAVIOR 2022; 17:2096785. [PMID: 35811563 PMCID: PMC9272844 DOI: 10.1080/15592324.2022.2096785] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Piriformospora indica is a root endophyte having a vast host range in plants. Plant growth promotion is a hallmark of the symbiotic interaction of P. indica with its hosts. As a plant growth-promoting microorganism, it is important to know the mechanisms involved in growth induction. Hitherto, multiple reports have demonstrated various molecular mechanisms of P. indica-mediated growth promotion, including protein kinase-mediated pathway, enhanced nutrient uptake and polyamine-mediated growth phytohormone elevation. Here, we briefly present a discussion on the state-of-the-art molecular mechanisms of P. indica-mediated growth promotion in host plants, in order to obtain a future prospect on utilization of this microorganism for sustainable agriculture.
Collapse
Affiliation(s)
- Anish Kundu
- Chemical Ecology Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Jyothilakshmi Vadassery
- Chemical Ecology Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| |
Collapse
|
11
|
Tarroum M, Romdhane WB, Al-Qurainy F, Ali AAM, Al-Doss A, Fki L, Hassairi A. A novel PGPF Penicillium olsonii isolated from the rhizosphere of Aeluropus littoralis promotes plant growth, enhances salt stress tolerance, and reduces chemical fertilizers inputs in hydroponic system. Front Microbiol 2022; 13:996054. [PMID: 36386667 PMCID: PMC9648140 DOI: 10.3389/fmicb.2022.996054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
The hydroponic farming significantly enhances the yield and enables multiple cropping per year. These advantages can be improved by using plant growth-promoting fungi (PGPF) either under normal or stress conditions. In this study, the fungal strain (A3) isolated from the rhizosphere of the halophyte plant Aeluropus littoralis was identified as Penicillium olsonii based on sequence homology of its ITS region. The A3 fungus was shown to be halotolerant (up to 1 M NaCl) and its optimal growth was at 27°C, but inhibited at 40°C. In liquid culture medium, the A3 produced indole acetic acid (IAA) especially in the presence of L-tryptophan. Tobacco plants grown under hydroponic farming system were used to evaluate the promoting activity of the direct effect of A3 mycelium (DE) and the indirect effect (IDE) of its cell-free culture filtrate (A3CFF). The results showed that for the two conditions (DE or IDE) the tobacco seedlings exhibited significant increase in their height, leaf area, dry weight, and total chlorophyll content. Interestingly, the A3CFF (added to the MS liquid medium or to nutrient solution (NS), prepared from commercial fertilizers) induced significantly the growth parameters, the proline concentration, the catalase (CAT) and the superoxide dismutase (SOD) activities of tobacco plants. The A3CFF maintained its activity even after extended storage at 4°C for 1 year. Since the A3 is a halotolerant fungus, we tested its ability to alleviate salt stress effects. Indeed, when added at 1:50 dilution factor to NS in the presence of 250 mM NaCl, the A3CFF enhanced the plant salt tolerance by increasing the levels of total chlorophyll, proline, CAT, and SOD activities. In addition, the treated plants accumulated less Na+ in their roots but more K+ in their leaves. The A3CFF was also found to induce the expression of five salt stress related genes (NtSOS1, NtNHX1, NtHKT1, NtSOD, and NtCAT1). Finally, we proved that the A3CFF can reduce by half the chemical fertilizers inputs. Indeed, the tobacco plants grown in a hydroponic system using 0.5xNS supplemented with A3CFF (1:50) exhibited significantly higher growth than those grown in 0.5xNS or 1xNS. In an attempt to explain this mechanism, the expression profile of some growth related genes (nitrogen metabolism (NR1, NRT1), auxin (TRYP1, YUCCA6-like), and brassinosteroid (DET2, DWF4) biosynthesis) was performed. The results showed that all these genes were up-regulated following plant treatment with A3CFF. In summary the results revealed that the halotolerant fungus P. olsonii can stimulates tobacco plant growth, enhances its salt tolerance, and reduces by half the required chemical fertilizer inputs in a hydroponic farming system.
Collapse
Affiliation(s)
- Mohamed Tarroum
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Mohamed Tarroum,
| | - Walid Ben Romdhane
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Al-Qurainy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Abdelrahim Mohamed Ali
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Al-Doss
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Lotfi Fki
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Afif Hassairi
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
- Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Afif Hassairi,
| |
Collapse
|
12
|
De Palma M, Scotti R, D’Agostino N, Zaccardelli M, Tucci M. Phyto-Friendly Soil Bacteria and Fungi Provide Beneficial Outcomes in the Host Plant by Differently Modulating Its Responses through (In)Direct Mechanisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:2672. [PMID: 36297696 PMCID: PMC9612229 DOI: 10.3390/plants11202672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Sustainable agricultural systems based on the application of phyto-friendly bacteria and fungi are increasingly needed to preserve soil fertility and microbial biodiversity, as well as to reduce the use of chemical fertilizers and pesticides. Although there is considerable attention on the potential applications of microbial consortia as biofertilizers and biocontrol agents for crop management, knowledge on the molecular responses modulated in host plants because of these beneficial associations is still incomplete. This review provides an up-to-date overview of the different mechanisms of action triggered by plant-growth-promoting microorganisms (PGPMs) to promote host-plant growth and improve its defense system. In addition, we combined available gene-expression profiling data from tomato roots sampled in the early stages of interaction with Pseudomonas or Trichoderma strains to develop an integrated model that describes the common processes activated by both PGPMs and highlights the host's different responses to the two microorganisms. All the information gathered will help define new strategies for the selection of crop varieties with a better ability to benefit from the elicitation of microbial inoculants.
Collapse
Affiliation(s)
- Monica De Palma
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| | - Riccardo Scotti
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Massimo Zaccardelli
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy
| | - Marina Tucci
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| |
Collapse
|
13
|
Understanding the Role of PIN Auxin Carrier Genes under Biotic and Abiotic Stresses in Olea europaea L. BIOLOGY 2022; 11:biology11071040. [PMID: 36101418 PMCID: PMC9312197 DOI: 10.3390/biology11071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022]
Abstract
The PIN-FORMED (PIN) proteins represent the most important polar auxin transporters in plants. Here, we characterized the PIN gene family in two olive genotypes, the Olea europaea subsp. europaea var. sylvestris and the var. europaea (cv. ‘Farga’). Twelve and 17 PIN genes were identified for vars. sylvestris and europaea, respectively, being distributed across 6 subfamilies. Genes encoding canonical OePINs consist of six exons, while genes encoding non-canonical OePINs are composed of five exons, with implications at protein specificities and functionality. A copia-LTR retrotransposon located in intron 4 of OePIN2b of var. europaea and the exaptation of partial sequences of that element as exons of the OePIN2b of var. sylvestris reveals such kind of event as a driving force in the olive PIN evolution. RNA-seq data showed that members from the subfamilies 1, 2, and 3 responded to abiotic and biotic stress factors. Co-expression of OePINs with genes involved in stress signaling and oxidative stress homeostasis were identified. This study highlights the importance of PIN genes on stress responses, contributing for a holistic understanding of the role of auxins in plants.
Collapse
|
14
|
Kundu A, Mishra S, Kundu P, Jogawat A, Vadassery J. Piriformospora indica recruits host-derived putrescine for growth promotion in plants. PLANT PHYSIOLOGY 2022; 188:2289-2307. [PMID: 34791442 PMCID: PMC8968253 DOI: 10.1093/plphys/kiab536] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/01/2023]
Abstract
Growth promotion induced by the endosymbiont Piriformospora indica has been observed in various plants; however, except growth phytohormones, specific functional metabolites involved in P. indica-mediated growth promotion are unknown. Here, we used a gas chromatography-mass spectrometry-based untargeted metabolite analysis to identify tomato (Solanum lycopersicum) metabolites whose levels were altered during P. indica-mediated growth promotion. Metabolomic multivariate analysis revealed several primary metabolites with altered levels, with putrescine (Put) induced most significantly in roots during the interaction. Further, our results indicated that P. indica modulates the arginine decarboxylase (ADC)-mediated Put biosynthesis pathway via induction of SlADC1 in tomato. Piriformospora indica did not promote growth in Sladc1-(virus-induced gene silencing of SlADC1) lines of tomato and showed less colonization. Furthermore, using LC-MS/MS we showed that Put promoted growth by elevation of auxin (indole-3-acetic acid) and gibberellin (GA4 and GA7) levels in tomato. In Arabidopsis (Arabidopsis thaliana) adc knockout mutants, P. indica colonization also decreased and showed no plant growth promotion, and this response was rescued upon exogenous application of Put. Put is also important for hyphal growth of P. indica, indicating that it is co-adapted by both host and microbe. Taken together, we conclude that Put is an essential metabolite and its biosynthesis in plants is crucial for P. indica-mediated plant growth promotion and fungal growth.
Collapse
Affiliation(s)
- Anish Kundu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shruti Mishra
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pritha Kundu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Abhimanyu Jogawat
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
15
|
Herrmann MN, Wang Y, Hartung J, Hartmann T, Zhang W, Nkebiwe PM, Chen X, Müller T, Yang H. A Global Network Meta-Analysis of the Promotion of Crop Growth, Yield, and Quality by Bioeffectors. FRONTIERS IN PLANT SCIENCE 2022; 13:816438. [PMID: 35300013 PMCID: PMC8921507 DOI: 10.3389/fpls.2022.816438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 05/05/2023]
Abstract
Bioeffector (BE) application is emerging as a strategy for achieving sustainable agricultural practices worldwide. However, the effect of BE on crop growth and quality is still controversial and there is still no adequate impact assessment that determines factors on the efficiency of BE application. Therefore, we carried out a network metaanalysis on the effect of BEs using 1,791 global observations from 186 studies to summarize influencing factors and the impact of BEs on crop growth, quality, and nutrient contents. The results show that BEs did not only improve plant growth by around 25% and yield by 30%, but also enhanced crop quality, e.g., protein (55% increase) and soluble solids content (75% increase) as well as aboveground nitrogen (N) and phosphate (P) content by 28 and 40%, respectively. The comparisons among BE types demonstrated that especially non-microbial products, such as extracts and humic/amino acids, have the potential to increase biomass growth by 40-60% and aboveground P content by 54-110%. The soil pH strongly influenced the efficiency of the applied BE with the highest effects in acidic soils. Our results showed that BEs are most suitable for promoting the quality of legumes and increasing the yield of fruits, herbs, and legumes. We illustrate that it is crucial to optimize the application of BEs with respect to the right application time and technique (e.g., placement, foliar). Our results provide an important basis for future research on the mechanisms underlying crop improvement by the application of BEs and on the development of new BE products.
Collapse
Affiliation(s)
- Michelle Natalie Herrmann
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Yuan Wang
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Jens Hartung
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Tobias Hartmann
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
- Crop Production, Landwirtschaftskammer des Saarlandes, Bexbach, Germany
| | - Wei Zhang
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | | | - Xinping Chen
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Torsten Müller
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Huaiyu Yang
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Ovečka M, Sojka J, Tichá M, Komis G, Basheer J, Marchetti C, Šamajová O, Kuběnová L, Šamaj J. Imaging plant cells and organs with light-sheet and super-resolution microscopy. PLANT PHYSIOLOGY 2022; 188:683-702. [PMID: 35235660 PMCID: PMC8825356 DOI: 10.1093/plphys/kiab349] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/12/2021] [Indexed: 05/05/2023]
Abstract
The documentation of plant growth and development requires integrative and scalable approaches to investigate and spatiotemporally resolve various dynamic processes at different levels of plant body organization. The present update deals with vigorous developments in mesoscopy, microscopy and nanoscopy methods that have been translated to imaging of plant subcellular compartments, cells, tissues and organs over the past 3 years with the aim to report recent applications and reasonable expectations from current light-sheet fluorescence microscopy (LSFM) and super-resolution microscopy (SRM) modalities. Moreover, the shortcomings and limitations of existing LSFM and SRM are discussed, particularly for their ability to accommodate plant samples and regarding their documentation potential considering spherical aberrations or temporal restrictions prohibiting the dynamic recording of fast cellular processes at the three dimensions. For a more comprehensive description, advances in living or fixed sample preparation methods are also included, supported by an overview of developments in labeling strategies successfully applied in plants. These strategies are practically documented by current applications employing model plant Arabidopsis thaliana (L.) Heynh., but also robust crop species such as Medicago sativa L. and Hordeum vulgare L. Over the past few years, the trend towards designing of integrative microscopic modalities has become apparent and it is expected that in the near future LSFM and SRM will be bridged to achieve broader multiscale plant imaging with a single platform.
Collapse
Affiliation(s)
- Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jiří Sojka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michaela Tichá
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - George Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jasim Basheer
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Cintia Marchetti
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Lenka Kuběnová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Author for communication:
| |
Collapse
|
17
|
The Non-Pathogenic Fusarium oxysporum Fo47 Induces Distinct Responses in Two Closely Related Solanaceae Plants against the Pathogen Verticillium dahliae. J Fungi (Basel) 2021; 7:jof7050344. [PMID: 33925134 PMCID: PMC8146752 DOI: 10.3390/jof7050344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The non-pathogenic Fusarium oxysporum Fo47 is able to protect Capsicum annuum (pepper) but not in Solanum lycopersicum (tomato) against the pathogen Verticillium dahliae. Transcriptomics of the plant during the interaction with Fo47 shows the induction of distinct set of genes in pepper and tomato. The number of differentially expressed (DE) genes in pepper (231 DE genes) is greater than the number of DE genes in tomato (39 DE genes) at 2 days after the treatment with Fo47. Ethylene related genes were present among the DE genes in both plants, and the up-regulation of ethylene biosynthetic genes was observed to be triggered during the interaction of both plants with Fo47. The treatment with MCP (1-Methylcyclopropene, an ethylene-competitive inhibitor) reduced the Fo47 protection in pepper against Verticillium dahliae. Intriguingly, Fo47 was able to protect the ethylene-insensitive tomato mutant Never-ripe (Nr) against Verticillium dahliae, but not the tomato wilt type cv Pearson. Overall, ethylene is shown to be an important player in the response to Fo47, but its role depends on the host species.
Collapse
|
18
|
Harnessing the Rhizosphere of the Halophyte Grass Aeluropus littoralis for Halophilic Plant-Growth-Promoting Fungi and Evaluation of Their Biostimulant Activities. PLANTS 2021; 10:plants10040784. [PMID: 33923476 PMCID: PMC8073152 DOI: 10.3390/plants10040784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022]
Abstract
Hydroponic systems have gained interest and are increasingly used in hot and dry desert areas. Numbers of benefits are offered by hydroponic systems such as the ability to save water, enhance nutrients use efficiency, easy environmental control, and prevention of soil-borne diseases. However, the high consumption of chemical fertilizers for nutrient solution and the sensitivity of closed hydroponic systems to salinity are issues that need solutions. Thus, the main goal of our research activities is to isolate plant growth promoting fungi in order to develop sustainable hydroponic systems. We are working on isolating and testing the possibility to incorporate the cell-free filtrate (CFF) of plant growth promoting fungi (PGPF) in the composition of the nutrient solution. In this work, we isolated six strains of PGPF from the rhizosphere of the halophyte grass Aeluropus littoralis. Phylogenetic analyses of DNA sequences amplified by ITS1 and ITS4 primers identified the isolated fungi as: Byssochlamys spectabilis, Chaetomium globosum, Cephalotheca foveolata, Penicillium melinii, Alternaria tenuissima, and Nigrospora chinensis. The promoting of vigor in tobacco seedlings was used as criteria to evaluate the biostimulant activity of these fungi by adding either their mycelia (DE: direct effect) or their cell-free filtrates (CFF: indirect effect) to the plant-growth media. The best significant growth stimulation was obtained with plants treated by B. spectabilis. However, only the CFFs of Byssochlamys spectabilis (A5.1) and Penicillium melinii (A8) when added at a dilution factor of 1/50 to half-strength nutritive solution (0.5NS) resulted in significant improvement of all assessed growth parameters. Indeed, the A5.1CFF and A8CFF in 0.5NS induced a significant better increase in the biomass production when compared to NS or 0.5NS alone. All fungi produced indole acetic acid in the CFFs, which could be one of the key factors explaining their biostimulant activities. Furthermore, six genes involved in nitrogen-metabolism (NR1 and NRT1), auxin biosynthesis (Tryp1 and YUCCA6-like), and brassinosteroid biosynthesis (DET2 and DWF4) were shown to be induced in roots or leaves following treatment of plants with the all CFFs. This work opens up a prospect to study in deep the biostimulant activity of PGPFs and their applications to decrease the requirement of chemical fertilizers in the hydroponic growing systems.
Collapse
|
19
|
Cantabella D, Teixidó N, Segarra G, Torres R, Casanovas M, Dolcet-Sanjuan R. Rhizosphere microorganisms enhance in vitro root and plantlet development of Pyrus and Prunus rootstocks. PLANTA 2021; 253:78. [PMID: 33715081 DOI: 10.1007/s00425-021-03595-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/05/2021] [Indexed: 05/06/2023]
Abstract
The in vitro application of rhizosphere microorganisms led to a higher rooting percentage in Pyrus Py12 rootstocks and increased plant growth of Pyrus Py170 and Prunus RP-20. The rooting of fruit tree rootstocks is the most challenging step of the in vitro propagation process. The use of rhizosphere microorganisms to promote in vitro rooting and plant growth as an alternative to the addition of chemical hormones to culture media is proposed in the present study. Explants from two Pyrus (Py170 and Py12) rootstocks and the Prunus RP-20 rootstock were inoculated with Pseudomonas oryzihabitans PGP01, Cladosporium ramotenellum PGP02 and Phoma sp. PGP03 following two different methods to determine their effects on in vitro rooting and plantlet growth. The effects of the microorganisms on the growth of fully developed Py170 and RP-20 plantlets were also studied in vitro. All experiments were conducted using vermiculite to simulate a soil system in vitro. When applied to Py12 shoots, which is a hard-to-root plant material, both C. ramotenellum PGP02 and Phoma sp. PGP03 fungi were able to increase the rooting percentage from 56.25% to 100% following auxin indole-3-butyric acid (IBA) treatment. Thus, the presence of these microorganisms clearly improved root development, inducing a higher number of roots and causing shorter roots. Better overall growth and improved stem growth of treated plants was observed when auxin treatment was replaced by co-culture with microorganisms. A root growth-promoting effect was observed on RP-20 plantlets after inoculation with C. ramotenellum PGP02, while P. oryzihabitans PGP01 increased root numbers for both Py170 and RP-20 and increased root growth over stem growth for RP-20. It was also shown that the three microorganisms P. oryzihabitans PGP01, C. ramotenellum PGP02 and Phoma sp. PGP03 were able to naturally produce auxin, including indole-3-acetic acid (IAA), at different levels. Overall, our results demonstrate that the microorganisms P. oryzihabitans PGP01 and C. ramotenellum PGP02 had beneficial effects on in vitro rooting and plantlet growth and could be applied to in vitro tissue culture as a substitute for IBA.
Collapse
Affiliation(s)
- Daniel Cantabella
- IRTA Postharvest Programme, Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, 25003, Lleida, Catalonia, Spain
- IRTA Plant In Vitro Culture Laboratory, Fruticulture Programme, Parc Científic I Tecnològic Agroalimentari de Lleida, 25003, Lleida, Catalonia, Spain
| | - Neus Teixidó
- IRTA Postharvest Programme, Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, 25003, Lleida, Catalonia, Spain
| | - Guillem Segarra
- IRTA Postharvest Programme, Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, 25003, Lleida, Catalonia, Spain
| | - Rosario Torres
- IRTA Postharvest Programme, Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, 25003, Lleida, Catalonia, Spain
| | - Maria Casanovas
- IRTA Plant In Vitro Culture Laboratory, Fruticulture Programme, Parc Científic I Tecnològic Agroalimentari de Lleida, 25003, Lleida, Catalonia, Spain
| | - Ramon Dolcet-Sanjuan
- IRTA Plant In Vitro Culture Laboratory, Fruticulture Programme, Parc Científic I Tecnològic Agroalimentari de Lleida, 25003, Lleida, Catalonia, Spain.
| |
Collapse
|
20
|
Eichmann R, Richards L, Schäfer P. Hormones as go-betweens in plant microbiome assembly. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:518-541. [PMID: 33332645 PMCID: PMC8629125 DOI: 10.1111/tpj.15135] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 05/04/2023]
Abstract
The interaction of plants with complex microbial communities is the result of co-evolution over millions of years and contributed to plant transition and adaptation to land. The ability of plants to be an essential part of complex and highly dynamic ecosystems is dependent on their interaction with diverse microbial communities. Plant microbiota can support, and even enable, the diverse functions of plants and are crucial in sustaining plant fitness under often rapidly changing environments. The composition and diversity of microbiota differs between plant and soil compartments. It indicates that microbial communities in these compartments are not static but are adjusted by the environment as well as inter-microbial and plant-microbe communication. Hormones take a crucial role in contributing to the assembly of plant microbiomes, and plants and microbes often employ the same hormones with completely different intentions. Here, the function of hormones as go-betweens between plants and microbes to influence the shape of plant microbial communities is discussed. The versatility of plant and microbe-derived hormones essentially contributes to the creation of habitats that are the origin of diversity and, thus, multifunctionality of plants, their microbiota and ultimately ecosystems.
Collapse
Affiliation(s)
- Ruth Eichmann
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
| | - Luke Richards
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - Patrick Schäfer
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
21
|
Pérez-Alonso MM, Guerrero-Galán C, Scholz SS, Kiba T, Sakakibara H, Ludwig-Müller J, Krapp A, Oelmüller R, Vicente-Carbajosa J, Pollmann S. Harnessing symbiotic plant-fungus interactions to unleash hidden forces from extreme plant ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3865-3877. [PMID: 31976537 PMCID: PMC7316966 DOI: 10.1093/jxb/eraa040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/21/2020] [Indexed: 05/15/2023]
Abstract
Global climate change is arguably one of the biggest threats of modern times and has already led to a wide range of impacts on the environment, economy, and society. Owing to past emissions and climate system inertia, global climate change is predicted to continue for decades even if anthropogenic greenhouse gas emissions were to stop immediately. In many regions, such as central Europe and the Mediterranean region, the temperature is likely to rise by 2-5 °C and annual precipitation is predicted to decrease. Expected heat and drought periods followed by floods, and unpredictable growing seasons, are predicted to have detrimental effects on agricultural production systems, causing immense economic losses and food supply problems. To mitigate the risks of climate change, agricultural innovations counteracting these effects need to be embraced and accelerated. To achieve maximum improvement, the required agricultural innovations should not focus only on crops but rather pursue a holistic approach including the entire ecosystem. Over millions of years, plants have evolved in close association with other organisms, particularly soil microbes that have shaped their evolution and contemporary ecology. Many studies have already highlighted beneficial interactions among plants and the communities of microorganisms with which they coexist. Questions arising from these discoveries are whether it will be possible to decipher a common molecular pattern and the underlying biochemical framework of interspecies communication, and whether such knowledge can be used to improve agricultural performance under environmental stress conditions. In this review, we summarize the current knowledge of plant interactions with fungal endosymbionts found in extreme ecosystems. Special attention will be paid to the interaction of plants with the symbiotic root-colonizing endophytic fungus Serendipita indica, which has been developed as a model system for beneficial plant-fungus interactions.
Collapse
Affiliation(s)
- Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Carmen Guerrero-Galán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Sandra S Scholz
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Anne Krapp
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
22
|
Inaji A, Okazawa A, Taguchi T, Nakamoto M, Katsuyama N, Yoshikawa R, Ohnishi T, Waller F, Ohta D. Rhizotaxis Modulation in Arabidopsis Is Induced by Diffusible Compounds Produced during the Cocultivation of Arabidopsis and the Endophytic Fungus Serendipita indica. PLANT & CELL PHYSIOLOGY 2020; 61:838-850. [PMID: 32016405 DOI: 10.1093/pcp/pcaa008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Rhizotaxis is established under changing environmental conditions via periodic priming of lateral root (LR) initiation at the root tips and adaptive LR formation along the primary root (PR). In contrast to the adaptable LR formation in response to nutrient availability, there is little information on root development during interactions with beneficial microbes. The Arabidopsis root system is characteristically modified upon colonization by the root endophytic fungus Serendipita indica, accompanied by a marked stimulation of LR formation and the inhibition of PR growth. This root system modification has been attributed to endophyte-derived indole-3-acetic acid (IAA). However, it has yet to be clearly explained how fungal IAA affects the intrinsic LR formation process. In this study, we show that diffusible compounds (chemical signals) other than IAA are present in the coculture medium of Arabidopsis and S. indica and induce auxin-responsive DR5::GUS expression in specific sections within the pericycle layer. The DR5::GUS expression was independent of polar auxin transport and the major IAA biosynthetic pathways, implicating unidentified mechanisms responsible for the auxin response and LR formation. Detailed metabolite analysis revealed the presence of multiple compounds that induce local auxin responses and LR formation. We found that benzoic acid (BA) cooperatively acted with exogenous IAA to generate a local auxin response in the pericycle layer, suggesting that BA is one of the chemical signals involved in adaptable LR formation. Identification and characterization of the chemical signals will contribute to a greater understanding of the molecular mechanisms underlying adaptable root development and to unconventional technologies for sustainable agriculture.
Collapse
Affiliation(s)
- Aoi Inaji
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| | - Atsushi Okazawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| | - Taiki Taguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| | - Masatoshi Nakamoto
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu Shiga, 525-8577 Japan
| | - Nao Katsuyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| | - Ryoka Yoshikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| | - Toshiyuki Ohnishi
- Graduate School of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Frank Waller
- Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-University Würzburg, Julius-von-Sachs-Platz 2, Würzburg D-97082, Germany
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
- Bioeconomy Research Institute, Research Center for the 21st Century, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| |
Collapse
|